Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Evaluation of Treatments with Radiotherapy Alone and Radiotherapy Plus Chemo-immunotherapy in Patients with Primary Liver Cancer based on Blood Biomarkers

In Press, (this is not the final "Version of Record"). Available online 16 October, 2023
Author(s): Shigao Huang*, Yutian Yin, Jianping Li, Mei Shi, Huijie Bian* and Lina Zhao*
Published on: 16 October, 2023

DOI: 10.2174/0929867331666230822121246

Price: $95

Abstract

Purpose: It is critical to assess primary liver cancer patients likely to benefit from radiotherapy (RT) or RT plus chemo-immunotherapy. Many potential peripheral biomarkers from blood samples have been proposed for clinical application. Therefore, the aim of this study was to evaluate treatments with radiotherapy alone and radiotherapy plus chemo-immunotherapy in patients with unresectable primary liver cancer based on blood biomarkers.

Methods: From January, 2017, to February, 2022, 63 unresectable primary liver cancer patients receiving radiotherapy alone (RT, n = 21) or radiotherapy plus chemo-immunotherapy (RT plus C/IT, n = 42) were included in this study. We compared the clinical outcomes and adverse effects of these two groups. Also, distant metastasis-free survival (DMFS), overall survival (OS), and progress-free survival (PFS) were retrospectively analyzed. Finally, univariable and multivariable Cox analyses were used to explore the prognostic role of blood biochemical biomarkers.

Results: In this study, 1, 2, and 3 years of OS after RT treatment were 63.9%, 27.0%, and 13.5%, and after RT plus C/IT were 68.2%, 37.0%, and 24.7%, respectively (p = 0.617). Compared with baseline, white blood cells (WBC) and lymphocytes were significantly decreased after RT (p = 0.002 and p = 0.001, respectively) or RT plus C/IT therapy (p = 0.135 and p<0.001, respectively). In multivariable Cox regression analyses, higher lymphocyte counts before RT (pre-Lymphocyte) were associated with better OS and PFS (HR=0.439, p = 0.023; HR=0.539, p = 0.053; respectively), and higher lymphocyte counts before RT (pre- Platelets) were a poor prognostic factor associated with DMFS (HR=1.013, p = 0.040). Importantly, OS and PFS were significantly better for patients (pre-Lymphocyte ≥1.10 x 109 /L) (p = 0.006; p = 0.066, respectively). The DMFS was significantly better for patients (pre-platelets < 233.5 ×109 /L) (p<0.001).

Conclusion: Our evaluation of blood biomarkers before and after radiotherapy or plus chem-immunotherapy for primary liver cancer revealed a potential marker for clinics to decide on precise treatment strategies.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Yazici, C.; Niemeyer, D.J.; Iannitti, D.A.; Russo, M.W. Hepatocellular carcinoma and cholangiocarcinoma: An update. Expert Rev. Gastroenterol. Hepatol., 2014, 8(1), 63-82.
[http://dx.doi.org/10.1586/17474124.2014.852468] [PMID: 24245910]
[3]
Alabraba, E.; Joshi, H.; Bird, N.; Griffin, R.; Sturgess, R.; Stern, N.; Sieberhagen, C.; Cross, T.; Camenzuli, A.; Davis, R.; Evans, J.; O’Grady, E.; Palmer, D.; Diaz-Nieto, R.; Fenwick, S.; Poston, G.; Malik, H. Increased multimodality treatment options has improved survival for Hepatocellular carcinoma but poor survival for biliary tract cancers remains unchanged. Eur. J. Surg. Oncol., 2019, 45(9), 1660-1667.
[http://dx.doi.org/10.1016/j.ejso.2019.04.002] [PMID: 31014988]
[4]
O’Leary, C.; Mahler, M.; Soulen, M.C. Liver-directed therapy for hepatocellular carcinoma. Chin. Clin. Oncol., 2021, 10(1), 8.
[http://dx.doi.org/10.21037/cco-20-51] [PMID: 32527111]
[5]
Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res., 2021, 149, 1-61.
[http://dx.doi.org/10.1016/bs.acr.2020.10.001] [PMID: 33579421]
[6]
Llovet, J.M. Updated treatment approach to hepatocellular carcinoma. J. Gastroenterol., 2005, 40(3), 225-235.
[http://dx.doi.org/10.1007/s00535-005-1566-3] [PMID: 15830281]
[7]
Greco, C.; Catalano, G.; Di Grazia, A.; Orecchia, R. Radiotherapy of liver malignancies. From whole liver irradiation to stereotactic hypofractionated radiotherapy. Tumori., 2004, 90(1), 73-79.
[http://dx.doi.org/10.1177/030089160409000116] [PMID: 15143976]
[8]
Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I.; Radioresistance, C.S.C. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells., 2020, 9(7), 1651.
[http://dx.doi.org/10.3390/cells9071651] [PMID: 32660072]
[9]
Eccles, C.L.; Bissonnette, J.P.; Craig, T.; Taremi, M.; Wu, X.; Dawson, L.A. Treatment planning study to determine potential benefit of intensity-modulated radiotherapy versus conformal radiotherapy for unresectable hepatic malignancies. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(2), 582-588.
[http://dx.doi.org/10.1016/j.ijrobp.2008.06.1496] [PMID: 18793961]
[10]
Chen, W.; Chiang, C.L.; Dawson, L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol., 2021, 10(1), 9.
[http://dx.doi.org/10.21037/cco-20-89] [PMID: 32576017]
[11]
Huo, Y.R.; Eslick, G.D. Transcatheter arterial chemoembolization plus radiotherapy compared with chemoembolization alone for hepatocellular carcinoma. JAMA Oncol., 2015, 1(6), 756-765.
[http://dx.doi.org/10.1001/jamaoncol.2015.2189] [PMID: 26182200]
[12]
Majumdar, A.; Roccarina, D.; Thorburn, D.; Davidson, B.R.; Tsochatzis, E.; Gurusamy, K.S. Management of people with early- or very early-stage hepatocellular carcinoma: an attempted network meta-analysis. Cochrane Database Syst. Rev., 2017, 3(3), CD011650.
[PMID: 28351116]
[13]
Roccarina, D.; Majumdar, A.; Thorburn, D.; Davidson, B.R.; Tsochatzis, E.; Gurusamy, K.S. Management of people with intermediate-stage hepatocellular carcinoma: an attempted network meta-analysis. Cochrane Database Syst. Rev., 2017, 3(3), CD011649.
[PMID: 28281295]
[14]
van der Most, R.G.; Robinson, B.W.; Lake, R.A. Combining immunotherapy with chemotherapy to treat cancer. Discov. Med., 2005, 5(27), 265-270.
[PMID: 20704886]
[15]
Wang, Y.; Liu, Z.G.; Yuan, H.; Deng, W.; Li, J.; Huang, Y.; Kim, B.Y.S.; Story, M.D.; Jiang, W. The reciprocity between radiotherapy and cancer immunotherapy. Clin. Cancer Res., 2019, 25(6), 1709-1717.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2581] [PMID: 30413527]
[16]
Grosser, R.; Cherkassky, L.; Chintala, N.; Adusumilli, P.S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell, 2019, 36(5), 471-482.
[http://dx.doi.org/10.1016/j.ccell.2019.09.006] [PMID: 31715131]
[17]
Berretta, M.; Cavaliere, C.; Alessandrini, L.; Stanzione, B.; Facchini, G.; Balestreri, L.; Perin, T.; Canzonieri, V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: Clinical and prognostic implications. Oncotarget, 2017, 8(8), 14192-14220.
[http://dx.doi.org/10.18632/oncotarget.13929] [PMID: 28077782]
[18]
Lee, Y.T.M.; Geer, D.A. Primary liver cancer: Pattern of metastasis. J. Surg. Oncol., 1987, 36(1), 26-31.
[http://dx.doi.org/10.1002/jso.2930360107] [PMID: 3041113]
[19]
Feng, M.; Pan, Y.; Kong, R.; Shu, S. Therapy of primary liver cancer. Innovation., 2020, 1(2), 100032-100032.
[http://dx.doi.org/10.1016/j.xinn.2020.100032] [PMID: 32914142]
[20]
Mahadevan, A.; Blanck, O.; Lanciano, R.; Peddada, A.; Sundararaman, S.; D’Ambrosio, D.; Sharma, S.; Perry, D.; Kolker, J.; Davis, J. Stereotactic Body Radiotherapy (SBRT) for liver metastasis – clinical outcomes from the international multi-institutional RSSearch® Patient Registry. Radiat. Oncol., 2018, 13(1), 26-26.
[http://dx.doi.org/10.1186/s13014-018-0969-2] [PMID: 29439707]
[21]
Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; Li, D.; Verret, W.; Xu, D.Z.; Hernandez, S.; Liu, J.; Huang, C.; Mulla, S.; Wang, Y.; Lim, H.Y.; Zhu, A.X.; Cheng, A.L. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med., 2020, 382(20), 1894-1905.
[http://dx.doi.org/10.1056/NEJMoa1915745] [PMID: 32402160]
[22]
Romero, D. Combination set to transform HCC therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 389.
[http://dx.doi.org/10.1038/s41571-020-0396-9] [PMID: 32457541]
[23]
Byun, H.K.; Kim, N.; Park, S.; Seong, J. Acute severe lymphopenia by radiotherapy is associated with reduced overall survival in hepatocellular carcinoma. Strahlenther. Onkol., 2019, 195(11), 1007-1017.
[http://dx.doi.org/10.1007/s00066-019-01462-5] [PMID: 30989242]
[24]
Chen, J.S.; Li, L.S.; Cheng, D.R.; Ji, S.M.; Sun, Q.Q.; Cheng, Z.; Wen, J.Q.; Sha, G.Z.; Liu, Z.H. Prognostic effect of lymphocyte subgroup CD4+ and CD8+ cells in peripheral blood in renal transplant patients with cytomegalovirus viremia. Transplant. Proc., 2009, 41(5), 1639-1642.
[http://dx.doi.org/10.1016/j.transproceed.2009.01.085] [PMID: 19545698]
[25]
Yoo, G.S.; Ahn, W.G.; Kim, S.Y.; Kang, W.; Choi, C.; Park, H.C. Radiation-induced abscopal effect and its enhancement by programmed cell death 1 blockade in the hepatocellular carcinoma: A murine model study. Clin. Mol. Hepatol., 2021, 27(1), 144-156.
[http://dx.doi.org/10.3350/cmh.2020.0095] [PMID: 33280350]
[26]
Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune- mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res., 2009, 15(17), 5379-5388.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0265] [PMID: 19706802]
[27]
Peng, Z.; Lv, X.; Huang, S. Photoimmunotherapy: A new paradigm in solid tumor immunotherapy. Cancer Contr., 2022, 29, 10732748221088825.
[http://dx.doi.org/10.1177/10732748221088825]
[28]
Hayashi, K.; Nikolos, F.; Lee, Y.C.; Jain, A.; Tsouko, E.; Gao, H.; Kasabyan, A.; Leung, H.E.; Osipov, A.; Jung, S.Y.; Kurtova, A.V.; Chan, K.S. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun., 2020, 11(1), 6299.
[http://dx.doi.org/10.1038/s41467-020-19970-9] [PMID: 33288764]
[29]
Krysko, O.; Løve Aaes, T.; Bachert, C.; Vandenabeele, P.; Krysko, D.V. Many faces of DAMPs in cancer therapy. Cell Death Dis., 2013, 4(5), e631.
[http://dx.doi.org/10.1038/cddis.2013.156] [PMID: 23681226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy