Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

5-methylthiopentyl Isothiocyanate, a Sulforaphane Analogue, Inhibits Pro-inflammatory Cytokines by Regulating LPS/ATP-mediated NLRP3 Inflammasome Activation

Author(s): Su-Bin Choi, Ji-Hye Kim, Sehee Kwon, Na-Hyun Ahn, Joo-Hee Lee, Woong-Suk Yang, Cheorl-Ho Kim* and Seung-Hoon Yang*

Volume 25, Issue 5, 2024

Published on: 08 September, 2023

Page: [645 - 654] Pages: 10

DOI: 10.2174/1389201024666230824093927

Price: $65

Abstract

Background: Pro-inflammatory cytokines secreted from activated macrophages and astrocytes are crucial mediators of inflammation for host defense. Among them, the secretion of IL-1β, a major pro-inflammatory cytokine, is especially mediated by the activation of NLRP3 inflammasome. Pro-IL-1β, which is produced in response to the invaded pathogens, such as LPS, is cleaved and matured in the NLRP3 inflammasome by the recognition of ATP. Excessively activated IL-1β induces other immune cells, resulting in the up-regulation of inflammation. Therefore, regulation of NLRP3 inflammasome can be a good strategy for alleviating inflammation.

Objective: Our study aimed to examine whether 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), has an anti-inflammatory effect on the NLRP3 inflammasome activation induced by LPS and ATP.

Methods: Primary bone marrow-derived macrophages (BMDMs) and astrocytes were stimulated by LPS and ATP with the treatment of 5-methylthiopentyl isothiocyanate, a sulforaphane analogue. The secretion of pro-inflammatory cytokines was measured by ELISA, and the expression level of NLRP3 inflammasome-associated proteins was detected by western blot. The association of NLRP3 inflammasome was assessed by co-immunoprecipitation, and the formation of ASC specks was evaluated by fluorescent microscope.

Results: 5-methylthiopentyl isothiocyanate, a sulforaphane analogue (berteroin), decreased the release of pro-inflammatory cytokines, IL-1β, and IL-6 in the BMDMs. Berteroin notably prevented the formation of both NLRP3 inflammasome and ASC specks, which reduced the secretion of IL-1β. Additionally, berteroin reduced the IL-1β secretion and cleaved IL-1β expression in the primary astrocytes.

Discussion and Conclusion: These results indicated the anti-inflammatory effects of 5- methylthiopentyl isothiocyanate (berteroin) by regulating NLRP3 inflammasome activation, suggesting that berteroin could be the potential natural drug candidate for the regulation of inflammation.

« Previous
Graphical Abstract

[1]
Eming, S.A.; Wynn, T.A.; Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science, 2017, 356(6342), 1026-1030.
[http://dx.doi.org/10.1126/science.aam7928] [PMID: 28596335]
[2]
Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a006049.
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[3]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[4]
Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[5]
Arango, D.G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[6]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[7]
Watanabe, S.; Alexander, M.; Misharin, A.V.; Budinger, G.R.S. The role of macrophages in the resolution of inflammation. J. Clin. Invest., 2019, 129(7), 2619-2628.
[http://dx.doi.org/10.1172/JCI124615] [PMID: 31107246]
[8]
Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791.
[http://dx.doi.org/10.4049/jimmunol.0901363] [PMID: 19570822]
[9]
Ren, K.; Torres, R. Role of interleukin-1β during pain and inflammation. Brain Res. Brain Res. Rev., 2009, 60(1), 57-64.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.020] [PMID: 19166877]
[10]
Song, N.; Li, T. Regulation of NLRP3 inflammasome by phosphorylation. Front. Immunol., 2018, 9, 2305.
[http://dx.doi.org/10.3389/fimmu.2018.02305] [PMID: 30349539]
[11]
Chovatiya, R.; Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell, 2014, 54(2), 281-288.
[http://dx.doi.org/10.1016/j.molcel.2014.03.030] [PMID: 24766892]
[12]
Marques, R.E.; Marques, P.E.; Guabiraba, R.; Teixeira, M.M. Exploring the homeostatic and sensory roles of the immune system. Front. Immunol., 2016, 7, 125.
[http://dx.doi.org/10.3389/fimmu.2016.00125] [PMID: 27065209]
[13]
Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neurosci. Ther., 2021, 27(1), 36-47.
[http://dx.doi.org/10.1111/cns.13569] [PMID: 33381913]
[14]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[15]
Jeong, Y.J.; Cho, H.J.; Chung, F.L.; Wang, X.; Hoe, H.S.; Park, K.K.; Kim, C.H.; Chang, H.W.; Lee, S.R.; Chang, Y.C. Isothiocyanates suppress the invasion and metastasis of tumors by targeting FAK/MMP-9 activity. Oncotarget, 2017, 8(38), 63949-63962.
[http://dx.doi.org/10.18632/oncotarget.19213] [PMID: 28969043]
[16]
Lee, C.S.; Cho, H.J.; Jeong, Y.J.; Shin, J.M.; Park, K.K.; Park, Y.Y.; Bae, Y.S.; Chung, K.; Kim, M.; Kim, C.H.; Jin, F.; Chang, H.W.; Chang, Y.C. Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression. Oncol. Rep., 2015, 34(6), 2901-2908.
[http://dx.doi.org/10.3892/or.2015.4292] [PMID: 26397194]
[17]
Suh, S.J.; Moon, S.K.; Kim, C.H. Raphanus sativus and its isothiocyanates inhibit vascular smooth muscle cells proliferation and induce G1 cell cycle arrest. Int. Immunopharmacol., 2006, 6(5), 854-861.
[http://dx.doi.org/10.1016/j.intimp.2005.11.014] [PMID: 16546717]
[18]
Lee, J.Y.; Moon, S.K.; Hwang, C.W.; Nam, K.S.; Kim, Y.K.; Yoon, H.D.; Kim, M.G.; Kim, C.H. A novel function of benzyl isothiocyanate in vascular smooth muscle cells: The role of ERK1/2, cell cycle regulation, and matrix metalloproteinase-9. J. Cell. Physiol., 2005, 203(3), 493-500.
[http://dx.doi.org/10.1002/jcp.20257] [PMID: 15605368]
[19]
Kwon, H.Y.; Kim, K.S.; Baik, J.S.; Moon, H.I.; Lee, J.W.; Kim, C.H.; Cho, Y.S.; Jeong, Y.K.; Lee, Y.C. Triptolide-mediated apoptosis by suppression of focal adhesion kinase through extrinsic and intrinsic pathways in human melanoma cells. Evid-Based Compl Alt, 2013, 2013, 172548.
[http://dx.doi.org/10.1155/2013/172548]
[20]
Moon, S.K.; Choi, Y.H.; Kim, C.H.; Choi, W.S. p38MAPK mediates benzyl isothiocyanate-induced p21WAF1 expression in vascular smooth muscle cells via the regulation of Sp1. Biochem. Biophys. Res. Commun., 2006, 350(3), 662-668.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.092] [PMID: 17026958]
[21]
Jung, Y.; Jung, J.; Cho, H.; Choi, M.S.; Sung, M.K.; Yu, R.; Kang, Y.H.; Park, J. Berteroin present in cruciferous vegetables exerts potent anti-inflammatory properties in murine macrophages and mouse skin. Int. J. Mol. Sci., 2014, 15(11), 20686-20705.
[http://dx.doi.org/10.3390/ijms151120686] [PMID: 25393510]
[22]
Mao, L.; Kitani, A.; Strober, W.; Fuss, I.J. The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease. Front. Immunol., 2018, 9, 2566.
[http://dx.doi.org/10.3389/fimmu.2018.02566] [PMID: 30455704]
[23]
Nambayan, R.J.T.; Sandin, S.I.; Quint, D.A.; Satyadi, D.M.; de Alba, E. The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains, PYD and CARD. J. Biol. Chem., 2019, 294(2), 439-452.
[http://dx.doi.org/10.1074/jbc.RA118.004407] [PMID: 30459235]
[24]
Dick, M.S.; Sborgi, L.; Ruhl, S.; Hiller, S.; Broz, P. ASC filament formation serves as a signal amplification mechanism for inflammasomes (Vol 7,11929, 2017). Nat. Commun., 2017, 8, 15030.
[http://dx.doi.org/10.1038/ncomms15030]
[25]
Hong, H.; Kim, B.S.; Im, H.I. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int. Neurourol. J., 2016, 20(S1), S2-S7.
[http://dx.doi.org/10.5213/inj.1632604.302] [PMID: 27230456]
[26]
Rama Rao, K.V.; Kielian, T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin. Exp. Neuroimmunol., 2015, 6(3), 245-263.
[http://dx.doi.org/10.1111/cen3.12237] [PMID: 26543505]
[27]
Duan, L.; Rao, X.; Sigdel, K.R. Regulation of inflammation in autoimmune disease. J. Immunol. Res., 2019, 2019, 1-2.
[http://dx.doi.org/10.1155/2019/7403796] [PMID: 30944837]
[28]
Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol., 2019, 14(1), 50-59.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[29]
Jaroenlapnopparat, A.; Bhatia, K.; Coban, S. Inflammation and gastric cancer. Diseases, 2022, 10(3), 35.
[http://dx.doi.org/10.3390/diseases10030035] [PMID: 35892729]
[30]
Xu, C.X.; Zhu, H.H.; Zhu, Y.M. Diabetes and cancer: Associations, mechanisms, and implications for medical practice. World J. Diabetes, 2014, 5(3), 372-380.
[http://dx.doi.org/10.4239/wjd.v5.i3.372] [PMID: 24936258]
[31]
Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[32]
Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.G.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A.J. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[33]
Schlachetzki, J.C.M.; Süβ, P.; Lana, A.J. Chronic peripheral inflammation: A possible contributor to neurodegenerative diseases. Neural Regen. Res., 2021, 16(9), 1711-1714.
[http://dx.doi.org/10.4103/1673-5374.306060] [PMID: 33510059]
[34]
Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 inflammasome and inflammatory diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/4063562] [PMID: 32148650]
[35]
Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504.
[http://dx.doi.org/10.1038/ncomms12504] [PMID: 27509875]
[36]
Khan, N.; Kuo, A.; Brockman, D.A.; Cooper, M.A.; Smith, M.T. Pharmacological inhibition of the NLRP3 inflammasome as a potential target for multiple sclerosis induced central neuropathic pain. Inflammopharmacology, 2018, 26(1), 77-86.
[http://dx.doi.org/10.1007/s10787-017-0401-9] [PMID: 28965161]
[37]
van Hout, G.P.J.; Bosch, L.; Ellenbroek, G.H.J.M.; de Haan, J.J.; van Solinge, W.W.; Cooper, M.A.; Arslan, F.; de Jager, S.C.A.; Robertson, A.A.B.; Pasterkamp, G.; Hoefer, I.E. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J., 2016, 38(11), ehw247.
[http://dx.doi.org/10.1093/eurheartj/ehw247] [PMID: 27432019]
[38]
Xu, W.J.; Wang, Y.M.; Ma, Y.; Yang, J. MiR-223 plays a protecting role in neutrophilic asthmatic mice through the inhibition of NLRP3 inflammasome. Respir. Res., 2020, 21(1), 116.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy