Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Purpose: It is critical to assess primary liver cancer patients likely to benefit from radiotherapy (RT) or RT plus chemo-immunotherapy. Many potential peripheral biomarkers from blood samples have been proposed for clinical application. Therefore, the aim of this study was to evaluate treatments with radiotherapy alone and radiotherapy plus chemo-immunotherapy in patients with unresectable primary liver cancer based on blood biomarkers.
Methods: From January, 2017, to February, 2022, 63 unresectable primary liver cancer patients receiving radiotherapy alone (RT, n = 21) or radiotherapy plus chemo-immunotherapy (RT plus C/IT, n = 42) were included in this study. We compared the clinical outcomes and adverse effects of these two groups. Also, distant metastasis-free survival (DMFS), overall survival (OS), and progress-free survival (PFS) were retrospectively analyzed. Finally, univariable and multivariable Cox analyses were used to explore the prognostic role of blood biochemical biomarkers.
Results: In this study, 1, 2, and 3 years of OS after RT treatment were 63.9%, 27.0%, and 13.5%, and after RT plus C/IT were 68.2%, 37.0%, and 24.7%, respectively (p = 0.617). Compared with baseline, white blood cells (WBC) and lymphocytes were significantly decreased after RT (p = 0.002 and p = 0.001, respectively) or RT plus C/IT therapy (p = 0.135 and p<0.001, respectively). In multivariable Cox regression analyses, higher lymphocyte counts before RT (pre-Lymphocyte) were associated with better OS and PFS (HR=0.439, p = 0.023; HR=0.539, p = 0.053; respectively), and higher lymphocyte counts before RT (pre- Platelets) were a poor prognostic factor associated with DMFS (HR=1.013, p = 0.040). Importantly, OS and PFS were significantly better for patients (pre-Lymphocyte ≥1.10 x 109 /L) (p = 0.006; p = 0.066, respectively). The DMFS was significantly better for patients (pre-platelets < 233.5 ×109 /L) (p<0.001).
Conclusion: Our evaluation of blood biomarkers before and after radiotherapy or plus chem-immunotherapy for primary liver cancer revealed a potential marker for clinics to decide on precise treatment strategies.
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Yazici, C.; Niemeyer, D.J.; Iannitti, D.A.; Russo, M.W. Hepatocellular carcinoma and cholangiocarcinoma: An update. Expert Rev. Gastroenterol. Hepatol., 2014, 8(1), 63-82.
[http://dx.doi.org/10.1586/17474124.2014.852468] [PMID: 24245910]
[http://dx.doi.org/10.1586/17474124.2014.852468] [PMID: 24245910]
[3]
Alabraba, E.; Joshi, H.; Bird, N.; Griffin, R.; Sturgess, R.; Stern, N.; Sieberhagen, C.; Cross, T.; Camenzuli, A.; Davis, R.; Evans, J.; O’Grady, E.; Palmer, D.; Diaz-Nieto, R.; Fenwick, S.; Poston, G.; Malik, H. Increased multimodality treatment options has improved survival for Hepatocellular carcinoma but poor survival for biliary tract cancers remains unchanged. Eur. J. Surg. Oncol., 2019, 45(9), 1660-1667.
[http://dx.doi.org/10.1016/j.ejso.2019.04.002] [PMID: 31014988]
[http://dx.doi.org/10.1016/j.ejso.2019.04.002] [PMID: 31014988]
[4]
O’Leary, C.; Mahler, M.; Soulen, M.C. Liver-directed therapy for hepatocellular carcinoma. Chin. Clin. Oncol., 2021, 10(1), 8.
[http://dx.doi.org/10.21037/cco-20-51] [PMID: 32527111]
[http://dx.doi.org/10.21037/cco-20-51] [PMID: 32527111]
[5]
Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res., 2021, 149, 1-61.
[http://dx.doi.org/10.1016/bs.acr.2020.10.001] [PMID: 33579421]
[http://dx.doi.org/10.1016/bs.acr.2020.10.001] [PMID: 33579421]
[6]
Llovet, J.M. Updated treatment approach to hepatocellular carcinoma. J. Gastroenterol., 2005, 40(3), 225-235.
[http://dx.doi.org/10.1007/s00535-005-1566-3] [PMID: 15830281]
[http://dx.doi.org/10.1007/s00535-005-1566-3] [PMID: 15830281]
[7]
Greco, C.; Catalano, G.; Di Grazia, A.; Orecchia, R. Radiotherapy of liver malignancies. From whole liver irradiation to stereotactic hypofractionated radiotherapy. Tumori., 2004, 90(1), 73-79.
[http://dx.doi.org/10.1177/030089160409000116] [PMID: 15143976]
[http://dx.doi.org/10.1177/030089160409000116] [PMID: 15143976]
[8]
Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I.; Radioresistance, C.S.C. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells., 2020, 9(7), 1651.
[http://dx.doi.org/10.3390/cells9071651] [PMID: 32660072]
[http://dx.doi.org/10.3390/cells9071651] [PMID: 32660072]
[9]
Eccles, C.L.; Bissonnette, J.P.; Craig, T.; Taremi, M.; Wu, X.; Dawson, L.A. Treatment planning study to determine potential benefit of intensity-modulated radiotherapy versus conformal radiotherapy for unresectable hepatic malignancies. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(2), 582-588.
[http://dx.doi.org/10.1016/j.ijrobp.2008.06.1496] [PMID: 18793961]
[http://dx.doi.org/10.1016/j.ijrobp.2008.06.1496] [PMID: 18793961]
[10]
Chen, W.; Chiang, C.L.; Dawson, L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol., 2021, 10(1), 9.
[http://dx.doi.org/10.21037/cco-20-89] [PMID: 32576017]
[http://dx.doi.org/10.21037/cco-20-89] [PMID: 32576017]
[11]
Huo, Y.R.; Eslick, G.D. Transcatheter arterial chemoembolization plus radiotherapy compared with chemoembolization alone for hepatocellular carcinoma. JAMA Oncol., 2015, 1(6), 756-765.
[http://dx.doi.org/10.1001/jamaoncol.2015.2189] [PMID: 26182200]
[http://dx.doi.org/10.1001/jamaoncol.2015.2189] [PMID: 26182200]
[12]
Majumdar, A.; Roccarina, D.; Thorburn, D.; Davidson, B.R.; Tsochatzis, E.; Gurusamy, K.S. Management of people with early- or very early-stage hepatocellular carcinoma: an attempted network meta-analysis. Cochrane Database Syst. Rev., 2017, 3(3), CD011650.
[PMID: 28351116]
[PMID: 28351116]
[13]
Roccarina, D.; Majumdar, A.; Thorburn, D.; Davidson, B.R.; Tsochatzis, E.; Gurusamy, K.S. Management of people with intermediate-stage hepatocellular carcinoma: an attempted network meta-analysis. Cochrane Database Syst. Rev., 2017, 3(3), CD011649.
[PMID: 28281295]
[PMID: 28281295]
[14]
van der Most, R.G.; Robinson, B.W.; Lake, R.A. Combining immunotherapy with chemotherapy to treat cancer. Discov. Med., 2005, 5(27), 265-270.
[PMID: 20704886]
[PMID: 20704886]
[15]
Wang, Y.; Liu, Z.G.; Yuan, H.; Deng, W.; Li, J.; Huang, Y.; Kim, B.Y.S.; Story, M.D.; Jiang, W. The reciprocity between radiotherapy and cancer immunotherapy. Clin. Cancer Res., 2019, 25(6), 1709-1717.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2581] [PMID: 30413527]
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2581] [PMID: 30413527]
[16]
Grosser, R.; Cherkassky, L.; Chintala, N.; Adusumilli, P.S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell, 2019, 36(5), 471-482.
[http://dx.doi.org/10.1016/j.ccell.2019.09.006] [PMID: 31715131]
[http://dx.doi.org/10.1016/j.ccell.2019.09.006] [PMID: 31715131]
[17]
Berretta, M.; Cavaliere, C.; Alessandrini, L.; Stanzione, B.; Facchini, G.; Balestreri, L.; Perin, T.; Canzonieri, V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: Clinical and prognostic implications. Oncotarget, 2017, 8(8), 14192-14220.
[http://dx.doi.org/10.18632/oncotarget.13929] [PMID: 28077782]
[http://dx.doi.org/10.18632/oncotarget.13929] [PMID: 28077782]
[18]
Lee, Y.T.M.; Geer, D.A. Primary liver cancer: Pattern of metastasis. J. Surg. Oncol., 1987, 36(1), 26-31.
[http://dx.doi.org/10.1002/jso.2930360107] [PMID: 3041113]
[http://dx.doi.org/10.1002/jso.2930360107] [PMID: 3041113]
[19]
Feng, M.; Pan, Y.; Kong, R.; Shu, S. Therapy of primary liver cancer. Innovation., 2020, 1(2), 100032-100032.
[http://dx.doi.org/10.1016/j.xinn.2020.100032] [PMID: 32914142]
[http://dx.doi.org/10.1016/j.xinn.2020.100032] [PMID: 32914142]
[20]
Mahadevan, A.; Blanck, O.; Lanciano, R.; Peddada, A.; Sundararaman, S.; D’Ambrosio, D.; Sharma, S.; Perry, D.; Kolker, J.; Davis, J. Stereotactic Body Radiotherapy (SBRT) for liver metastasis – clinical outcomes from the international multi-institutional RSSearch® Patient Registry. Radiat. Oncol., 2018, 13(1), 26-26.
[http://dx.doi.org/10.1186/s13014-018-0969-2] [PMID: 29439707]
[http://dx.doi.org/10.1186/s13014-018-0969-2] [PMID: 29439707]
[21]
Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; Li, D.; Verret, W.; Xu, D.Z.; Hernandez, S.; Liu, J.; Huang, C.; Mulla, S.; Wang, Y.; Lim, H.Y.; Zhu, A.X.; Cheng, A.L. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med., 2020, 382(20), 1894-1905.
[http://dx.doi.org/10.1056/NEJMoa1915745] [PMID: 32402160]
[http://dx.doi.org/10.1056/NEJMoa1915745] [PMID: 32402160]
[22]
Romero, D. Combination set to transform HCC therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 389.
[http://dx.doi.org/10.1038/s41571-020-0396-9] [PMID: 32457541]
[http://dx.doi.org/10.1038/s41571-020-0396-9] [PMID: 32457541]
[23]
Byun, H.K.; Kim, N.; Park, S.; Seong, J. Acute severe lymphopenia by radiotherapy is associated with reduced overall survival in hepatocellular carcinoma. Strahlenther. Onkol., 2019, 195(11), 1007-1017.
[http://dx.doi.org/10.1007/s00066-019-01462-5] [PMID: 30989242]
[http://dx.doi.org/10.1007/s00066-019-01462-5] [PMID: 30989242]
[24]
Chen, J.S.; Li, L.S.; Cheng, D.R.; Ji, S.M.; Sun, Q.Q.; Cheng, Z.; Wen, J.Q.; Sha, G.Z.; Liu, Z.H. Prognostic effect of lymphocyte subgroup CD4+ and CD8+ cells in peripheral blood in renal transplant patients with cytomegalovirus viremia. Transplant. Proc., 2009, 41(5), 1639-1642.
[http://dx.doi.org/10.1016/j.transproceed.2009.01.085] [PMID: 19545698]
[http://dx.doi.org/10.1016/j.transproceed.2009.01.085] [PMID: 19545698]
[25]
Yoo, G.S.; Ahn, W.G.; Kim, S.Y.; Kang, W.; Choi, C.; Park, H.C. Radiation-induced abscopal effect and its enhancement by programmed cell death 1 blockade in the hepatocellular carcinoma: A murine model study. Clin. Mol. Hepatol., 2021, 27(1), 144-156.
[http://dx.doi.org/10.3350/cmh.2020.0095] [PMID: 33280350]
[http://dx.doi.org/10.3350/cmh.2020.0095] [PMID: 33280350]
[26]
Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune- mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res., 2009, 15(17), 5379-5388.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0265] [PMID: 19706802]
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0265] [PMID: 19706802]
[27]
Peng, Z.; Lv, X.; Huang, S. Photoimmunotherapy: A new paradigm in solid tumor immunotherapy. Cancer Contr., 2022, 29, 10732748221088825.
[http://dx.doi.org/10.1177/10732748221088825]
[http://dx.doi.org/10.1177/10732748221088825]
[28]
Hayashi, K.; Nikolos, F.; Lee, Y.C.; Jain, A.; Tsouko, E.; Gao, H.; Kasabyan, A.; Leung, H.E.; Osipov, A.; Jung, S.Y.; Kurtova, A.V.; Chan, K.S. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun., 2020, 11(1), 6299.
[http://dx.doi.org/10.1038/s41467-020-19970-9] [PMID: 33288764]
[http://dx.doi.org/10.1038/s41467-020-19970-9] [PMID: 33288764]
[29]
Krysko, O.; Løve Aaes, T.; Bachert, C.; Vandenabeele, P.; Krysko, D.V. Many faces of DAMPs in cancer therapy. Cell Death Dis., 2013, 4(5), e631.
[http://dx.doi.org/10.1038/cddis.2013.156] [PMID: 23681226]
[http://dx.doi.org/10.1038/cddis.2013.156] [PMID: 23681226]