Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices

In Press, (this is not the final "Version of Record"). Available online 23 August, 2023
Author(s): Alaleh Valiallahi, Zahra Vazifeh, Zahra Rezanejad Gatabi, Maryam Davoudi and Iman Rezanezhad Gatabi*
Published on: 23 August, 2023

DOI: 10.2174/0929867331666230823094737

Price: $95

Abstract

Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vitro conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.

[1]
Kevric, I.; Cappel, M.A.; Keeling, J.H. New world and old world leishmania infections: A practical review. Dermatol. Clin., 2015, 33(3), 579-593.
[http://dx.doi.org/10.1016/j.det.2015.03.018] [PMID: 26143433]
[2]
Shirian, S.; Oryan, A.; Hatam, G.R.; Panahi, S.; Daneshbod, Y. Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis. Arch. Pathol. Lab. Med., 2014, 138(2), 235-240.
[http://dx.doi.org/10.5858/arpa.2013-0098-OA] [PMID: 24476521]
[3]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000 Res., 2017, 6, 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[4]
Elmahallawy, E.K.; Alkhaldi, A.A.M.; Saleh, A.A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed. Pharmacother., 2021, 139, 111671.
[http://dx.doi.org/10.1016/j.biopha.2021.111671] [PMID: 33957562]
[5]
Mignot, G.; Bhattacharya, Y.; Reddy, A. Ocular Leishmaniasis: A systematic review. Indian J. Ophthalmol., 2021, 69(5), 1052-1060.
[http://dx.doi.org/10.4103/ijo.IJO_2232_20] [PMID: 33913831]
[6]
Oryan, A.; Akbari, M. Worldwide risk factors in leishmaniasis. Asian Pac. J. Trop. Med., 2016, 9(10), 925-932.
[http://dx.doi.org/10.1016/j.apjtm.2016.06.021] [PMID: 27794384]
[7]
Oryan, A. Plant-derived compounds in treatment of leishmaniasis. Majallah-i Tahqiqat-i Dampizishki-i Iran, 2015, 16(1), 1-19.
[PMID: 27175144]
[8]
Mann, S.; Frasca, K.; Scherrer, S. Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132.
[http://dx.doi.org/10.1007/s40475-021-00232-7] [PMID: 33747716]
[9]
Akbari, M.; Oryan, A.; Hatam, G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Trop., 2017, 172, 86-90.
[http://dx.doi.org/10.1016/j.actatropica.2017.04.029] [PMID: 28460833]
[10]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M.; Team, W.L.C. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5), e35671.
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[11]
Santos, S.S. de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for chagas disease, leishmaniasis and schistosomiasis: A review. Int. J. Antimicrob. Agents, 2020, 55(4), 105906.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105906] [PMID: 31987883]
[12]
Raj, S.; Sasidharan, S.; Balaji, S.N.; Saudagar, P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol. Res., 2020, 119(7), 2025-2037.
[http://dx.doi.org/10.1007/s00436-020-06736-x] [PMID: 32504119]
[13]
Singh, O.P.; Gedda, M.R.; Mudavath, S.L.; Srivastava, O.N.; Sundar, S. Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: For future theranostic application. Nanomedicine, 2019, 14(14), 1911-1927.
[http://dx.doi.org/10.2217/nnm-2018-0448] [PMID: 31313971]
[14]
Da Silva, E.O.; Borges, P.F.C.; Santana, R.B.; Moura, H.S.D.; Barcellos, J.F.M.; Jensen, B.B.; Pinheiro, F.G.; Naiff, M.F.; Espir, T.T.; Franco, A.M.R. Evaluation of the lymphoproliferation of mononuclear cells in cutaneous leishmaniasis patients treated with Libidibia ferrea. Acta Brasiliensis, 2021, 5(3), 97-102.
[http://dx.doi.org/10.22571/2526-4338560]
[15]
Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials, 2019, 9(12), 1749.
[http://dx.doi.org/10.3390/nano9121749] [PMID: 31818029]
[16]
Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis., 2017, 11(12), e0006052.
[http://dx.doi.org/10.1371/journal.pntd.0006052] [PMID: 29240765]
[17]
Yadav, A.; Patel, M.; Patel, R.; Plekhanova, Y.; Reshetilov, A.; Shurygina, I.A.; Shurygin, M.G.; Wypij, M.; Ghosh, S.; Kitture, R. Nanobiotechnology in diagnosis, drug delivery and treatment; Wiley-Blackwell, 2020.
[18]
Azim, M.; Khan, S.A.; Ullah, S.; Ullah, S.; Anjum, S.I. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLoS Negl. Trop. Dis., 2021, 15(3), e0009099.
[http://dx.doi.org/10.1371/journal.pntd.0009099] [PMID: 33657097]
[19]
Gutiérrez, V.; Seabra, A.B.; Reguera, R.M.; Khandare, J. Calderón, M. New approaches from nanomedicine for treating leishmaniasis. Chem. Soc. Rev., 2016, 45(1), 152-168.
[http://dx.doi.org/10.1039/C5CS00674K] [PMID: 26487097]
[20]
Zaioncz, S.; Khalil, N.M.; Mainardes, R.M. Exploring the role of nanoparticles in amphotericin B delivery. Curr. Pharm. Des., 2017, 23(3), 509-521.
[http://dx.doi.org/10.2174/1381612822666161027103640] [PMID: 27799043]
[21]
Jamshaid, H.; Din, F.; Khan, G.M. Nanotechnology based solutions for anti-leishmanial impediments: A detailed insight. J. Nanobiotechnology, 2021, 19(1), 106.
[http://dx.doi.org/10.1186/s12951-021-00853-0] [PMID: 33858436]
[22]
Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control, 2020, 10, e00156.
[http://dx.doi.org/10.1016/j.parepi.2020.e00156] [PMID: 32566773]
[23]
Kammona, O.; Tsanaktsidou, E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int. J. Pharm., 2021, 605, 120761.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120761] [PMID: 34081999]
[24]
De Almeida, L.; Fujimura, A.T.; Cistia, M.L.D.; Fonseca-Santos, B.; Imamura, K.B.; Michels, P.M.; Chorilli, M.; Graminha, M.S. Nanotechnological strategies for treatment of leishmaniasis—a review. J. Biomed. Nanotechnol., 2017, 13(2), 117-133.
[http://dx.doi.org/10.1166/jbn.2017.2349] [PMID: 29376626]
[25]
Elmi, T.; Gholami, S.; Fakhar, M.; Azizi, F. A review on the use of nanoparticles in the treatment. J. Mazandaran Univ. Med. Sci., 2013, 23(102), 126-133.
[26]
Oliveira, S.S.C.; Ferreira, C.S.; Branquinha, M.H.; Santos, A.L.S.; Chaud, M.V.; Jain, S.; Cardoso, J.C.; Kovačević, A.B.; Souto, E.B.; Severino, P. Overcoming multi‐resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J. Chem. Technol. Biotechnol., 2021, 96(8), 2123-2140.
[http://dx.doi.org/10.1002/jctb.6633]
[27]
de Carvalho Oliveira, S.S.; Branquinha, M.H.; Cruz, M.d.S.P.; dos Santos, A.L.S.; Sangenito, L.S. Trendings of amphotericin B-loaded nanoparticles as valuable chemotherapeutic approaches against leishmaniasis. Applications of Nanobiotechnology for Neglected Tropical Diseases, 2021, 291-327.
[28]
Eifler, A.C.; Thaxton, C.S. Biomedical nanotechnology; Springer, 2011, pp. 325-338.
[http://dx.doi.org/10.1007/978-1-61779-052-2_21]
[29]
Kim, S.M.; Patel, M.; Patel, R. PLGA core-shell nano/microparticle delivery system for biomedical application. Polymers, 2021, 13(20), 3471.
[http://dx.doi.org/10.3390/polym13203471] [PMID: 34685230]
[30]
Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig., 2019, 49(4), 347-380.
[http://dx.doi.org/10.1007/s40005-019-00439-x]
[31]
Tosyali, O.A.; Allahverdiyev, A.; Bagirova, M.; Abamor, E.S.; Aydogdu, M.; Dinparvar, S.; Acar, T.; Mustafaeva, Z.; Derman, S. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: Evaluation of in vitro and in vivo immunostimulatory effects against visceral leishmaniasis. Mater. Sci. Eng. C, 2021, 120, 111684.
[http://dx.doi.org/10.1016/j.msec.2020.111684] [PMID: 33545846]
[32]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24, 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7]
[33]
Chan, J.M.; Valencia, P.M.; Zhang, L.; Langer, R.; Farokhzad, O.C. In: Cancer Nanotechnology Springer; , 2010, pp. 163-175.
[34]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[35]
Shakya, A.K.; Madhyastha, H. Integrating biologically-inspired nanotechnology into medical practice; IGI Global, 2017, pp. 32-49.
[http://dx.doi.org/10.4018/978-1-5225-0610-2.ch002]
[36]
Jin, Z.; Gao, S.; Cui, X.; Sun, D.; Zhao, K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int. J. Pharm., 2019, 572, 118731.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118731] [PMID: 31669213]
[37]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[38]
Sánchez, A.; Mejía, S.P.; Orozco, J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules, 2020, 25(16), 3760.
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[39]
Castro, K.C.; Costa, J.M.; Campos, M.G.N. Drug-loaded polymeric nanoparticles: A review. Int. J. Polym. Mater., 2022, 71(1), 1-13.
[http://dx.doi.org/10.1080/00914037.2020.1798436]
[40]
ul Hassan, N.; Chaudhery, I.; Ahmed, N. In advances in polymeric nanomaterials for biomedical applications; Elsevier, 2021, pp. 191-224.
[41]
Günday, C.; Anand, S.; Gencer, H.B. Munafò, S.; Moroni, L.; Fusco, A.; Donnarumma, G.; Ricci, C.; Hatir, P.C.; Türeli, N.G.; Türeli, A.E.; Mota, C.; Danti, S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv. Transl. Res., 2020, 10(3), 706-720.
[http://dx.doi.org/10.1007/s13346-020-00736-1] [PMID: 32100267]
[42]
Lam, S.J.; Wong, E.H.H.; Boyer, C.; Qiao, G.G. Antimicrobial polymeric nanoparticles. Prog. Polym. Sci., 2018, 76, 40-64.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.07.007]
[43]
Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers (Basel), 2021, 13(5), 724.
[http://dx.doi.org/10.3390/polym13050724] [PMID: 33673451]
[44]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[45]
Wong, K.H.; Lu, A.; Chen, X.; Yang, Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules, 2020, 25(16), 3620.
[http://dx.doi.org/10.3390/molecules25163620] [PMID: 32784890]
[46]
Chandarana, M.; Curtis, A.; Hoskins, C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci., 2018, 8(7), 1607-1619.
[http://dx.doi.org/10.1007/s13204-018-0856-z]
[47]
Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules, 2020, 25(15), 3322.
[http://dx.doi.org/10.3390/molecules25153322] [PMID: 32707934]
[48]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2, 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[49]
Elgiddawy, N.; Ren, S.; Yassar, A.; Louis-Joseph, A.; Sauriat-Dorizon, H.; El Rouby, W.M.A.; El-Gendy, A.O.; Farghali, A.A.; Korri-Youssoufi, H. Dispersible conjugated polymer nanoparticles as biointerface materials for label-free bacteria detection. ACS Appl. Mater. Interfaces, 2020, 12(36), 39979-39990.
[http://dx.doi.org/10.1021/acsami.0c08305] [PMID: 32805819]
[50]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[51]
Mallakpour, S.; Behranvand, V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett., 2016, 10(11), 895-913.
[http://dx.doi.org/10.3144/expresspolymlett.2016.84]
[52]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[53]
Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 2020, 10(10), 1970.
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[54]
Begines, B.; Ortiz, T.; Pérez-Aranda, M. Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[55]
Sousa-Batista, A.J.; Cerqueira-Coutinho, C.; do Carmo, F.S.; Albernaz, M.S.; Santos-Oliveira, R. Polycaprolactone antimony nanoparticles as drug delivery system for leishmaniasis. Am. J. Ther., 2019, 26(1), e12-e17.
[http://dx.doi.org/10.1097/MJT.0000000000000539] [PMID: 30601770]
[56]
Swider, E.; Koshkina, O.; Tel, J.; Cruz, L.J.; de Vries, I.J.M.; Srinivas, M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater., 2018, 73, 38-51.
[http://dx.doi.org/10.1016/j.actbio.2018.04.006] [PMID: 29653217]
[57]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[58]
Reddy, Y.D. A brief review on polymeric nanoparticles for drug delivery and targeting. J. Pharm. Innov., 2015, 2(7)
[59]
Tiruwa, R. A review on nanoparticles-preparation and evaluation parameters. Indian J. Pharm. Biol. Res., 2016, 4(2), 27.
[60]
Erdoğar, N.; Akkın, S.; Bilensoy, E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat. Drug Deliv. Formul., 2019, 12(4), 252-266.
[http://dx.doi.org/10.2174/1872211313666190123153711] [PMID: 30674269]
[61]
Frank, L.A.; Contri, R.V.; Beck, R.C.R.; Pohlmann, A.R.; Guterres, S.S. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 623-639.
[http://dx.doi.org/10.1002/wnan.1334] [PMID: 25641603]
[62]
Rambaran, T.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Appl. Sci., 2020, 2(8), 1335.
[http://dx.doi.org/10.1007/s42452-020-3110-8]
[63]
Neumann, K.; Lilienkampf, A.; Bradley, M. Responsive polymeric nanoparticles for controlled drug delivery. Polym. Int., 2017, 66(12), 1756-1764.
[http://dx.doi.org/10.1002/pi.5471]
[64]
Abasian, P.; Ghanavati, S.; Rahebi, S.; Nouri Khorasani, S.; Khalili, S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol., 2020, 31(12), 2939-2954.
[http://dx.doi.org/10.1002/pat.5031]
[65]
Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(6), 1692-1716.
[http://dx.doi.org/10.1002/jbm.b.33648] [PMID: 27098357]
[66]
Ghitman, J.; Biru, E.I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des., 2020, 193, 108805.
[http://dx.doi.org/10.1016/j.matdes.2020.108805]
[67]
Crucho, C.I.C.; Barros, M.T. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer, 2015, 68, 41-46.
[http://dx.doi.org/10.1016/j.polymer.2015.04.083]
[68]
Essa, D.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. The design of poly (lactide-co-glycolide) nanocarriers for medical applications. Front. Bioeng. Biotechnol., 2020, 8, 48.
[http://dx.doi.org/10.3389/fbioe.2020.00048] [PMID: 32117928]
[69]
Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv., 2015, 6(1), 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[70]
Mir, M.; Ahmed, N.; Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[71]
Chereddy, K.K.; Vandermeulen, G.; Préat, V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen., 2016, 24(2), 223-236.
[http://dx.doi.org/10.1111/wrr.12404] [PMID: 26749322]
[72]
Rani, R.; Dilbaghi, N.; Dhingra, D.; Kumar, S. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery. Int. J. Biol. Macromol., 2015, 78, 173-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.070] [PMID: 25881957]
[73]
Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D.T.; Moses, M.A. Nanoparticle elasticity directs tumor uptake. Nat. Commun., 2018, 9(1), 130.
[http://dx.doi.org/10.1038/s41467-017-02588-9] [PMID: 29317633]
[74]
Rabanel, J.M.; Aoun, V.; Elkin, I.; Mokhtar, M.; Hildgen, P. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers. Curr. Med. Chem., 2012, 19(19), 3070-3102.
[http://dx.doi.org/10.2174/092986712800784702] [PMID: 22612696]
[75]
Briones, E.; Isabel Colino, C.; Lanao, J.M. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release, 2008, 125(3), 210-227.
[http://dx.doi.org/10.1016/j.jconrel.2007.10.027] [PMID: 18077047]
[76]
Palma, E.; Pasqua, A.; Gagliardi, A.; Britti, D.; Fresta, M.; Cosco, D. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: An overview. Materials, 2018, 11(7), 1167.
[http://dx.doi.org/10.3390/ma11071167] [PMID: 29987206]
[77]
Nagavarma, B.; Yadav, H.K.; Ayaz, A.; Vasudha, L.; Shivakumar, H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
[78]
Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 2012, 41(7), 2545-2561.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[79]
Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519.
[http://dx.doi.org/10.1124/pr.111.005363] [PMID: 22544864]
[80]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[81]
Panta, P.; Kwon, J.S.; Son, A.R.; Lee, K.W.; Kim, M.S. Protein drug-loaded polymeric nanoparticles. j. biomed. sci. eng., 2014, 2014
[http://dx.doi.org/10.4236/jbise.2014.710082]
[82]
Bee, S.L.; Hamid, Z.A.A.; Mariatti, M.; Yahaya, B.H.; Lim, K.; Bee, S.T.; Sin, L.T. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: A review. Polym. Rev., 2018, 58(3), 495-536.
[http://dx.doi.org/10.1080/15583724.2018.1437547]
[83]
Chaudhary, S.A.; Patel, D.M.; Patel, J.K.; Patel, D.H. Emerging Technologies for Nanoparticle Manufacturing; Springer, 2021, pp. 287-300.
[http://dx.doi.org/10.1007/978-3-030-50703-9_12]
[84]
Arruebo, M.; Uson, L.; Miana, M.; Ortiz de Solorzano, I.; Sebastian, V.; Larrea, A. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: Effect of passive mixing. Int. J. Nanomedicine, 2016, 11, 3397-3416.
[http://dx.doi.org/10.2147/IJN.S108812] [PMID: 27524896]
[85]
Lagreca, E.; Onesto, V.; Di Natale, C.; La Manna, S.; Netti, P.A.; Vecchione, R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater., 2020, 9(4), 153-174.
[http://dx.doi.org/10.1007/s40204-020-00139-y] [PMID: 33058072]
[86]
Mendoza-Muñoz, N.; Alcalá-Alcala, S.; Quintanar-Guerrero, D. Polymer nanoparticles for nanomedicines; Springer, 2016, pp. 87-121.
[87]
Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9(1), 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[88]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[89]
Kumar, G.; Shafiq, N.; Malhotra, S. Drug-loaded PLGA nanoparticles for oral administration: Fundamental issues and challenges ahead. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2012, 29, (2).
[90]
Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt. Chem., 2016, 80, 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[91]
Martins, C.; Sousa, F.; Araújo, F.; Sarmento, B Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv. Healthc. Mater., 2018, 7(1), 1701035.
[http://dx.doi.org/10.1002/adhm.201701035] [PMID: 29171928]
[92]
Ramazani, F.; Chen, W.; van Nostrum, C.F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W.E.; Kok, R.J. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int. J. Pharm., 2016, 499(1-2), 358-367.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.020] [PMID: 26795193]
[93]
Locatelli, E.; Comes Franchini, M. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system. J. Nanopart. Res., 2012, 14(12), 1316.
[http://dx.doi.org/10.1007/s11051-012-1316-4]
[94]
Zhang, K.; Tang, X.; Zhang, J.; Lu, W.; Lin, X.; Zhang, Y.; Tian, B.; Yang, H.; He, H. PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications. J. Control. Release, 2014, 183, 77-86.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.026] [PMID: 24675377]
[95]
Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm., 2021, 605, 120807.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120807] [PMID: 34144133]
[96]
Metselaar, J.M.; Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res., 2020, 10(3), 721-725.
[http://dx.doi.org/10.1007/s13346-020-00740-5] [PMID: 32166632]
[97]
Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[98]
Prasanna, P.; Kumar, P.; Kumar, S.; Rajana, V.K.; Kant, V.; Prasad, S.R.; Mohan, U.; Ravichandiran, V.; Mandal, D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis: A review. Biomed. Pharmacother., 2021, 141, 111920.
[http://dx.doi.org/10.1016/j.biopha.2021.111920] [PMID: 34328115]
[99]
Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun., 2020, 25, 101692.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101692]
[100]
Ottemann, B.M.; Helmink, A.J.; Zhang, W.; Mukadam, I.; Woldstad, C.; Hilaire, J.R.; Liu, Y.; McMillan, J.M.; Edagwa, B.J.; Mosley, R.L.; Garrison, J.C.; Kevadiya, B.D.; Gendelman, H.E. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials, 2018, 185, 174-193.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.018] [PMID: 30245386]
[101]
Toy, R.; Peiris, P.M.; Ghaghada, K.B.; Karathanasis, E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine, 2014, 9(1), 121-134.
[http://dx.doi.org/10.2217/nnm.13.191] [PMID: 24354814]
[102]
Florez, L.; Herrmann, C.; Cramer, J.M.; Hauser, C.P.; Koynov, K.; Landfester, K.; Crespy, D. Mailänder, V. How shape influences uptake: Interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small, 2012, 8(14), 2222-2230.
[http://dx.doi.org/10.1002/smll.201102002] [PMID: 22528663]
[103]
Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31(3), 438-448.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.060] [PMID: 19800115]
[104]
Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett., 2014, 14(2), 687-693.
[http://dx.doi.org/10.1021/nl403949h] [PMID: 24383757]
[105]
Graf, C.; Nordmeyer, D.; Sengstock, C.; Ahlberg, S.; Diendorf, J.; Raabe, J.; Epple, M.; Köller, M.; Lademann, J.; Vogt, A.; Rancan, F.; Rühl, E. Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir, 2018, 34(4), 1506-1519.
[http://dx.doi.org/10.1021/acs.langmuir.7b03126] [PMID: 29272915]
[106]
Anselmo, A.C.; Zhang, M.; Kumar, S.; Vogus, D.R.; Menegatti, S.; Helgeson, M.E.; Mitragotri, S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano, 2015, 9(3), 3169-3177.
[http://dx.doi.org/10.1021/acsnano.5b00147] [PMID: 25715979]
[107]
Yi, X.; Gao, H. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale, 2017, 9(1), 454-463.
[http://dx.doi.org/10.1039/C6NR07179A] [PMID: 27934990]
[108]
Chen, Y.; Li, L.; Gong, L.; Zhou, T.; Liu, J. Surface regulation towards stimuli‐responsive luminescence of ultrasmall thiolated gold nanoparticles for ratiometric imaging. Adv. Funct. Mater., 2019, 29(10), 1806945.
[http://dx.doi.org/10.1002/adfm.201806945]
[109]
Sharifi, M.; Hosseinali, S.H.; Hossein Alizadeh, R.; Hasan, A.; Attar, F.; Salihi, A.; Shekha, M.S.; Amen, K.M.; Aziz, F.M.; Saboury, A.A.; Akhtari, K.; Taghizadeh, A.; Hooshmand, N.; El-Sayed, M.A.; Falahati, M. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta, 2020, 212, 120782.
[http://dx.doi.org/10.1016/j.talanta.2020.120782] [PMID: 32113545]
[110]
Yamada, M.; Foote, M.; Prow, T.W. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 428-445.
[http://dx.doi.org/10.1002/wnan.1322] [PMID: 25521618]
[111]
Zhou, H.S.; Honma, I.; Komiyama, H.; Haus, J.W. Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system’s synthesis and properties. J. Phys. Chem., 1993, 97(4), 895-901.
[http://dx.doi.org/10.1021/j100106a015]
[112]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), n/a.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[113]
Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release, 2018, 277, 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[114]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[115]
Mou, Q.; Ma, Y.; Zhu, X.; Yan, D. A small molecule nanodrug consisting of amphiphilic targeting ligand–chemotherapy drug conjugate for targeted cancer therapy. J. Control. Release, 2016, 230, 34-44.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.037] [PMID: 27040815]
[116]
Ding, H.; Ma, Y. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2012, 33(23), 5798-5802.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.055] [PMID: 22607914]
[117]
Pozzi, D.; Colapicchioni, V.; Caracciolo, G.; Piovesana, S.; Capriotti, A.L.; Palchetti, S.; De Grossi, S.; Riccioli, A.; Amenitsch, H.; Laganà, A. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells. Nanoscale, 2014, 6(5), 2782-2792.
[http://dx.doi.org/10.1039/c3nr05559k] [PMID: 24463404]
[118]
Arpagaus, C. PLA/PLGA nanoparticles prepared by nano spray drying. J. Pharm. Investig., 2019, 49(4), 405-426.
[http://dx.doi.org/10.1007/s40005-019-00441-3]
[119]
Liu, J.; Leng, P.; Liu, Y. Oral drug delivery with nanoparticles into the gastrointestinal mucosa. Fundam. Clin. Pharmacol., 2021, 35(1), 86-96.
[http://dx.doi.org/10.1111/fcp.12594] [PMID: 32749731]
[120]
Fakhar, M.; Keighobadi, M.; Emami, S. Hypothesis: The potential application of doxorubicin against cutaneous leishmaniasis. Trop. Parasitol., 2015, 5(1), 69-70.
[http://dx.doi.org/10.4103/2229-5070.145594] [PMID: 25709959]
[121]
Kansal, S.; Tandon, R.; Verma, P.R.P.; Dube, A.; Mishra, P.R. Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis. J. Microencapsul., 2013, 30(5), 441-450.
[http://dx.doi.org/10.3109/02652048.2012.752532] [PMID: 23534494]
[122]
Al-Kuraishy, H.M.; Dahash, S.L.; Abass, O.K.; Abdul-Razaq, M.M.; Al-Gareeb, A. Aesculus hippocastanum-derived extract β-Aescin and in vitro antibacterial activity. J. Microsc. Ultrastruct., 2021, 9(1), 26-30.
[http://dx.doi.org/10.4103/JMAU.JMAU_56_19] [PMID: 33850709]
[123]
Van de Ven, H.; Vermeersch, M.; Matheeussen, A.; Vandervoort, J.; Weyenberg, W.; Apers, S.; Cos, P.; Maes, L.; Ludwig, A. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int. J. Pharm., 2011, 420(1), 122-132.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.016] [PMID: 21864661]
[124]
Costa Lima, S.A.; Resende, M.; Silvestre, R.; Tavares, J.; Ouaissi, A.; Lin, P.K.T.; Cordeiro-da-Silva, A. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine, 2012, 7(12), 1839-1849.
[http://dx.doi.org/10.2217/nnm.12.74] [PMID: 22812711]
[125]
Keskin, E.; Ucisik, M.H.; Sucu, B.O.; Guzel, M. Novel synthetic approaches for bisnaphthalimidopropyl (BNIP) derivatives as potential anti-parasitic agents for the treatment of leishmaniasis. Molecules, 2019, 24(24), 4607.
[http://dx.doi.org/10.3390/molecules24244607] [PMID: 31888250]
[126]
Sundar, S.; Chakravarty, J. Liposomal amphotericin B and leishmaniasis: Dose and response. J. Glob. Infect. Dis., 2010, 2(2), 159-166.
[http://dx.doi.org/10.4103/0974-777X.62886] [PMID: 20606972]
[127]
Shirzadi, M.R. Lipsosomal amphotericin B: A review of its properties, function, and use for treatment of cutaneous leishmaniasis. Res. Rep. Trop. Med., 2019, 10, 11-18.
[http://dx.doi.org/10.2147/RRTM.S200218] [PMID: 31118866]
[128]
de Carvalho, R.F.; Ribeiro, I.F.; Miranda-Vilela, A.L.; de Souza Filho, J.; Martins, O.P.; de Oliveira Cintra e Silva, D.; Tedesco, A.C.; Lacava, Z.G.M.; Báo, S.N.; Sampaio, R.N.R. Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp. Parasitol., 2013, 135(2), 217-222.
[http://dx.doi.org/10.1016/j.exppara.2013.07.008] [PMID: 23891944]
[129]
Coelho, A.A.S.; Loureiro, E.V.S.; Silva, A.C.J.; Silva, A.B.C.; Alves, H.C.; Lucianelli-Junior, D.; Pantoja, A.V.; Santos, O.S.; Granato, R.R.; Silva-Júnior, A.F.; Nascimento, R.M.; Mendonça, R.Z.; Laurentino, R.V.; Valentin, F.N. Historical analysis of leishmaniasis cases in the transamazonian region: From 2009 to 2019. Revista Eletrônica Acervo Saúde, 2021, 13(11), e9163-e9163.
[http://dx.doi.org/10.25248/reas.e9163.2021]
[130]
Moreira, V.R.; de Jesus, L.C.L.; Soares, R.E.P.; Silva, L.D.M.; Pinto, B.A.S.; Melo, M.N.; Paes, A.M.A.; Pereira, S.R.F. Meglumine antimoniate (Glucantime) causes oxidative stress-derived DNA damage in BALB/c mice infected by Leishmania (Leishmania) infantum. Antimicrob. Agents Chemother., 2017, 61(6), e02360-e16.
[http://dx.doi.org/10.1128/AAC.02360-16] [PMID: 28320726]
[131]
Want, M.Y.; Islamuddin, M.; Chouhan, G.; Dasgupta, A.K.; Chattopadhyay, A.P.; Afrin, F. A new approach for the delivery of artemisinin: Formulation, characterization, and ex-vivo antileishmanial studies. J. Colloid Interface Sci., 2014, 432, 258-269.
[http://dx.doi.org/10.1016/j.jcis.2014.06.035] [PMID: 25086720]
[132]
Geroldinger, G.; Tonner, M.; Quirgst, J.; Walter, M.; De Sarkar, S.; Machín, L.; Monzote, L.; Stolze, K.; Catharina Duvigneau, J.; Staniek, K.; Chatterjee, M.; Gille, L. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link. Biochem. Pharmacol., 2020, 173, 113737.
[http://dx.doi.org/10.1016/j.bcp.2019.113737] [PMID: 31786259]
[133]
Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[134]
Pinto-Martinez, A.K.; Rodriguez-Durán, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel. Antimicrob. Agents Chemother., 2017, 62(1), e01614-e01617.
[PMID: 29061745]
[135]
Melo, T.S.; Gattass, C.R.; Soares, D.C.; Cunha, M.R.; Ferreira, C.; Tavares, M.T.; Saraiva, E.; Parise-Filho, R.; Braden, H.; Delorenzi, J.C. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol. Int., 2016, 65(3), 227-237.
[http://dx.doi.org/10.1016/j.parint.2016.01.001] [PMID: 26772973]
[136]
Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.014] [PMID: 27645930]
[137]
Valle, I.V.; Machado, M.E. Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: An alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45), 455102.
[http://dx.doi.org/10.1088/1361-6528/ab373e] [PMID: 31365912]
[138]
Basselin, M.; Lawrence, F.; Robert-Gero, M. Pentamidine uptake in Leishmania donovani and Leishmania amazonensis promastigotes and axenic amastigotes. Biochem. J., 1996, 315(2), 631-634.
[http://dx.doi.org/10.1042/bj3150631] [PMID: 8615840]
[139]
de Macedo-Silva, S.T.; Urbina, J.A.; de Souza, W.; Rodrigues, J.C.F. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis. PLoS One, 2013, 8(12), e83247.
[http://dx.doi.org/10.1371/journal.pone.0083247] [PMID: 24376670]
[140]
Afzal, I.; Sarwar, H.S.; Sohail, M.F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A.R.; Shahnaz, G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine, 2019, 14(4), 387-406.
[http://dx.doi.org/10.2217/nnm-2018-0038] [PMID: 30688557]
[141]
Pokharel, P.; Ghimire, R.; Lamichhane, P. Efficacy and safety of paromomycin for visceral leishmaniasis: A systematic review. J. Trop. Med., 2021, 2021
[http://dx.doi.org/10.1155/2021/8629039]
[142]
Cruz, K.P.; Patricio, B.F.C.; Pires, V.C.; Amorim, M.F.; Pinho, A.G.S.F.; Quadros, H.C.; Dantas, D.A.S.; Chaves, M.H.C.; Formiga, F.R.; Rocha, H.V.A.; Veras, P.S.T. Development and characterization of PLGA nanoparticles containing 17-DMAG, an Hsp90 inhibitor. Front Chem., 2021, 9, 644827.
[http://dx.doi.org/10.3389/fchem.2021.644827] [PMID: 34055735]
[143]
Anyika, M.; McMullen, M.; Forsberg, L.K.; Dobrowsky, R.T.; Blagg, B.S.J. Development of noviomimetics as C-terminal Hsp90 inhibitors. ACS Med. Chem. Lett., 2016, 7(1), 67-71.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00331] [PMID: 26819668]
[144]
Fernández, M.; Holgado, M.Á.; Cayero-Otero, M.D.; Pineda, T.; Yepes, L.M.; Gaspar, D.P.; Almeida, A.J.; Robledo, S.M.; Martín-Banderas, L. Improved antileishmanial activity and cytotoxicity of a novel nanotherapy for N-iodomethyl-N,N-dimethyl-N-(6,6-diphenylhex-5-en-1-yl)ammonium iodide. J. Drug Deliv. Sci. Technol., 2021, 61, 101988.
[http://dx.doi.org/10.1016/j.jddst.2020.101988]
[145]
Onoue, S.; Nakamura, T.; Uchida, A.; Ogawa, K.; Yuminoki, K.; Hashimoto, N.; Hiza, A.; Tsukaguchi, Y.; Asakawa, T.; Kan, T.; Yamada, S. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Eur. J. Pharm. Sci., 2013, 49(4), 453-460.
[http://dx.doi.org/10.1016/j.ejps.2013.05.014] [PMID: 23707470]
[146]
Jain, D.; Singh, A.; Stephen, B.J.; Jain, D.; Sanadhya, S.; Daima, H.K.; Madhyastha, H.; Madhyastha, R. Nanotoxicology; CRC Press, 2021, pp. 73-96.
[http://dx.doi.org/10.1201/9780429299742-4]
[147]
Vinck, R.; Nguyen, L.A.; Munier, M.; Caramelle, L.; Karpman, D.; Barbier, J.; Cintrat, J.-C.; Pruvost, A.; Gillet, D. Subcutaneous administration of the retrograde transport inhibitor Retro-2.1 formulated in a PLGA-PEG-PLGA thermosensitive hydrogel leads to a sustained release of the drug and a better control of its metabolism in vivo. 2021,
[148]
Meireles, P.W.; de Souza, D.P.B.; Rezende, M.G.; Borsodi, M.P.G.; de Oliveira, D.E.; da Silva, L.C.R.P.; de Souza, A.M.T.; Viana, G.M.; Rodrigues, C.R.; do Carmo, F.A.; de Sousa, V.P.; Rossi-Bergmann, B.; Cabral, L.M. Nanoparticles loaded with a new thiourea derivative: Development and in vitro evaluation against Leishmania amazonensis. Curr. Drug Deliv., 2020, 17(8), 694-702.
[http://dx.doi.org/10.2174/1567201817666200704132348] [PMID: 32621717]
[149]
Sousa-Batista, A.J.; Arruda-Costa, N.; Rossi-Bergmann, B.; Ré, M.I. Improved drug loading via spray drying of a chalcone implant for local treatment of cutaneous leishmaniasis. Drug Dev. Ind. Pharm., 2018, 44(9), 1473-1480.
[http://dx.doi.org/10.1080/03639045.2018.1461903] [PMID: 29618227]
[150]
Sousa-Batista, A.J.; Arruda-Costa, N.; Escrivani, D.O.; Reynaud, F.; Steel, P.G.; Rossi-Bergmann, B. Single-dose treatment for cutaneous leishmaniasis with an easily synthesized chalcone entrapped in polymeric microparticles. Parasitology, 2020, 147(9), 1032-1037.
[http://dx.doi.org/10.1017/S0031182020000712] [PMID: 32364107]
[151]
Halder, A.; Shukla, D.; Das, S.; Roy, P.; Mukherjee, A.; Saha, B. Lactoferrin-modified Betulinic Acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine, 2018, 110, 412-415.
[http://dx.doi.org/10.1016/j.cyto.2018.05.010] [PMID: 29784509]
[152]
Silva, M.C.P.d.; Brito, J.M.; Ferreira, A.d.S.; Vale, A.A.M.; Santos, A.P.A.d.; Silva, L.A.; Pereira, P.V.S.; Nascimento, F.R.F.; Nicolete, R.; Guerra, R.N.M. Antileishmanial and immunomodulatory effect of babassu-loaded PLGA microparticles: A useful drug target to Leishmania amazonensis infection. Evidence-Based Complementary and Alternative Medicine, 2018, 2018
[http://dx.doi.org/10.1155/2018/3161045]
[153]
Barros, D.; Costa Lima, S.A.; Cordeiro-da-Silva, A. Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in Leishmaniasis therapy. Nanomedicine, 2015, 10(3), 387-403.
[http://dx.doi.org/10.2217/nnm.14.116] [PMID: 25707974]
[154]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Das, P. Study the effects of PLGA-PEG encapsulated Amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv., 2015, 22(3), 383-388.
[http://dx.doi.org/10.3109/10717544.2014.891271] [PMID: 24601828]
[155]
Verma, R.; Pandya, S.; Misra, A. Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J. Biomed. Nanotechnol., 2011, 7(1), 118-120.
[http://dx.doi.org/10.1166/jbn.2011.1230] [PMID: 21485832]
[156]
Scala, A.; Piperno, A.; Micale, N.; Mineo, P.G.; Abbadessa, A.; Risoluti, R.; Castelli, G.; Bruno, F.; Vitale, F.; Cascio, A.; Grassi, G. “Click” on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(8), 2778-2785.
[http://dx.doi.org/10.1002/jbm.b.34058] [PMID: 29219244]
[157]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753.
[http://dx.doi.org/10.1016/j.msec.2015.10.083] [PMID: 26652429]
[158]
Biswaro, L.S.; Garcia, M.P.; da Silva, J.R.; Neira Fuentes, L.F.; Vera, A.; Escobar, P.; Azevedo, R.B. Itraconazole encapsulated PLGA-nanoparticles covered with mannose as potential candidates against leishmaniasis. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(3), 680-687.
[http://dx.doi.org/10.1002/jbm.b.34161] [PMID: 30091522]
[159]
Costa Lima, S.A.; Silvestre, R.; Barros, D.; Cunha, J.; Baltazar, M.T.; Dinis-Oliveira, R.J.; Cordeiro-da-Silva, A. Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine, 2014, 10(5), e1021-e1030.
[http://dx.doi.org/10.1016/j.nano.2013.12.013] [PMID: 24412471]
[160]
Sousa-Batista, A.J.; Pacienza-Lima, W.; Arruda-Costa, N. Falcão, C.A.B.; Ré, M.I.; Rossi-Bergmann, B. Depot subcutaneous injection with chalcone CH8-loaded poly (lactic-co-glycolic acid) microspheres as a single-dose treatment of cutaneous leishmaniasis. Antimicrob. Agents Chemother., 2018, 62(3), e01822-e17.
[http://dx.doi.org/10.1128/AAC.01822-17] [PMID: 29263064]
[161]
Navaei, A.; Rasoolian, M.; Momeni, A.; Emami, S.; Rafienia, M. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study. Drug Dev. Ind. Pharm., 2014, 40(6), 701-710.
[http://dx.doi.org/10.3109/03639045.2013.777734] [PMID: 23594302]
[162]
Sharma, S.; Kumar, P.; Jaiswal, A.; Dube, A.; Gupta, S. Development and characterization of doxorubicin loaded microparticles against experimental visceral leishmaniasis. J. Biomed. Nanotechnol., 2011, 7(1), 135-136.
[http://dx.doi.org/10.1166/jbn.2011.1237] [PMID: 21485839]
[163]
He, C.; Yin, L.; Tang, C.; Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 2012, 33(33), 8569-8578.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.063] [PMID: 22906606]
[164]
De Muylder, G.; Ang, K.K.H.; Chen, S.; Arkin, M.R.; Engel, J.C.; McKerrow, J.H. A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl. Trop. Dis., 2011, 5(7), e1253.
[http://dx.doi.org/10.1371/journal.pntd.0001253] [PMID: 21811648]
[165]
Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.M.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis., 2016, 63(12), e202-e264.
[http://dx.doi.org/10.1093/cid/ciw670] [PMID: 27941151]
[166]
Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front. Pharmacol., 2016, 7, 185.
[http://dx.doi.org/10.3389/fphar.2016.00185] [PMID: 27445821]
[167]
Park, K.; Skidmore, S.; Hadar, J.; Garner, J.; Park, H.; Otte, A.; Soh, B.K.; Yoon, G.; Yu, D.; Yun, Y.; Lee, B.K.; Jiang, X.; Wang, Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J. Control. Release, 2019, 304, 125-134.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.003] [PMID: 31071374]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy