Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Estimation of Rheological Coefficients of Acacia nilotica Gum: A Versatile Biopolymer for Biomedical and Food Industries

Author(s): Sonali Sundram, Neerupma Dhiman*, Rishabha Malviya and Rajendra Awasthi*

Volume 20, Issue 8, 2024

Published on: 07 September, 2023

Page: [1013 - 1018] Pages: 6

DOI: 10.2174/1573401319666230821105152

Price: $65

Abstract

Introduction: Polysaccharides are widely used in the biomedical and food industries as thickening, gelling, emulsifying, hydrating, and suspending agents. Polysaccharides have adequate viscoelastic properties and flow characteristics. The purpose of this study was to determine various rheological parameters of Acacia nilotica (Babool) gum.

Methods: Understanding the influence of temperature on rheological properties is quite important for polymeric materials to be considered as pharmaceutical excipients. Thus, a polymeric solution of purified Babool gum was prepared, and the influence of temperature on its rheological behaviour (viscosity and surface tension) was investigated to develop a better understanding of the structural organization of the gum. Furthermore, viscosity, surface tension, temperature coefficient, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion were calculated using the Arrhenius, Gibbs–Helmholtz, Frenkel–Eyring, and Eotvos equations, respectively.

Results: The activation energy of the gum was 3.81 ± 0.18 kJ/mol. Changes in entropy and enthalpy were 0.56 ± 0.23 and 4.27 ± 0.81 kJ/mol, respectively. The calculated amount of entropy of fusion was found to be 0.014 ± 0.01 kJ mol−1 K−1.

Conclusion: The study outcomes showed that the viscosity and surface tension increased as the temperature decreased. The good rheological properties of Babool gum make it a suitable excipient for its applications in the food and pharmaceutical industries.

Graphical Abstract

[1]
Goswami S, Naik S. Natural gums and its pharmaceutical application. J Sci Innov Res 2014; 3(1): 112-21.
[http://dx.doi.org/10.31254/jsir.2014.3118]
[2]
Dharmendra S, Surendra JK, Sujata M, Shweta S. Natural excipients: A review. Int J Pharm Biol Arch 2012; 3: 1028-34.
[3]
Beneke C, Viljoen A, Hamman J. Polymeric plant-derived excipients in drug delivery. Molecules 2009; 14(7): 2602-20.
[http://dx.doi.org/10.3390/molecules14072602] [PMID: 19633627]
[4]
Kakrani HK, Jain NK. A study on binding properties of guggal gum. Indian J Hosp Pharm 1981; 18: 100-2.
[5]
Rani P, Singh I. Microwave assisted synthesis and characterization of N-Vinyl-2- pyrrolidone grafted locust bean gum for colonic delivery of budesonide. Drug Deliv Lett 2016; 6: 2.
[6]
Kulkarni GT, Gowthamarajan K, Dhobe RR, Yohanan F, Suresh B. Development of controlled release spheroids using natural polysaccharide as release modifier. Drug Deliv 2005; 12(4): 201-6.
[http://dx.doi.org/10.1080/10717540590952537] [PMID: 16036714]
[7]
Saha T, Hossain Md. Application of natural polymers as pharmaceutical excipients. Global J Life Sci Biol Res 2018; 4: 1-11.
[8]
Brunchi CE, Bercea M, Morariu S, Dascalu M. Some properties of xanthan gum in aqueous solutions: Effect of temperature and pH. J Polym Res 2016; 23(7): 123.
[http://dx.doi.org/10.1007/s10965-016-1015-4]
[9]
Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll 2008; 22(5): 807-18.
[http://dx.doi.org/10.1016/j.foodhyd.2007.03.007]
[10]
Silva DAd, Aires GCM, Pena RDS. Gums-characteristics and applications in the food industry. In: de Barros Ao GouvinhasI, Ed. Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products. London: IntechOpen 2020.
[11]
Saeedi R, Sultana A, Rahman K. Medicinal properties of different parts of acacia nilotica linn (babul), its phytoconstituents and diverse pharmacological activities: Medicinal properties and pharmacological activities of A. nilotica. Int J Pharm Pharm Sci 2020; 12: 8-14.
[http://dx.doi.org/10.22159/ijpps.2020v12i2.35672]
[12]
Bubb WA. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts Magn Reson Part A Bridg Educ Res 2003; 19(1): 1-19.
[13]
Chandran N, Sarathchandran C, Thomas S. Introduction to rheology. In: Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications. Elsevier 2019; pp. 1-17.
[14]
Malviya R, Sundram S, Fuloria S, et al. Evaluation and characterization of tamarind gum polysaccharide: The biopolymer. Polymers 2021; 13(18): 3023.
[http://dx.doi.org/10.3390/polym13183023] [PMID: 34577925]
[15]
Malviya R, Tyagi A, Fuloria S, et al. Fabrication and characterization of chitosan-tamarind seed polysaccharide composite film for transdermal delivery of protein/peptide. Polymers 2021; 13(9): 1531.
[http://dx.doi.org/10.3390/polym13091531] [PMID: 34068768]
[16]
Malviya R. Green approach for fabrication of chitosan-neem gum polyelectrolyte stabilized penta and hexagonal nanoparticles and in vitro cytotoxic potential toward breast cancer (MCF-7) cells. Precis Med Sci 2020; 9(2): 68-82.
[http://dx.doi.org/10.1002/prm2.12025]
[17]
Bhushette PR, Annapure US. Comparative study of Acacia nilotica exudate gum and acacia gum. Int J Biol Macromol 2017; 102: 266-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.178] [PMID: 28390831]
[18]
Malviya R, Jha S, Fuloria NK, et al. Determination of temperature-dependent coefficients of viscosity and surface tension of tamarind seeds (tamarindus indica l.) polymer. Polymers 2021; 13(4): 610.
[http://dx.doi.org/10.3390/polym13040610] [PMID: 33670569]
[19]
Malviya R, Sharma PK, Dubey SK. Characterization of neem (Azadirachita indica) gum exudates using analytical tools and pharmaceutical approaches. Curr Nutr Food Sci 2019; 15(6): 588-99.
[http://dx.doi.org/10.2174/1573401314666180821150254]
[20]
Anema SG, Lowe EK, Li Y. Effect of pH on the viscosity of heated reconstituted skim milk. Int Dairy J 2004; 14(6): 541-8.
[http://dx.doi.org/10.1016/j.idairyj.2003.10.007]
[21]
Lee DW, Ruths M, Israelachvili JN. Surface forces and nanorheology of molecularly thin films. In: Nanotribology and Nanomechanics. Cham, Switzerland: Springer 2017; pp. 457-518.
[http://dx.doi.org/10.1007/978-3-319-51433-8_9]
[22]
Miao Q, Jiang H, Gao L, et al. Rheological properties of five plant gums. Am J Anal Chem 2018; 9(4): 210-23.
[http://dx.doi.org/10.4236/ajac.2018.94017]
[23]
Kurkuri MD, Kulkarni AR, Aminabhavi TM. Rheological investigations on the dispersions of sodium alginate and guar gum mixtures at different temperatures. Polym Plast Technol Eng 2002; 41(3): 469-88.
[http://dx.doi.org/10.1081/PPT-120004363]
[24]
Malviya R, Sharma P, Dubey S. Kheri (Acacia chundra, family: Mimosaceae) gum: Characterization using analytical, mathematical and pharmaceutical approaches. Polim Med 2018; 47(2): 65-76.
[http://dx.doi.org/10.17219/pim/76515] [PMID: 30009583]
[25]
De Paula RCM, Rodrigues JF. Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydr Polym 1995; 26(3): 177-81.
[http://dx.doi.org/10.1016/0144-8617(95)00006-S]
[26]
Silva AG, Rodrigues JF, De Paula RCM. Structure-property relationships in food biopolymer gels and solutions. Polímeros 1998; 2: 34-9.
[http://dx.doi.org/10.1590/S0104-14281998000200006]
[27]
Menon ARR. Melt rheology of ethylene propylene diene rubber modified with propylene phosphorylated cashew nut shell liquid prepolymer. Iran Polym J 2003; 12: 305-13.
[28]
Shaikh M, Shafique M, Aggarwal BR, Aeooqui MF. Density, viscosity and activation parameters of viscous flow for cetrimide in ethanol+water system at 301.5 K. Rasayan J Chem 2011; 4: 172-9.
[29]
Nair SV, Oommen Z, Thomas S. Melt elasticity and flow activation energy of nylon 6/polystyrene blends. Mater Lett 2002; 57(2): 475-80.
[http://dx.doi.org/10.1016/S0167-577X(02)00815-7]
[30]
Ameh PO. Physicochemical properties and rheological behaviour of Ficus glumosa gum in aqueous solution. Afr J Pure Appl Chem 2013; 7: 35-43.
[31]
Varfolomeeva EP, Grinberg VY, Toistogusov VB. Rheology of polymer. Polym Bull 1980; 2: 613.
[32]
Eddy NO, Udofia I, Uzairu A, Ongenyi AO, Obadimu C. Physiochemical, spectroscopic and rheological studies on Eucalyptus citriodora (ec) gum. J Polym Biopolym Phys Chem 2014; 2: 12-24.
[33]
Acevedo IL, Katz M. Viscosities and thermodynamics of viscous flow of some binary mixtures at different temperatures. J Solution Chem 1990; 19(10): 1041-52.
[http://dx.doi.org/10.1007/BF00650507]
[34]
Papon P, Leblond J, Meijer PH. Physics of Phase Transitions. Berlin/Heidelberg, Germany: Springer 2002; pp. 185-209.
[http://dx.doi.org/10.1007/978-3-662-04989-1_6]
[35]
Boruah AK, Nath LK. Extraction, purification and physicochemical evaluation of mucilage of Chrysophyllum lanceolatum (blume) dc fruits: An investigation for bioadhesive property. Int J Pharm Pharm Sci 2016; 8: 282-8.
[36]
Arthur DE, Gimba CE, Nnabuk EO. Miscibility studies of Cashew gum and Khaya gum exudates in dilute solution by viscometry and FTIR analysis. Am J Eng Res 2014; 3(8): 1-12.
[37]
Salehi F, Kashaninejad M. Kinetics and thermodynamics of gum extraction from wild sage seed. Int J Food Eng 2014; 10(4): 625-32.
[http://dx.doi.org/10.1515/ijfe-2014-0079]
[38]
Salehi F, Kashaninejad M, Tadayyon A, Arabameri F. Modeling of extraction process of crude polysaccharides from Basil seeds (Ocimum basilicum l.) as affected by process variables. J Food Sci Technol 2015; 52(8): 5220-7.
[http://dx.doi.org/10.1007/s13197-014-1614-1] [PMID: 26243945]
[39]
Eddy NO, Ameh PO, Gimba CE, Ebenso EE. Rheological modeling and characterization of Ficus platyphylla gum exudates. J Chem 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/254347]
[40]
Safronov AP, Adamova LV, Kurlyandskaya GV. Flory-Huggins parameters of guar gum, xanthan gum, agarose, and gellan gum in aqueous solutions. Polym Sci Ser A 2019; 61(1): 29-38.
[http://dx.doi.org/10.1134/S0965545X19010139]
[41]
Rott N. Note on the history of the Reynolds number. Annu Rev Fluid Mech 1990; 22(1): 1-12.
[http://dx.doi.org/10.1146/annurev.fl.22.010190.000245]
[42]
Moreira JC, Demarquette NR. Influence of temperature, molecular weight, and molecular weight dispersity on the surface tension of PS, PP, and PE. I. Experimental. J Appl Polym Sci 2001; 82(8): 1907-20.
[http://dx.doi.org/10.1002/app.2036]
[43]
Khan A, Bibi I, Pervaiz S, Mahmood K, Siddiq M, Siddiq M. Surface tension, density and viscosity studies on the associative behaviour of oxyethylene-oxybutylene diblock copolymers in water at different temperatures. Int J Org Chem 2012; 2(1): 82-92.
[http://dx.doi.org/10.4236/ijoc.2012.21014]
[44]
Tu W, Chen Z, Gao Y, et al. Glass transition and mixing thermodynamics of a binary eutectic system. Phys Chem Chem Phys 2014; 16(8): 3586-92.
[http://dx.doi.org/10.1039/c3cp52868e] [PMID: 24413254]
[45]
Manjunath M. Anjali , Gowda DV, et al. Guar gum and its pharmaceutical and biomedical applications. Adv Sci Eng Med 2016; 8(8): 589-602.
[http://dx.doi.org/10.1166/asem.2016.1874]
[46]
de Paula RCM, Santana SA, Rodrigues JF. Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydr Polym 2001; 44(2): 133-9.
[http://dx.doi.org/10.1016/S0144-8617(00)00213-7]
[47]
Wientjes RHW, Duits MHG, Jongschaap RJJ, Mellema J. Linear rheology of guar gum solutions. Macromolecules 2000; 33(26): 9594-605.
[http://dx.doi.org/10.1021/ma001065p]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy