Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Conjugation of Doxorubicin and Carbon-based-nanostructures for Drug Delivery Against HT-29 Colon Cancer Cells

Author(s): Kaveh Jafari Aghdam, Bahare Sabeti, Fereshteh Chekin* and Maral Mashreghi

Volume 27, Issue 18, 2024

Published on: 12 October, 2023

Page: [2726 - 2733] Pages: 8

DOI: 10.2174/1386207326666230821145508

Price: $65

Abstract

Background: A drug delivery system is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. Such systems release the drugs at specific amounts in a specific site. The carbon based-nanomaterials have been actively used as drug carriers to treat various cancer.

Objective: This study aimed to evaluate the cytotoxic effects of DOX-GO, DOX-OMC and DOXCNT in colon cancer cells (HT29).

Methods: We reported platforms based on graphene oxide (GO), ordered mesoporous carbon (OMC) and carbon nanotubes (CNT) to conjugate with doxorubicin (DOX). The conjugation of DOX with carbon nanomaterial was investigated by UV-Vis spectroscopy, field emission scanning electron microscope (FE-SEM) and cyclic voltammetry (CV) methods.

Results: We showed that graphene oxide was a highly efficient matrix. Efficient loading of DOX, 89%, 78%, and 73.5% at pH 7.0 was seen onto GO, OMC and CNT, respectively. Upon pH 4. 0 after 15 h, 69%, 61% and 61% of DOX could be released from the DOX-GO, DOX-OMC and DOX-CNT, respectively, which illustrated the significant benefits of the developed approach for carbon nanomaterial applications. In vitro cytotoxicity analysis showed greater cytotoxicity of DOX/GO, DOX/OMC and DOX/CNT in comparison with GO, OMC and CNT against HT29 colon cancer cells with cell viability of 22%, 40% and 44% after 48 h for DOX-GO, DOX-OMC and DOX-CNT, respectively.

Conclusion: The nanohybrids based on DOX-carbon nanomaterial, because of their unique physical and chemical properties, will remarkably enhance the anti-cancer activity.

[1]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell., 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[2]
Amiri, M.; Khazaeli, P.; Salehabadi, A.; Salavati-Niasari, M. Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Adv. Colloid. Interface. Sci., 2021, 288, 102316.
[http://dx.doi.org/10.1016/j.cis.2020.102316] [PMID: 33387892]
[3]
Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y. Recent progress in drug delivery. Acta Pharm. Sin. B., 2019, 9(6), 1145-1162.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[4]
Rezaeifar, M.; Mahmoudvand, H.; Amiri, M. Formulation and evaluation of diphenhydramine gel using different gelling agents. Der. Pharma. Chem., 2016, 8, 243-249.
[5]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[6]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater., 2020, 30(2), 1902634.
[http://dx.doi.org/10.1002/adfm.201902634]
[8]
Han, H.J.; Ekweremadu, C.; Patel, N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J. Drug Deliv. Sci. Technol., 2019, 52, 1051-1060.
[http://dx.doi.org/10.1016/j.jddst.2019.05.024]
[9]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials., 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[10]
Zhang, G.; Zeng, X.; Li, P. Nanomaterials in cancer-therapy drug delivery system. J. Biomed. Nanotechnol., 2013, 9(5), 741-750.
[http://dx.doi.org/10.1166/jbn.2013.1583] [PMID: 23802404]
[11]
Debnath, S.K.; Srivastava, R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects. Front. Nanotechnol., 2021, 3, 644564.
[http://dx.doi.org/10.3389/fnano.2021.644564]
[12]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol., 2019, 9, 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[13]
Sajjadi, M.; Nasrollahzadeh, M.; Jaleh, B.; Soufi, G.J.; Iravani, S. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects. J. Drug. Target., 2021, 29(7), 716-741.
[http://dx.doi.org/10.1080/1061186X.2021.1886301] [PMID: 33566719]
[14]
Jampilek, J.; Kralova, K. Advances in drug delivery nanosystems using graphene-based materials and carbon nanotubes. Materials., 2021, 14(5), 1059.
[http://dx.doi.org/10.3390/ma14051059] [PMID: 33668271]
[15]
Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell. Physiol., 2019, 234(1), 298-319.
[http://dx.doi.org/10.1002/jcp.26899] [PMID: 30078182]
[16]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[17]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience., 2012, 6, ed16.
[PMID: 24883085]
[18]
Lindley, C.; McCune, J.S.; Thomason, T.E.; Lauder, D.; Sauls, A.; Adkins, S.; Sawyer, W.T. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer. Pract., 1999, 7(2), 59-65.
[http://dx.doi.org/10.1046/j.1523-5394.1999.07205.x] [PMID: 10352062]
[19]
Zhao, N.; C Woodle, M.; Mixson, A.J. Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol., 2018, 9(5), 519-526.
[http://dx.doi.org/10.4172/2157-7439.1000519] [PMID: 30613436]
[20]
Christidi, E.; Brunham, L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell. Death. Dis., 2021, 12(4), 339.
[http://dx.doi.org/10.1038/s41419-021-03614-x] [PMID: 33795647]
[21]
Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother., 2021, 139, 111708.
[http://dx.doi.org/10.1016/j.biopha.2021.111708] [PMID: 34243633]
[22]
Zareyy, B.; Chekin, F.; Fathi, S. NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction. Russ. J. Electrochem., 2019, 55(4), 333-338.
[http://dx.doi.org/10.1134/S102319351903011X]
[23]
Ladmakhi, H.B.; Chekin, F.; Fathi, S.; Raoof, J.B. Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta, 2020, 211, 120759.
[http://dx.doi.org/10.1016/j.talanta.2020.120759] [PMID: 32070564]
[24]
Hazhir, N.; Chekin, F.; Raoof, J.B.; Fathi, S. A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin. RSC Adv., 2019, 9(53), 30729-30735.
[http://dx.doi.org/10.1039/C9RA04977K] [PMID: 35529364]
[25]
Tehrani, N.S.; Masoumi, M.; Chekin, F.; Baei, M.S. Nitrogen doped porous reduced graphene oxide hybrid as a nanocarrier of imatinib anti-cancer drug. Russ. J. Appl. Chem., 2020, 93(8), 1221-1228.
[http://dx.doi.org/10.1134/S1070427220080157]
[26]
Hazhir, N.; Chekin, F.; Raoof, J.B.; Fathi, Sh. Anticancer activity of doxorubicin conjugated to polymer/carbon based-nanohybrid against MCF-7 breast and HT-29 colon cancer cells. Int. J. Nanodimens., 2021, 12, 11-19.
[27]
Kavinkumar, T.; Varunkumar, K.; Ravikumar, V.; Manivannan, S. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites. J. Colloid Interface Sci., 2017, 505, 1125-1133.
[http://dx.doi.org/10.1016/j.jcis.2017.07.002] [PMID: 28704918]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy