Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Advancement in Epilepsy Pharmacotherapy: An Insight into the Pharmacophoric Approaches of Recent Drugs

Author(s): Vikas Sharma*, Rahul Kaushik, Krishan Kumar Verma, Akanksha Gupta, Snigdha Srivastava and Rajan Kumar Kurmi

Volume 23, Issue 3, 2023

Published on: 28 August, 2023

Page: [145 - 156] Pages: 12

DOI: 10.2174/1871524923666230822104733

Price: $65

Abstract

Epilepsy is the most general, extensive, and severe neurological disorder, affecting more than 50 million individuals globally. Initially, conventional medicines and simple salts like potassium bromide were employed as antiepileptic medication candidates. Nowadays, large number of anticonvulsant drugs have been discovered as first-generati, second-generation and newer drugs which are still in development phases. The pharmacophore-based drug design process includes pharmacophore modeling and validation, pharmacophore-based virtual screening, virtual hits profiling, and lead identification with special to epilepsy. This comprehensive article reviews recently developed anticonvulsant derivatives on the basis of pharmacophoric approaches. A literature survey was performed using various search engines like Google Scholar, Scopus, Sci Finder, ScienceDirect, Science gate, Scilit, PubMed, NINDS database of NIH, Bentham Sciences, and other online and print journals and scientific databases for compilation of this review article. The presented review discusses newer drugs that are in the market as well as in various clinical trial phases. Detailed outcomes of pharmacophoric modeling have been discussed for newly derived derivatives like targets involved in Epilepsy, lead molecules etc., for the treatment of epilepsy. This exhaustive review will assist the researchers in the further development of potential antiepileptic agents.

Next »
Graphical Abstract

[1]
Jacoby, A.; Snape, D.; Baker, G. Epilepsy and social identity: The stigma of a chronic neurological disorder. Lancet Neurol., 2005, 4(3), 171-178.
[http://dx.doi.org/10.1016/S1474-4422(05)70020-X] [PMID: 15721827]
[2]
Savage, N. Epidemiology: The complexities of epilepsy. Nature, 2014, 511(7508), S2-S3.
[http://dx.doi.org/10.1038/511S2a] [PMID: 25019123]
[3]
Thompson, P.M.; Jahanshad, N.; Ching, C.R.K.; Salminen, L.E.; Thomopoulos, S.I.; Bright, J.; Baune, B.T.; Bertolín, S.; Bralten, J.; Bruin, W.B.; Bülow, R.; Chen, J.; Chye, Y.; Dannlowski, U.; de Kovel, C.G.F.; Donohoe, G.; Eyler, L.T.; Faraone, S.V.; Favre, P.; Filippi, C.A.; Frodl, T.; Garijo, D.; Gil, Y.; Grabe, H.J.; Grasby, K.L.; Hajek, T.; Han, L.K.M.; Hatton, S.N.; Hilbert, K.; Ho, T.C.; Holleran, L.; Homuth, G.; Hosten, N.; Houenou, J.; Ivanov, I.; Jia, T.; Kelly, S.; Klein, M.; Kwon, J.S.; Laansma, M.A.; Leerssen, J.; Lueken, U.; Nunes, A.; Neill, J.O.; Opel, N.; Piras, F.; Piras, F.; Postema, M.C.; Pozzi, E.; Shatokhina, N.; Soriano-Mas, C.; Spalletta, G.; Sun, D.; Teumer, A.; Tilot, A.K.; Tozzi, L.; van der Merwe, C.; Van Someren, E.J.W.; van Wingen, G.A.; Völzke, H.; Walton, E.; Wang, L.; Winkler, A.M.; Wittfeld, K.; Wright, M.J.; Yun, J.Y.; Zhang, G.; Zhang-James, Y.; Adhikari, B.M.; Agartz, I.; Aghajani, M.; Aleman, A.; Althoff, R.R.; Altmann, A.; Andreassen, O.A.; Baron, D.A.; Bartnik-Olson, B.L.; Marie Bas-Hoogendam, J.; Baskin-Sommers, A.R.; Bearden, C.E.; Berner, L.A.; Boedhoe, P.S.W.; Brouwer, R.M.; Buitelaar, J.K.; Caeyenberghs, K.; Cecil, C.A.M.; Cohen, R.A.; Cole, J.H.; Conrod, P.J.; De Brito, S.A.; de Zwarte, S.M.C.; Dennis, E.L.; Desrivieres, S.; Dima, D.; Ehrlich, S.; Esopenko, C.; Fairchild, G.; Fisher, S.E.; Fouche, J.P.; Francks, C.; Frangou, S.; Franke, B.; Garavan, H.P.; Glahn, D.C.; Groenewold, N.A.; Gurholt, T.P.; Gutman, B.A.; Hahn, T.; Harding, I.H.; Hernaus, D.; Hibar, D.P.; Hillary, F.G.; Hoogman, M.; Hulshoff Pol, H.E.; Jalbrzikowski, M.; Karkashadze, G.A.; Klapwijk, E.T.; Knickmeyer, R.C.; Kochunov, P.; Koerte, I.K.; Kong, X.Z.; Liew, S.L.; Lin, A.P.; Logue, M.W.; Luders, E.; Macciardi, F.; Mackey, S.; Mayer, A.R.; McDonald, C.R.; McMahon, A.B.; Medland, S.E.; Modinos, G.; Morey, R.A.; Mueller, S.C.; Mukherjee, P.; Namazova-Baranova, L.; Nir, T.M.; Olsen, A.; Paschou, P.; Pine, D.S.; Pizzagalli, F.; Rentería, M.E.; Rohrer, J.D.; Sämann, P.G.; Schmaal, L.; Schumann, G.; Shiroishi, M.S.; Sisodiya, S.M.; Smit, D.J.A.; Sønderby, I.E.; Stein, D.J.; Stein, J.L.; Tahmasian, M.; Tate, D.F.; Turner, J.A.; van den Heuvel, O.A.; van der Wee, N.J.A.; van der Werf, Y.D.; van Erp, T.G.M.; van Haren, N.E.M.; van Rooij, D.; van Velzen, L.S.; Veer, I.M.; Veltman, D.J.; Villalon-Reina, J.E.; Walter, H.; Whelan, C.D.; Wilde, E.A.; Zarei, M.; Zelman, V. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry, 2020, 10(1), 100.
[http://dx.doi.org/10.1038/s41398-020-0705-1] [PMID: 32198361]
[4]
Kachru, R.; Perry-Lunardo, C.; Thompson, L.A. CBD use in children—miracle, myth, or mystery? JAMA Pediatr., 2021, 175(6), 652.
[http://dx.doi.org/10.1001/jamapediatrics.2021.0367] [PMID: 33900374]
[5]
Goodman, A.M.; Szaflarski, J.P. Recent advances in neuroimaging of epilepsy. Neurotherapeutics, 2021, 18(2), 811-826.
[http://dx.doi.org/10.1007/s13311-021-01049-y] [PMID: 33942270]
[6]
Kaestner, E.; Reyes, A.; Chen, A.; Rao, J.; Macari, A.C.; Choi, J.Y.; Qiu, D.; Hewitt, K.; Wang, Z.I.; Drane, D.L.; Hermann, B.; Busch, R.M.; Punia, V.; McDonald, C.R. Atrophy and cognitive profiles in older adults with temporal lobe epilepsy are similar to mild cognitive impairment. Brain, 2021, 144(1), 236-250.
[http://dx.doi.org/10.1093/brain/awaa397] [PMID: 33279986]
[7]
Chen, Q.; Yang, P.; Lin, Q.; Pei, J.; Jia, Y.; Zhong, Z.; Wang, S. Effects of scorpion venom heat-resistant peptide on the hippocampal neurons of kainic acid-induced epileptic rats. Braz. J. Med. Biol. Res., 2021, 54(5), e10717.
[http://dx.doi.org/10.1590/1414-431x202010717] [PMID: 33825777]
[8]
Wu, X.; Dong, W.; Li, H.; Yang, X.; Jin, Y.; Zhang, Z.; Jiang, Y. CYP2C9*3/*3 gene expression affects the total and free concentrations of valproic acid in pediatric patients with epilepsy. Pharm. Genomics Pers. Med., 2021, 14, 417-430.
[http://dx.doi.org/10.2147/PGPM.S301893] [PMID: 33859491]
[9]
Sanabria, E.; Cuenca, R.E.; Esteso, M.Á.; Maldonado, M. Benzodiazepines: Their use either as essential medicines or as toxics substances. Toxics, 2021, 9(2), 25.
[http://dx.doi.org/10.3390/toxics9020025] [PMID: 33535485]
[10]
Suroto, S.; Diansari, Y.; Marisdina, S. Does electroencephalography result affect the success of treatment for epilepsy patients? Bioscientia Medicina. Journal of Biomedicine and Translational Research., 2021, 5(1), 224-231.
[11]
Kumar, R.; Arora, R.; Sarangi, S.C.; Ganeshan, N.S.; Agarwal, A.; Kaleekal, T.; Gupta, Y.K. Pharmacodynamic and pharmacokinetic interactions of hydroalcoholic leaf extract of Centella asiatica with valproate and phenytoin in experimental models of epilepsy in rats. J. Ethnopharmacol., 2021, 270, 113784.
[http://dx.doi.org/10.1016/j.jep.2021.113784] [PMID: 33429032]
[12]
Korczyn, A.D.; Schachter, S.C.; Amlerova, J.; Bialer, M.; van Emde Boas, W.; Brázdil, M.; Brodtkorb, E.; Engel, J., Jr; Gotman, J.; Komárek, V.; Leppik, I.E.; Marusic, P.; Meletti, S.; Metternich, B.; Moulin, C.J.A.; Muhlert, N.; Mula, M.; Nakken, K.O.; Picard, F.; Schulze-Bonhage, A.; Theodore, W.; Wolf, P.; Zeman, A.; Rektor, I. Third international congress on epilepsy, brain and mind: Part 1. Epilepsy Behav., 2015, 50, 116-137.
[http://dx.doi.org/10.1016/j.yebeh.2015.06.044] [PMID: 26276417]
[13]
Solli, E.; Colwell, N.A.; Say, I.; Houston, R.; Johal, A.S.; Pak, J.; Tomycz, L. Deciphering the surgical treatment gap for drug‐resistant epilepsy (DRE): A literature review. Epilepsia, 2020, 61(7), 1352-1364.
[http://dx.doi.org/10.1111/epi.16572] [PMID: 32558937]
[14]
Davis, P.; Gaitanis, J. Neuromodulation for the treatment of epilepsy: A review of current approaches and future directions. Clin. Ther., 2020, 42(7), 1140-1154.
[http://dx.doi.org/10.1016/j.clinthera.2020.05.017] [PMID: 32620340]
[15]
Sharma, V.; Joshi, S.; Majee, C. Receptor Binding Domain and accessible Treatments for Corona Virus. RE:view, 2020, (1), 2708-2713.
[16]
Saggio, M.L.; Crisp, D.; Scott, J.M.; Karoly, P.; Kuhlmann, L.; Nakatani, M.; Murai, T.; Dümpelmann, M.; Schulze-Bonhage, A.; Ikeda, A.; Cook, M.; Gliske, S.V.; Lin, J.; Bernard, C.; Jirsa, V.; Stacey, W.C. A taxonomy of seizure dynamotypes. eLife, 2020, 9, e55632.
[http://dx.doi.org/10.7554/eLife.55632] [PMID: 32691734]
[17]
Harcourt, S. The neuropsychology of epilepsy and suicide: A review. Aggress. Violent. Behav., 2020, 54, 101411.
[http://dx.doi.org/10.1016/j.avb.2020.101411]
[18]
Li, X.; Song, Y.; Xiao, G.; Xie, J.; Dai, Y.; Xing, Y.; He, E.; Wang, Y.; Xu, S.; Zhang, L.; Yu, D.; Tao, T.H.; Cai, X. Flexible electrocorticography electrode array for epileptiform electrical activity recording under glutamate and GABA modulation on the primary somatosensory cortex of rats. Micromachines (Basel), 2020, 11(8), 732.
[http://dx.doi.org/10.3390/mi11080732] [PMID: 32751055]
[19]
Cepeda, C.; Levinson, S.; Nariai, H.; Yazon, V.W.; Tran, C.; Barry, J.; Oikonomou, K.D.; Vinters, H.V.; Fallah, A.; Mathern, G.W.; Wu, J.Y. Pathological high frequency oscillations associate with increased GABA synaptic activity in pediatric epilepsy surgery patients. Neurobiol. Dis., 2020, 134, 104618.
[http://dx.doi.org/10.1016/j.nbd.2019.104618] [PMID: 31629890]
[20]
Simeone, T.A.; Simeone, K.A.; Samson, K.K.; Kim, D.Y.; Rho, J.M. Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices. Neurobiol. Dis., 2013, 54, 68-81.
[http://dx.doi.org/10.1016/j.nbd.2013.02.009] [PMID: 23466697]
[21]
Healy, D.G.; Falchi, M.; O’Sullivan, S.S.; Bonifati, V.; Durr, A.; Bressman, S.; Brice, A.; Aasly, J.; Zabetian, C.P.; Goldwurm, S.; Ferreira, J.J.; Tolosa, E.; Kay, D.M.; Klein, C.; Williams, D.R.; Marras, C.; Lang, A.E.; Wszolek, Z.K.; Berciano, J.; Schapira, A.H.V.; Lynch, T.; Bhatia, K.P.; Gasser, T.; Lees, A.J.; Wood, N.W. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol., 2008, 7(7), 583-590.
[http://dx.doi.org/10.1016/S1474-4422(08)70117-0] [PMID: 18539534]
[22]
García, H.H.; Evans, C.A.W.; Nash, T.E.; Takayanagui, O.M.; White, A.C., Jr; Botero, D.; Rajshekhar, V.; Tsang, V.C.W.; Schantz, P.M.; Allan, J.C.; Flisser, A.; Correa, D.; Sarti, E.; Friedland, J.S.; Martinez, S.M.; Gonzalez, A.E.; Gilman, R.H.; Del Brutto, O.H. Current consensus guidelines for treatment of neurocysticercosis. Clin. Microbiol. Rev., 2002, 15(4), 747-756.
[http://dx.doi.org/10.1128/CMR.15.4.747-756.2002] [PMID: 12364377]
[23]
Menendez de la Prida, L.; Trevelyan, A.J. Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities. Epilepsy Res., 2011, 97(3), 308-317.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.02.009] [PMID: 21482073]
[24]
Nash, T.E.; Singh, G.; White, A.C.; Rajshekhar, V.; Loeb, J.A.; Proaño, J.V.; Takayanagui, O.M.; Gonzalez, A.E.; Butman, J.A.; DeGiorgio, C.; Del Brutto, O.H.; Delgado-Escueta, A.; Evans, C.A.W.; Gilman, R.H.; Martinez, S.M.; Medina, M.T.; Pretell, E.J.; Teale, J.; Garcia, H.H. Treatment of neurocysticercosis: Current status and future research needs. Neurology, 2006, 67(7), 1120-1127.
[http://dx.doi.org/10.1212/01.wnl.0000238514.51747.3a] [PMID: 17030744]
[25]
Gulyás, A.I.; Freund, T.T. Generation of physiological and pathological high frequency oscillations: The role of perisomatic inhibition in sharp-wave ripple and interictal spike generation. Curr. Opin. Neurobiol., 2015, 31, 26-32.
[http://dx.doi.org/10.1016/j.conb.2014.07.020] [PMID: 25128735]
[26]
Sotelo, J.; Jung, H. Pharmacokinetic optimisation of the treatment of neurocysticercosis. Clin. Pharmacokinet., 1998, 34(6), 503-515.
[http://dx.doi.org/10.2165/00003088-199834060-00006] [PMID: 9646011]
[27]
Luo, C.; Kuner, T.; Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci., 2014, 37(6), 343-355.
[http://dx.doi.org/10.1016/j.tins.2014.04.002] [PMID: 24833289]
[28]
Colli, B.O.; Martelli, N.; Assirati, J.A., Jr; Machado, H.R.; Forjaz, S.V. Results of surgical treatment of neurocysticercosis in 69 cases. J. Neurosurg., 1986, 65(3), 309-315.
[http://dx.doi.org/10.3171/jns.1986.65.3.0309] [PMID: 3734881]
[29]
Carpio, A.; Kelvin, E.A.; Bagiella, E.; Leslie, D.; Leon, P.; Andrews, H.; Hauser, W.A. Effects of albendazole treatment on neurocysticercosis: A randomised controlled trial. J. Neurol. Neurosurg. Psychiatry, 2008, 79(9), 1050-1055.
[http://dx.doi.org/10.1136/jnnp.2008.144899] [PMID: 18495737]
[30]
Le Van Quyen, M.; Khalilov, I.; Ben-Ari, Y. The dark side of high-frequency oscillations in the developing brain. Trends Neurosci., 2006, 29(7), 419-427.
[http://dx.doi.org/10.1016/j.tins.2006.06.001] [PMID: 16793147]
[31]
Sparks, F.; Liao, Z.; Li, W.; Soltesz, I.; Losonczy, A. Adult-born granule cells support pathological microcircuits in the chronically epileptic dentate gyrus. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.01.072173]
[32]
Garcia, L.; D’Alessandro, G.; Bioulac, B.; Hammond, C. High-frequency stimulation in Parkinson’s disease: More or less? Trends Neurosci., 2005, 28(4), 209-216.
[http://dx.doi.org/10.1016/j.tins.2005.02.005] [PMID: 15808356]
[33]
Viswanatha, G.L.; Sowmya, G.P.; Shylaja, H.; Moolemath, Y. Methanolic stem extract of Colebrookea oppositifolia attenuates epilepsy in experimental animal models: Possible role of GABA pathways. Journal of Biologically Active Products from Nature, 2020, 10(1), 44-58.
[http://dx.doi.org/10.1080/22311866.2020.1740109]
[34]
Sharma, V.; Majee, C.; Saxena, S.; Kumar, R. Weapon against epilepsy: acorus calamus, it’s phytochemistry, ethnopharmacology, and pharmacological actions. Int J Pharmaceut Res, 2021, 13(1), 2613-2627.
[35]
Varnado, S.; Price, D. Basics of modern epilepsy classification and terminology. Curr. Probl. Pediatr. Adolesc. Health Care, 2020, 50(11), 100891.
[http://dx.doi.org/10.1016/j.cppeds.2020.100891] [PMID: 33153903]
[36]
Yaria, J.O.; Ogunniyi, A. Calibration of the epilepsy questionnaire for use in a low-resource setting. J. Environ. Public Health, 2020, 2020, 1-8.
[http://dx.doi.org/10.1155/2020/5193189] [PMID: 32934658]
[37]
Medina, M.T.; Aguilar-Estrada, R.L.; Alvarez, A.; Durón, R.M.; Martínez, L.; Dubón, S.; Estrada, A.L.; Zúniga, C.; Cartagena, D.; Thompson, A.; Ramirez, E.; Banegas, L.; Osorio, J.R.; Delgado-Escueta, A.V.; Collins, J.S.; Holden, K.R. Reduction in rate of epilepsy from neurocysticercosis by community interventions: The Salamá, Honduras Study. Epilepsia, 2011, 52(6), 1177-1185.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02945.x] [PMID: 21275975]
[38]
Patel, A.A.; Ciccone, O.; Njau, A.; Shanungu, S.; Grollnek, A.K.; Fredrick, F.; Hodgeman, R.; Sideridis, G.D.; Kapur, K.; Harini, C.; Kija, E.; Peters, J.M. A pediatric epilepsy diagnostic tool for use in resource-limited settings: A pilot study. Epilepsy Behav., 2016, 59, 57-61.
[http://dx.doi.org/10.1016/j.yebeh.2016.03.019] [PMID: 27088519]
[39]
Carpio, A.; Hauser, W.A. Epilepsy in the developing world. Curr. Neurol. Neurosci. Rep., 2009, 9(4), 319-326.
[http://dx.doi.org/10.1007/s11910-009-0048-z] [PMID: 19515285]
[40]
Elsayed, M.; El-Sayed, N.; Badi, S.; Ahmed, M. Factors affecting adherence to antiepileptic medications among Sudanese individuals with epilepsy: A cross-sectional survey. J. Family Med. Prim. Care, 2019, 8(7), 2312-2317.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_405_19] [PMID: 31463248]
[41]
Steudle, F.; Rehman, S.; Bampali, K.; Simeone, X.; Rona, Z.; Hauser, E.; Schmidt, W.M.; Scholze, P.; Ernst, M. A novel de novo variant of GABRA1 causes increased sensitivity for GABA in vitro. Sci. Rep., 2020, 10(1), 2379.
[http://dx.doi.org/10.1038/s41598-020-59323-6] [PMID: 32047208]
[42]
Pfisterer, U.; Petukhov, V.; Demharter, S.; Meichsner, J.; Thompson, J.J.; Batiuk, M.Y.; Asenjo-Martinez, A.; Vasistha, N.A.; Thakur, A.; Mikkelsen, J.; Adorjan, I.; Pinborg, L.H.; Pers, T.H.; von Engelhardt, J.; Kharchenko, P.V.; Khodosevich, K. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun., 2020, 11(1), 5038.
[http://dx.doi.org/10.1038/s41467-020-18752-7] [PMID: 31911652]
[43]
Blümcke, I.; Luyken, C.; Urbach, H.; Schramm, J.; Wiestler, O.D. An isomorphic subtype of long-term epilepsy-associated astrocytomas associated with benign prognosis. Acta Neuropathol., 2004, 107(5), 381-388.
[http://dx.doi.org/10.1007/s00401-004-0833-3] [PMID: 15034726]
[44]
Aronica, E.; Redeker, S.; Boer, K.; Spliet, W.G.M.; van Rijen, P.C.; Gorter, J.A.; Troost, D. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex. Epilepsy Res., 2007, 74(1), 33-44.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.12.002] [PMID: 17267178]
[45]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, 2020.
[46]
Amamuddy, O.S.; Verkhivker, G.M.; Bishop, O.T. Impact of emerging mutations on the dynamic properties the SARS-CoV-2 main protease: An in silico investigation. bioRxiv, 2020.
[47]
Faraggi, E.; Dunker, A.K.; Jernigan, R.L.; Kloczkowski, A. Entropy, fluctuations, and disordered proteins. Entropy (Basel), 2019, 21(8), 764.
[http://dx.doi.org/10.3390/e21080764] [PMID: 32336912]
[48]
Sparks, F.T.; Liao, Z.; Li, W.; Grosmark, A.; Soltesz, I.; Losonczy, A. Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy. Nat. Commun., 2020, 11(1), 6138.
[http://dx.doi.org/10.1038/s41467-020-19969-2] [PMID: 33262339]
[49]
Knight, L.S.; Wenzel, H.J.; Schwartzkroin, P.A. Inhibition and interneuron distribution in the dentate gyrus of p35 knockout mice. Epilepsia, 2012, 53(Suppl. 1), 161-170.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03487.x] [PMID: 22612821]
[50]
Denkena, J.; Zaisser, A.; Merz, B.; Klinger, B.; Kuhl, D.; Blüthgen, N.; Hermey, G. Neuronal activity regulates alternative exon usage. Mol. Brain, 2020, 13(1), 148.
[http://dx.doi.org/10.1186/s13041-020-00685-3] [PMID: 33172478]
[51]
Hermey, G.; Blüthgen, N.; Kuhl, D. Neuronal activity-regulated alternative mRNA splicing. Int. J. Biochem. Cell Biol., 2017, 91, 184-193.
[http://dx.doi.org/10.1016/j.biocel.2017.06.002] [PMID: 28591617]
[52]
Zygmunt, M.; Hoinkis, D.; Hajto, J.; Piechota, M. Skupień-Rabian, B.; Jankowska, U.; Kędracka-Krok, S.; Rodriguez Parkitna, J.; Korostyński, M. Expression of alternatively spliced variants of the Dclk1 gene is regulated by psychotropic drugs. BMC Neurosci., 2018, 19(1), 55.
[http://dx.doi.org/10.1186/s12868-018-0458-4] [PMID: 30208879]
[53]
Rodrigo-Domingo, M.; Waagepetersen, R.; Bødker, J.S.; Falgreen, S.; Kjeldsen, M.K.; Johnsen, H.E.; Dybkaer, K.; Bøgsted, M. Reproducible probe-level analysis of the Affymetrix Exon 1.0 ST array with R/Bioconductor. Brief. Bioinform., 2014, 15(4), 519-533.
[http://dx.doi.org/10.1093/bib/bbt011] [PMID: 23603090]
[54]
Saito, H.; Kimura, M.; Inanobe, A.; Ohe, T.; Kurachi, Y. An N-terminal sequence specific for a novel Homer1 isoform controls trafficking of group I metabotropic glutamate receptor in mammalian cells. Biochem. Biophys. Res. Commun., 2002, 296(3), 523-529.
[http://dx.doi.org/10.1016/S0006-291X(02)00899-9] [PMID: 12176012]
[55]
Sapkota, D.; Lake, A.M.; Yang, W.; Yang, C.; Wesseling, H.; Guise, A.; Uncu, C.; Dalal, J.S.; Kraft, A.W.; Lee, J.M.; Sands, M.S.; Steen, J.A.; Dougherty, J.D. Cell-type-specific profiling of alternative translation identifies regulated protein isoform variation in the mouse brain. Cell Rep., 2019, 26(3), 594-607.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.12.077] [PMID: 30650354]
[56]
Khan, H.N.; Kulsoom, S.; Rashid, H. Ligand based pharmacophore model development for the identification of novel antiepileptic compound. Epilepsy Res., 2012, 98(1), 62-71.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.08.016] [PMID: 22071553]
[57]
Malawska, B.; Scatturin, A. Application of pharmacophore models for the design and synthesis of new anticonvulsant drugs. Mini Rev. Med. Chem., 2003, 3(4), 341-348.
[http://dx.doi.org/10.2174/1389557033488088] [PMID: 12678827]
[58]
Tasso, S.M.; Bruno-Blanch, L.E.; Moon, S.C.; Estiú, G.L. Pharmacophore searching and QSAR analysis in the design of anticonvulsant drugs. J. Mol. Struct. THEOCHEM, 2000, 504(1-3), 229-240.
[http://dx.doi.org/10.1016/S0166-1280(00)00364-X]
[59]
Siddiqui, N.; Ahsan, W.; Alam, M.S.; Ali, R.; Srivastava, K. Design, synthesis and evaluation of anticonvulsant activity of pyridinyl-pyrrolidones: A pharmacophore hybrid approach. Arch. Pharm. (Weinheim), 2012, 345(3), 185-194.
[http://dx.doi.org/10.1002/ardp.201100140] [PMID: 21997797]
[60]
Moore, Y.E.; Kelley, M.R.; Brandon, N.J.; Deeb, T.Z.; Moss, S.J. Seizing control of KCC2: A new therapeutic target for epilepsy. Trends Neurosci., 2017, 40(9), 555-571.
[http://dx.doi.org/10.1016/j.tins.2017.06.008] [PMID: 28803659]
[61]
Hartz, A.M.; Notenboom, S.; Bauer, B. Signaling to P-glycoprotein-A new therapeutic target to treat drug-resistant epilepsy? Drug News Perspect., 2009, 22(7), 393-397.
[http://dx.doi.org/10.1358/dnp.2009.22.7.1401354] [PMID: 19890496]
[62]
Citraro, R.; Leo, A.; Constanti, A.; Russo, E.; De Sarro, G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol. Res., 2016, 107, 333-343.
[http://dx.doi.org/10.1016/j.phrs.2016.03.039] [PMID: 27049136]
[63]
Walker, L.; Sills, G.J. Inflammation and epilepsy: The foundations for a new therapeutic approach in epilepsy? Epilepsy Curr., 2012, 12(1), 8-12.
[http://dx.doi.org/10.5698/1535-7511-12.1.8] [PMID: 22368518]
[64]
Willmore, L.J. Antiepileptic drugs and neuroprotection: Current status and future roles. Epilepsy Behav., 2005, 7(Suppl. 3), 25-28.
[http://dx.doi.org/10.1016/j.yebeh.2005.08.006] [PMID: 16239127]
[65]
Cohen, I.; Navarro, V.; Clemenceau, S.; Baulac, M.; Miles, R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science, 2002, 298(5597), 1418-1421.
[http://dx.doi.org/10.1126/science.1076510] [PMID: 12434059]
[66]
Kobow, K.; Auvin, S.; Jensen, F.; Löscher, W.; Mody, I.; Potschka, H.; Prince, D.; Sierra, A.; Simonato, M.; Pitkänen, A.; Nehlig, A.; Rho, J.M. Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53(11), 1868-1876.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03716.x] [PMID: 23061663]
[67]
Rogawski, M.A. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol. Scand., 2013, 127(197), 9-18.
[http://dx.doi.org/10.1111/ane.12099] [PMID: 23480151]
[68]
Ghasemi, M.; Schachter, S.C. The NMDA receptor complex as a therapeutic target in epilepsy: A review. Epilepsy Behav., 2011, 22(4), 617-640.
[http://dx.doi.org/10.1016/j.yebeh.2011.07.024] [PMID: 22056342]
[69]
Kaur, H.; Kumar, B.; Medhi, B. Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci, 2016, 4, 42-51.
[http://dx.doi.org/10.1016/j.ensci.2016.06.003] [PMID: 29430548]
[70]
Rogawski, M.A.; Bazil, C.W. New molecular targets for antiepileptic drugs: α2δ SV2A, and Kv7/KCNQ/M potassium channels. Curr. Neurol. Neurosci. Rep., 2008, 8(4), 345-352.
[http://dx.doi.org/10.1007/s11910-008-0053-7] [PMID: 18590620]
[71]
Rogawski, M.A. Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res., 2006, 68(1), 22-28.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.09.012] [PMID: 16377151]
[72]
Kambli, L.; Bhatt, L.K.; Oza, M.; Prabhavalkar, K. Novel therapeutic targets for epilepsy intervention. Seizure, 2017, 51, 27-34.
[http://dx.doi.org/10.1016/j.seizure.2017.07.014] [PMID: 28772199]
[73]
Johannessen Landmark, C. Antiepileptic drugs in non-epilepsy disorders: Relations between mechanisms of action and clinical efficacy. CNS Drugs, 2008, 22(1), 27-47.
[http://dx.doi.org/10.2165/00023210-200822010-00003] [PMID: 18072813]
[74]
Molecular and Cellular Targets for Antiepileptic Drugs; Avanzini, G., Ed.; John Libbey Eurotext: France, 1997.
[75]
Myers, K.A.; Scheffer, I.E. DEPDC5 as a potential therapeutic target for epilepsy. Expert Opin. Ther. Targets, 2017, 21(6), 591-600.
[http://dx.doi.org/10.1080/14728222.2017.1316715] [PMID: 28406046]
[76]
Giraud, C.; Tran, A.; Rey, E.; Vincent, J.; Tréluyer, J.M.; Pons, G. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: Importance of CYP2C19. Drug Metab. Dispos., 2004, 32(11), 1279-1286.
[http://dx.doi.org/10.1124/dmd.32.11.1279] [PMID: 15483195]
[77]
Chiron, C.; Dulac, O. The pharmacologic treatment of Dravet syndrome. Epilepsia, 2011, 52(Suppl. 2), 72-75.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03007.x] [PMID: 21463285]
[78]
Aneja, S.; Sharma, S. Newer anti-epileptic drugs. Indian Pediatr., 2013, 50(11), 1033-1040.
[http://dx.doi.org/10.1007/s13312-013-0284-9] [PMID: 24382900]
[79]
White, H.S. Preclinical development of antiepileptic drugs: Past, present, and future directions. Epilepsia, 2003, 44(Suppl. 7), 2-8.
[http://dx.doi.org/10.1046/j.1528-1157.44.s7.10.x] [PMID: 12919332]
[80]
Verrotti, A.; Loiacono, G.; Rossi, A.; Zaccara, G. Eslicarbazepine acetate: An update on efficacy and safety in epilepsy. Epilepsy Res., 2014, 108(1), 1-10.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.10.005] [PMID: 24225327]
[81]
Almeida, L.; Soares-da-Silva, P. Eslicarbazepine acetate (BIA 2-093). Neurotherapeutics, 2007, 4(1), 88-96.
[http://dx.doi.org/10.1016/j.nurt.2006.10.005] [PMID: 17199020]
[82]
Bonifácio, M.J.; Sheridan, R.D.; Parada, A.; Cunha, R.A.; Patmore, L.; Soares-da-Silva, P. Interaction of the novel anticonvulsant, BIA 2-093, with voltage-gated sodium channels: Comparison with carbamazepine. Epilepsia, 2001, 42(5), 600-608.
[http://dx.doi.org/10.1046/j.1528-1157.2001.43600.x] [PMID: 11380566]
[83]
Parikh, S.K.; Silberstein, S.D. Current status of antiepileptic drugs as preventive migraine therapy. Curr. Treat. Options Neurol., 2019, 21(4), 16.
[http://dx.doi.org/10.1007/s11940-019-0558-1] [PMID: 30880369]
[84]
Franco, V.; Crema, F.; Iudice, A.; Zaccara, G.; Grillo, E. Novel treatment options for epilepsy: Focus on perampanel. Pharmacol. Res., 2013, 70(1), 35-40.
[http://dx.doi.org/10.1016/j.phrs.2012.12.006] [PMID: 23287426]
[85]
Biton, V.; Berkovic, S.F.; Abou-Khalil, B.; Sperling, M.R.; Johnson, M.E.; Lu, S. Brivaracetam as adjunctive treatment for uncontrolled partial epilepsy in adults: A phase III randomized, double‐blind, placebo‐controlled trial. Epilepsia, 2014, 55(1), 57-66.
[http://dx.doi.org/10.1111/epi.12433] [PMID: 24446953]
[86]
Shih, J.; Tatum, W.O.; Rudzinski, L. New drug classes for the treatment of partial onset epilepsy: Focus on perampanel. Ther. Clin. Risk Manag., 2013, 9, 285-293.
[http://dx.doi.org/10.2147/TCRM.S37317] [PMID: 23874099]
[87]
Weisenberg, J.L.; Wong, M. Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial-onset seizures. Neuropsychiatr. Dis. Treat., 2011, 7, 409-414.
[PMID: 21792307]
[88]
Zaccara, G.; Giovannelli, F.; Cincotta, M.; Carelli, A.; Verrotti, A. Clinical utility of eslicarbazepine: Current evidence. Drug Des. Devel. Ther., 2015, 9, 781-789.
[http://dx.doi.org/10.2147/DDDT.S57409] [PMID: 25709402]
[89]
Hsu, K.; Whitham, E.; Kichenadasse, G. Potential role of cannabidiol for seizure control in a patient with recurrent glioma. J. Clin. Neurosci., 2020, 71, 275-276.
[http://dx.doi.org/10.1016/j.jocn.2019.11.024] [PMID: 31848037]
[90]
Freedman, M. Screening ultrasound after a first febrile UTI is not cost-effective. Contemp. Pediatr., 2020, 37(3), 7.
[91]
Hung, T.Y.; Huang, H.Y.; Wu, S.N.; Huang, C.W. Depressive effectiveness of vigabatrin (y-Vinyl-GABA), an antiepileptic drug, in intermediate-conductance calcium-activated potassium channels in human glioma cells. BMC Pharmacol. Toxicol., 2021, 22, 6.
[92]
Sawanny, R.; Bajetha, D.; Sharma, V.; Joshi, S.K. Epidemic 2019-20-covid-19 current scenario. World J. Pharm. Pharm. Sci., 2020, 9(6), 673-697.
[93]
Toth, C. Pregabalin: Latest safety evidence and clinical implications for the management of neuropathic pain. Ther. Adv. Drug Saf., 2014, 5(1), 38-56.
[http://dx.doi.org/10.1177/2042098613505614] [PMID: 25083261]
[94]
Witkin, J.M.; Ping, X.; Cerne, R.; Mouser, C.; Jin, X.; Hobbs, J.; Tiruveedhula, V.V.N.P.B.; Li, G.; Jahan, R.; Rashid, F.; Kumar Golani, L.; Cook, J.M.; Smith, J.L. The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Res., 2019, 1722, 146356.
[http://dx.doi.org/10.1016/j.brainres.2019.146356] [PMID: 31369732]
[95]
Cramer, J.A.; Yan, T.; Tieu, R.; Knoth, R.L.; Fincher, C.; Malhotra, M.; Choi, J. Risk of hospitalization among patients with epilepsy using long versus short half-life adjunctive antiepileptic drugs. Epilepsy Behav., 2020, 102, 106634.
[http://dx.doi.org/10.1016/j.yebeh.2019.106634] [PMID: 31783318]
[96]
Moseley, B.D.; Otoul, C.; Staelens, L.; Stockis, A. Pharmacokinetic interaction of brivaracetam on other antiepileptic drugs in adults with focal seizures: Pooled analysis of data from randomized clinical trials. Epilepsy Res., 2019, 158, 106218.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.106218] [PMID: 31675621]
[97]
Hertzberg, C.; Franz, D.N. Anticonvulsant agents: Everolimus. Neuro Psychopharmacotherapy, 2020, 2020, 1-32.
[98]
Samur, D.N.; Arslan, R. Aydın, S.; Bektas, N. Valnoctamide: The effect on relieving of neuropathic pain and possible mechanisms. Eur. J. Pharmacol., 2018, 827, 208-214.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.006] [PMID: 29522726]
[99]
Qian, Z.M.; Ke, Y.; Huperzine, A. Is it an effective disease-modifying drug for Alzheimer’s disease? Front. Aging Neurosci., 2014, 6, 216.
[http://dx.doi.org/10.3389/fnagi.2014.00216] [PMID: 25191267]
[100]
Leclercq, K.; Matagne, A.; Provins, L.; Klitgaard, H.; Kaminski, R.M. Pharmacological profile of the novel antiepileptic drug candidate padsevonil: Characterization in rodent seizure and epilepsy models. J. Pharmacol. Exp. Ther., 2020, 372(1), 11-20.
[http://dx.doi.org/10.1124/jpet.119.261222] [PMID: 31619464]
[101]
Kasteleijn-Nolst Trenité, D.G.A.; Biton, V.; French, J.A.; Abou-Khalil, B.; Rosenfeld, W.E.; Diventura, B.; Moore, E.L.; Hetherington, S.V.; Rigdon, G.C.K. v7 potassium channel activation with ICA ‐105665 reduces photoparoxysmal EEG responses in patients with epilepsy. Epilepsia, 2013, 54(8), 1437-1443.
[http://dx.doi.org/10.1111/epi.12224] [PMID: 23692516]
[102]
Nazar, S.; Siddiqui, N.; Alam, O. Recent progress of 1,3,4‐oxadiazoles as anticonvulsants: Future horizons. Arch. Pharm. (Weinheim), 2020, 353(7), 1900342.
[http://dx.doi.org/10.1002/ardp.201900342] [PMID: 32319117]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy