Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Phytosomal Curcumin and Shilajit Decrease Adhesion Bands Post-achilles Tendon Surgery in Animal Model

Author(s): Fereshteh Asgharzadeh, Seyedeh Elnaz Nazari, Hamideh Naeimi, Farzad Rahmani, Amir Avan, Majid Khazaei* and Seyed Mahdi Hassanian*

Volume 21, Issue 14, 2024

Published on: 10 October, 2023

Page: [2981 - 2989] Pages: 9

DOI: 10.2174/1570180820666230823091640

Price: $65

Abstract

Aim: This study aimed to investigate the protective effects of phytosomal curcumin and/or shilajit in reducing post-surgical tendon adhesion band formation in a rat model.

Background: Tendon adhesion is one of the severe complications after tendon surgery which causes limited tendon movement and functional disability.

Objective: According to the central role of inflammatory reactions in fibrosis and the formation of tendon adhesions, we investigated the therapeutic effects of phytosomal curcumin and shilajit either alone or in combination on reducing post-surgical tendon adhesion band formation in a rat model.

Methods: We randomly divided 36 Wistar male rats into six equal groups. (A) Control group with no surgical incision and no intervention. (B) Sham group with surgical incision, but no adhesion, (C) Positive control group with total surgical transection and adhesion receiving normal saline daily, (D-F) Treatment groups which are the same as group C except that rats were treated with the following drugs. Phytosomal curcumin alone (250 μL/day; orally), shilajit alone (500 mg/kg/day; orally) and a combination of phytosomal curcumin + shilajit. In groups with surgical intervention, the rats' Achilles tendons were cut and repaired with a modified Kessler technique. At 3 weeks, all rats were euthanized. Histological and pathological scoring systems were used to evaluate the protective effects of phytosomal curcumin and/or shilajit in reducing adhesion bands at the site of tendon injuries.

Results: Our results revealed that the administration of phytosomal curcumin and/or shilajit remarkably reduced length, density, grading, severity, and thickness of post-surgical adhesion bands. Compared to the untreated control group, the histological changes and inflammatory reactions were significantly attenuated in treated rats. Furthermore, treatment with phytosomal curcumin and/or shilajit inhibited fibrotic responses by alleviating collagen deposition, fibrosis quantity, fibrosis grading, and total fibrosis scores, as visualized by Masson’s trichrome staining.

Conclusion: Our findings indicated the anti-inflammatory and anti-fibrotic properties of phytosomal curcumin and/or shilajit supporting their therapeutic potential in preventing post-operative tendon adhesion bands.

[1]
Tao, M.; Liang, F.; He, J.; Ye, W.; Javed, R.; Wang, W.; Yu, T.; Fan, J.; Tian, X.; Wang, X.; Hou, W.; Ao, Q. Decellularized tendon matrix membranes prevent post-surgical tendon adhesion and promote functional repair. Acta Biomater., 2021, 134, 160-176.
[http://dx.doi.org/10.1016/j.actbio.2021.07.038] [PMID: 34303866]
[2]
Ayhan, E.; Tuna, Z.; Oksuz, C. Getting better results in flexor tendon surgery and therapy. Plast. Reconstr. Surg. Glob. Open, 2021, 9(2), e3432.
[http://dx.doi.org/10.1097/GOX.0000000000003432] [PMID: 33680676]
[3]
Tang, J.B. Flexor tendon injuries. In: Plastic Surgery-Principles and Practice; , 2022; pp. 730-749.
[4]
Arjmand, M-H. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation. J. Surg. Res., 2020, 248, 171-181.
[5]
Soleimani, A.; Asgharzadeh, F.; Rahmani, F.; Avan, A.; Mehraban, S.; Fakhraei, M.; Arjmand, M.H.; Binabaj, M.M.; Parizadeh, M.R.; Ferns, G.A.; Ryzhikov, M.; Afshari, A.R.; Naghinezhad, J.; Sayyed-Hosseinian, S.H.; Khazaei, M.; Hassanian, S.M. Novel oral transforming growth factor‐β signaling inhibitor potently inhibits postsurgical adhesion band formation. J. Cell. Physiol., 2020, 235(2), 1349-1357.
[http://dx.doi.org/10.1002/jcp.29053] [PMID: 31313829]
[6]
Hu, Q.; Xia, X.; Kang, X.; Song, P.; Liu, Z.; Wang, M.; Guan, W.; Liu, S.; Liu, S. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion. Int. J. Biol. Sci., 2021, 17(1), 298-306.
[http://dx.doi.org/10.7150/ijbs.54403] [PMID: 33390851]
[7]
Zhang, J.; Xiao, C.; Zhang, X.; Lin, Y.; Yang, H.; Zhang, Y.S.; Ding, J. An oxidative stress-responsive electrospun polyester membrane capable of releasing anti-bacterial and anti-inflammatory agents for postoperative anti-adhesion. J. Control. Release, 2021, 335, 359-368.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.017] [PMID: 33895199]
[8]
Dosoky, N.; Setzer, W. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 2018, 10(9), 1196.
[http://dx.doi.org/10.3390/nu10091196] [PMID: 30200410]
[9]
Dasgupta, A. Antiinflammatory herbal supplements. In: Translational inflammation; Elsevier, 2019; pp. 69-91.
[http://dx.doi.org/10.1016/B978-0-12-813832-8.00004-2]
[10]
Gorabi, A.M.; Hajighasemi, S.; Kiaie, N.; Rosano, G.M.C.; Sathyapalan, T.; Al-Rasadi, K.; Sahebkar, A. Anti-fibrotic effects of curcumin and some of its analogues in the heart. Heart Fail. Rev., 2020, 25(5), 731-743.
[http://dx.doi.org/10.1007/s10741-019-09854-6] [PMID: 31512150]
[11]
Hashemzehi, M.; Behnam-Rassouli, R.; Hassanian, S.M.; Moradi-Binabaj, M.; Moradi-Marjaneh, R.; Rahmani, F.; Fiuji, H.; Jamili, M.; Mirahmadi, M.; Boromand, N.; Piran, M.; Jafari, M.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal‐curcumin antagonizes cell growth and migration, induced by thrombin through AMP‐Kinase in breast cancer. J. Cell. Biochem., 2018, 119(7), 5996-6007.
[http://dx.doi.org/10.1002/jcb.26796] [PMID: 29600521]
[12]
Hongtao, C.; Youling, F.; Fang, H.; Huihua, P.; Jiying, Z.; Jun, Z. Curcumin alleviates ischemia reperfusion‐induced late kidney fibrosis through the APPL1/Akt signaling pathway. J. Cell. Physiol., 2018, 233(11), 8588-8596.
[http://dx.doi.org/10.1002/jcp.26536] [PMID: 29741772]
[13]
Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[14]
Moradi-Marjaneh, R.; Hassanian, S.M.; Rahmani, F.; Aghaee-Bakhtiari, S.H.; Avan, A.; Khazaei, M. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Curr. Pharm. Des., 2019, 24(39), 4626-4638.
[http://dx.doi.org/10.2174/1381612825666190110145151] [PMID: 30636578]
[15]
Yu, Y.; Sun, J.; Wang, R.; Liu, J.; Wang, P.; Wang, C. Curcumin management of myocardial fibrosis and its mechanisms of action: A review. Am. J. Chin. Med., 2019, 47(8), 1675-1710.
[http://dx.doi.org/10.1142/S0192415X19500861] [PMID: 31786946]
[16]
Sim, R.H.; Sirasanagandla, S.R.; Das, S.; Teoh, S.L. Treatment of glaucoma with natural products and their mechanism of action: An update. Nutrients, 2022, 14(3), 534.
[http://dx.doi.org/10.3390/nu14030534] [PMID: 35276895]
[17]
Kong, D.; Zhang, Z.; Chen, L.; Huang, W.; Zhang, F.; Wang, L.; Wang, Y.; Cao, P.; Zheng, S. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol., 2020, 36, 101600.
[http://dx.doi.org/10.1016/j.redox.2020.101600] [PMID: 32526690]
[18]
Babadi, D.; Rabbani, S.; Akhlaghi, S.; Haeri, A. Curcumin polymeric membranes for postoperative peritoneal adhesion: Comparison of nanofiber vs. film and phospholipid-enriched vs. non-enriched formulations. Int. J. Pharm., 2022, 614, 121434.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121434] [PMID: 34995747]
[19]
Ghezelbash, B.; Shahrokhi, N.; Khaksari, M.; Asadikaram, G.; Shahrokhi, M.; Shirazpour, S. Protective roles of shilajit in modulating resistin, adiponectin, and cytokines in rats with non-alcoholic fatty liver disease. Chin. J. Integr. Med., 2022, 28(6), 531-537.
[http://dx.doi.org/10.1007/s11655-022-3307-3] [PMID: 35258780]
[20]
Li, Q.; Li, H.J.; Xu, T.; Du, H.; Huan, Gang C.L.; Fan, G.; Zhang, Y. Natural medicines used in the traditional Tibetan medical system for the treatment of liver diseases. Front. Pharmacol., 2018, 9, 29.
[http://dx.doi.org/10.3389/fphar.2018.00029] [PMID: 29441019]
[21]
Zhao, M-M.; Gu, R.; Fan, J.Y.; Zeng, Y.; Cao, Y.; Wang, W.Q.; Zhong, S.H.; Mi, P. Research progress of Tibetan medicine “Zha-xun”. Zhongguo Zhongyao Zazhi, 2018, 43(8), 1554-1562.
[PMID: 29751700]
[22]
Arıcıgil, M.; Dündar, M.A.; Yücel, A.; Arbağ, H.; Arslan, A.; Aktan, M.; Fındık, S.; Kılınç, İ. Anti-inflammatory effects of hyperbaric oxygen on irradiated laryngeal tissues. Rev. Bras. Otorrinolaringol., 2018, 84(2), 206-211.
[PMID: 28341337]
[23]
Punithavathi, D.; Venkatesan, N.; Babu, M. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats. Br. J. Pharmacol., 2000, 131(2), 169-172.
[http://dx.doi.org/10.1038/sj.bjp.0703578] [PMID: 10991907]
[24]
Vemuri, S.K.; Banala, R.R.; Katragunta, K.; Madhuri, V.; Raju, K.; Reddy Annapareddy, V.G.; Subbaiah Goli, P.V. Antioxidant, anti-inflammatory and anti-diabetic efficiency of Indian medicinal plants against streptozotocin induced diabetes in male Wistar rats. Free Radic. Antioxid., 2018, 8(2), 141-148.
[http://dx.doi.org/10.5530/fra.2018.2.21]
[25]
Zhang, D.; Huang, C.; Yang, C.; Liu, R.J.; Wang, J.; Niu, J.; Brömme, D. Antifibrotic effects of curcumin are associated with overexpression of cathepsins K and L in bleomycin treated mice and human fibroblasts. Respir. Res., 2011, 12(1), 154.
[http://dx.doi.org/10.1186/1465-9921-12-154] [PMID: 22126332]
[26]
Rahmani Barouji, S.; Shahabi, A.; Torbati, M.; Fazljou, S.M.B.; Yari Khosroushahi, A. Mummy induces apoptosis through inhibiting of epithelial-mesenchymal transition (EMT) in human breast cancer cells. Galen Med. J., 2020, 9, e1812.
[http://dx.doi.org/10.31661/gmj.v9i0.1812] [PMID: 34466597]
[27]
Zhongfa, L.; Chiu, M.; Wang, J.; Chen, W.; Yen, W.; Fan-Havard, P.; Yee, L.D.; Chan, K.K. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother. Pharmacol., 2012, 69(3), 679-689.
[http://dx.doi.org/10.1007/s00280-011-1749-y] [PMID: 21968952]
[28]
Joukar, S.; Najafipour, H.; Dabiri, S.; Sheibani, M.; Sharokhi, N. Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury. Cardiovasc. Toxicol., 2014, 14(3), 214-221.
[http://dx.doi.org/10.1007/s12012-014-9245-3] [PMID: 24448712]
[29]
Askarnia-Faal, M.M.; Sayyed-Hosseinian, S.H.; Nazari, S.E.; Asgharzadeh, F.; Vahedi, E.; Eskandari, M.; Ghasemi, H.; Avan, A.; Alaei, M.; Naimi, H.; Daghiani, M.; Soleimani, A.; Alalikhan, A.; Mohammadzadeh, R.; Ferns, G.; Ryzhikov, M.; Khazaei, M.; Hassanian, S.M. Exploring new therapeutic potentials of curcumin against post-surgical adhesion bands. BMC Complement. Med. Ther., 2023, 23(1), 27.
[http://dx.doi.org/10.1186/s12906-022-03808-6] [PMID: 36721147]
[30]
Nazari, S.E.; Naimi, H.; Sayyed-Hosseinian, S.H.; Vahedi, E.; Daghiani, M.; Asgharzadeh, F.; Askarnia-Faal, M.M.; Avan, A.; Khazaei, M.; Hassanian, S.M. Effect of angiotensin II pathway inhibitors on post-surgical adhesion band formation: A potential repurposing of old drugs. Injury, 2022, 53(11), 3642-3649.
[http://dx.doi.org/10.1016/j.injury.2022.08.046] [PMID: 36045032]
[31]
Hajipour, B.; Navali, A.M.; Mohammad, S.A.; Mousavi, G.; Akbari, M.G.; Miyandoab, T.M.; Roshangar, L.; Saleh, B.M.; Kermani, T.A.; Laleh, F.M.; Ghabili, M. Phenytoin accelerates tendon healing in a rat model of Achilles tendon rupture. Bratisl. Med. J., 2016, 117(9), 543-546.
[http://dx.doi.org/10.4149/BLL_2016_107] [PMID: 27677200]
[32]
Mendes, Á.G.R.; de Sousa, G.G.V.; França, M.S.; de Carvalho, C.A.M.; Batista, E.J.O.; Passos, A.C.F.; Oliveira, K.R.H.M.; Herculano, A.M.; de Moraes, S.A.S. Astrocyte reactivity in spinal cord and functional impairment after tendon injury in rats. Heliyon, 2021, 7(4), e06845.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06845] [PMID: 33981899]
[33]
Askarnia-Faal, M.-M. Phytosomal curcumin elicits potent protective responses in post-surgical adhesion band formation by decreasing inflammation and fibrosis. preprint, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1561463/v1]
[34]
Hadda, Z.; Hélène, V.D.B.; Tom, P.; Aurélie, W.M.; Audrey, B.; Hubert, T.; Noël, Y.J.; Pirot, N.; Catherine, B.; Michel, C.; Pierre-Emmanuel, C.; Xavier, G. Preliminary in vivo study of biodegradable PLA–PEU–PLA anti-adhesion membranes in a rat Achilles tendon model of peritendinous adhesions. Biomater. Sci., 2022, 10(7), 1776-1786.
[http://dx.doi.org/10.1039/D1BM01150B] [PMID: 35212325]
[35]
Pearce, O.; Brown, M.T.; Fraser, K.; Lancerotto, L. Flexor tendon injuries: Repair & Rehabilitation. Injury, 2021, 52(8), 2053-2067.
[http://dx.doi.org/10.1016/j.injury.2021.07.036] [PMID: 34416975]
[36]
Terri, M.; Trionfetti, F.; Montaldo, C.; Cordani, M.; Tripodi, M.; Lopez-Cabrera, M.; Strippoli, R. Mechanisms of peritoneal fibrosis: Focus on immune cells–peritoneal stroma interactions. Front. Immunol., 2021, 12, 607204.
[http://dx.doi.org/10.3389/fimmu.2021.607204] [PMID: 33854496]
[37]
Murwanti, R.; Riastri, A.; Gani, A.P. The role of curcumin and its derivatives in innate immune response of macrophages. J. Food Pharm. Sci, 2022, 10(1), 597-609.
[http://dx.doi.org/10.22146/jfps.3942]
[38]
Pourhabibi-Zarandi, F.; Shojaei-Zarghani, S.; Rafraf, M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int. J. Clin. Pract., 2021, 75(10), e14280.
[http://dx.doi.org/10.1111/ijcp.14280] [PMID: 33914984]
[39]
Karthikeyan, A.; Young, K.N.; Moniruzzaman, M.; Beyene, A.M.; Do, K.; Kalaiselvi, S.; Min, T. Curcumin and its modified formulations on inflammatory bowel disease (IBD): The story so far and future outlook. Pharmaceutics, 2021, 13(4), 484.
[http://dx.doi.org/10.3390/pharmaceutics13040484] [PMID: 33918207]
[40]
Goulart, R.A.; Barbalho, S.M.; Lima, V.M.; Souza, G.A.; Matias, J.N.; Araújo, A.C.; Rubira, C.J.; Buchaim, R.L.; Buchaim, D.V.; Carvalho, A.C.A.; Guiguer, É.L. Effects of the use of curcumin on ulcerative colitis and Crohn’s disease: A systematic review. J. Med. Food, 2021, 24(7), 675-685.
[http://dx.doi.org/10.1089/jmf.2020.0129] [PMID: 33155879]
[41]
Ashtary-Larky, D.; Rezaei Kelishadi, M.; Bagheri, R.; Moosavian, S.P.; Wong, A.; Davoodi, S.H.; Khalili, P.; Dutheil, F.; Suzuki, K.; Asbaghi, O. The effects of nano-curcumin supplementation on risk factors for cardiovascular disease: A GRADE-assessed systematic review and meta-analysis of clinical trials. Antioxidants, 2021, 10(7), 1015.
[http://dx.doi.org/10.3390/antiox10071015] [PMID: 34202657]
[42]
İsmailoğlu, O.; Kizilay, Z.; Cetin, N.K.; Topcu, A.; Berber, O. Effect of curcumin on the formation of epidural fibrosis in an experimental laminectomy model in rats. Turk Neurosurg., 2019, 29(3), 440-444.
[PMID: 31270796]
[43]
Li, N. Curcumin and curcumol inhibit NF-κB and TGF-β1/smads signaling pathways in CSE-treated RAW246 7 cells. Evid. Based Complementary Altern. Med., 2019, 2019
[44]
Vizzutti, F.; Provenzano, A.; Galastri, S.; Milani, S.; Delogu, W.; Novo, E.; Caligiuri, A.; Zamara, E.; Arena, U.; Laffi, G.; Parola, M.; Pinzani, M.; Marra, F. Curcumin limits the fibrogenic evolution of experimental steatohepatitis. Lab. Invest., 2010, 90(1), 104-115.
[http://dx.doi.org/10.1038/labinvest.2009.112] [PMID: 19901911]
[45]
Demirel, C.; Turkoz, D.; Yazicioglu, I.M.; Cokluk, C. The Preventive Effect of Curcumin on the Experimental Rat Epidural Fibrosis Model. World Neurosurg., 2021, 145, e141-e148.
[http://dx.doi.org/10.1016/j.wneu.2020.09.140] [PMID: 33010510]
[46]
Yildirim, T.; Yilmaz, A.; Koktürk, S.; Işik, H.S. Comparison of curcumin and methylprednisolone in the prevention of epidural fibrosis after spinal surgery: An experimental study. J. Exp. Clin. Med., 2021, 38(2), 88-93.
[http://dx.doi.org/10.52142/omujecm.38.2.6]
[47]
Türkoğlu, A.; Gül, M.; Yuksel, H.K.; Alabalik, U.; Ülger, B.V.; Uslukaya, O.; Avci, Y. Effect of intraperitoneal curcumin instillation on postoperative peritoneal adhesions. Med. Princ. Pract., 2015, 24(2), 153-158.
[http://dx.doi.org/10.1159/000369020] [PMID: 25504140]
[48]
Tung, B.T.; Hai, N.T.; Son, P.K. Hepatoprotective effect of phytosome curcumin against paracetamol-induced liver toxicity in mice. Braz. J. Pharm. Sci., 2017, 53(1), 53.
[http://dx.doi.org/10.1590/s2175-97902017000116136]
[49]
Ghezelbash, B.; Shahrokhi, N.; Khaksari, M.; Ghaderi-Pakdel, F.; Asadikaram, G. Hepatoprotective effects of Shilajit on high fat-diet induced non-alcoholic fatty liver disease (NAFLD) in rats. Horm. Mol. Biol. Clin. Investig., 2020, 41(1), 20190040.
[http://dx.doi.org/10.1515/hmbci-2019-0040] [PMID: 32083445]
[50]
Ojha, D.R.; Gupta, D.A.K.; Pathak, D.R.; Pandey, S.K. Shilajit an elixir of Ayurveda: A literary review of traditional usage as well as modern findings. Int. J. Appl. Res., 2021, 7(8), 323-332.
[http://dx.doi.org/10.22271/allresearch.2021.v7.i8e.8883]
[51]
Wilson, E.; Rajamanickam, G.V.; Dubey, G.P.; Klose, P.; Musial, F.; Saha, F.J.; Rampp, T.; Michalsen, A.; Dobos, G.J. Review on shilajit used in traditional Indian medicine. J. Ethnopharmacol., 2011, 136(1), 1-9.
[http://dx.doi.org/10.1016/j.jep.2011.04.033] [PMID: 21530631]
[52]
Yadav, S.C.; Govindasamy, J.; Ramnani, R. Antioxidant and hepatoprotective activity of shilajit (Asphaltum Punjabinum) against alcohol induced liver injury in wistar rats. Int. J. Ayurveda Pharma Res., 2020, 8(6), 1-8.
[53]
Anisimov, V.; Shakirzyanova, R. Application of Mumie in therapeutic practice. Kazan. Med. Zh., 1982, 63, 65-68.
[http://dx.doi.org/10.17816/kazmj60952]
[54]
Mohammed, U.; Al-Himaidi, A.R. Safe use of salajeet during the pregnancy of Female mice. J. Biol. Sci., 2003, 3(8), 681-684.
[http://dx.doi.org/10.3923/jbs.2003.681.684]

© 2025 Bentham Science Publishers | Privacy Policy