Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advances in Biomedical Nanotechnology Related to Natural Products

Author(s): Qing Xia, Tingting Liang, Yue Zhou, Jun Liu, Yue Tang and Feila Liu*

Volume 25, Issue 8, 2024

Published on: 04 September, 2023

Page: [944 - 961] Pages: 18

DOI: 10.2174/1389201024666230821090222

Price: $65

Abstract

Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.

Graphical Abstract

[1]
Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(3), 241-258.
[http://dx.doi.org/10.1080/02652030701744538] [PMID: 18311618]
[2]
Wang, Z.; Xue, X.; Lu, H.; He, Y.; Lu, Z.; Chen, Z.; Yuan, Y.; Tang, N.; Dreyer, C.A.; Quigley, L.; Curro, N.; Lam, K.S.; Walton, J.H.; Lin, T.; Louie, A.Y.; Gilbert, D.A.; Liu, K.; Ferrara, K.W.; Li, Y. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat. Nanotechnol., 2020, 15(6), 482-490.
[http://dx.doi.org/10.1038/s41565-020-0678-5] [PMID: 32451501]
[3]
Zhu, X.; Liu, X.; Zhang, H.; Zhao, M.; Pei, P.; Chen, Y.; Yang, Y.; Lu, L.; Yu, P.; Sun, C.; Ming, J.; Ábrahám, I.M.; El-Toni, A.M.; Khan, A.; Zhang, F. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles. Angew. Chem. Int. Ed., 2021, 60(44), 23545-23551.
[http://dx.doi.org/10.1002/anie.202108124] [PMID: 34487416]
[4]
Xu, Y.; Dang, D.; Zhang, N.; Zhang, J.; Xu, R.; Wang, Z.; Zhou, Y.; Zhang, H.; Liu, H.; Yang, Z.; Meng, L.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission (AIE) in super-resolution imaging: Cationic AIE luminogens (AIEgens) for tunable organelle-specific imaging and dynamic tracking in nanometer scale. ACS Nano, 2022, 16(4), 5932-5942.
[http://dx.doi.org/10.1021/acsnano.1c11125] [PMID: 35344346]
[5]
Yang, J.K.; Hwang, I.J.; Cha, M.G.; Kim, H.I.; Yim, D.; Jeong, D.H.; Lee, Y.S.; Kim, J.H. Reaction kinetics-mediated control over silver nanogap shells as surface-enhanced raman scattering nanoprobes for detection of alzheimer’s disease biomarkers. Small, 2019, 15(19), 1900613.
[http://dx.doi.org/10.1002/smll.201900613] [PMID: 30957959]
[6]
Sun, M.; Xin, T.; Ran, Z.; Pei, X.; Ma, C.; Liu, J.; Cao, M.; Bai, J.; Zhou, M. A bendable biofuel cell-based fully integrated biomedical nanodevice for point-of-care diagnosis of scurvy. ACS Sens., 2021, 6(1), 275-284.
[http://dx.doi.org/10.1021/acssensors.0c02335] [PMID: 33356148]
[7]
Kim, W.H.; Lee, J.U.; Jeon, M.J.; Park, K.H.; Sim, S.J. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens. Bioelectron., 2022, 205, 114116.
[http://dx.doi.org/10.1016/j.bios.2022.114116] [PMID: 35235898]
[8]
Yan, R.; Lu, N.; Han, S.; Lu, Z.; Xiao, Y.; Zhao, Z.; Zhang, M. Simultaneous detection of dual biomarkers using hierarchical MoS2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens. Bioelectron., 2022, 197, 113797.
[http://dx.doi.org/10.1016/j.bios.2021.113797] [PMID: 34818600]
[9]
Ren, Z.; Sun, S.; Sun, R.; Cui, G.; Hong, L.; Rao, B.; Li, A.; Yu, Z.; Kan, Q.; Mao, Z. A metal–polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv. Mater., 2020, 32(6), 1906024.
[http://dx.doi.org/10.1002/adma.201906024] [PMID: 31834662]
[10]
Burke, J.A.; Zhang, X.; Bobbala, S.; Frey, M.A.; Bohorquez Fuentes, C.; Freire Haddad, H.; Allen, S.D.; Richardson, R.A.K.; Ameer, G.A.; Scott, E.A. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability. Nat. Nanotechnol., 2022, 17(3), 319-330.
[http://dx.doi.org/10.1038/s41565-021-01048-2] [PMID: 35039683]
[11]
Abuajah, C.I.; Ogbonna, A.C.; Osuji, C.M. Functional components and medicinal properties of food: A review. J. Food Sci. Technol., 2015, 52(5), 2522-2529.
[http://dx.doi.org/10.1007/s13197-014-1396-5] [PMID: 25892752]
[12]
Li, X.Y.; Chen, H.R.; Zha, X.Q.; Chen, S.; Pan, L.H.; Li, Q.M.; Luo, J.P. Prevention and possible mechanism of a purified Laminaria japonica polysaccharide on adriamycin-induced acute kidney injury in mice. Int. J. Biol. Macromol., 2020, 148, 591-600.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.159] [PMID: 31958563]
[13]
Zhu, Q.; Chen, J.; Li, Q.; Wang, T.; Li, H. Antitumor activity of polysaccharide from Laminaria japonica on mice bearing H22 liver cancer. Int. J. Biol. Macromol., 2016, 92, 156-158.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.090] [PMID: 27375056]
[14]
Peng, F.H.; Zha, X.Q.; Cui, S.H.; Asghar, M.N.; Pan, L.H.; Wang, J.H.; Luo, J.P. Purification, structure features and anti-atherosclerosis activity of a Laminaria japonica polysaccharide. Int. J. Biol. Macromol., 2015, 81, 926-935.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.027] [PMID: 26394383]
[15]
Xu, C.; Yin, L.; Teng, Z.; Zhou, X.; Li, W.; Lai, Q.; Peng, C.; Zhang, C.; Lou, J.; Zhou, X. Prevention of obesity related diseases through laminarin-induced targeted delivery of bindarit. Theranostics, 2020, 10(21), 9544-9560.
[http://dx.doi.org/10.7150/thno.45788] [PMID: 32863944]
[16]
Bai, R.; Yao, C.; Zhong, Z.; Ge, J.; Bai, Z.; Ye, X.; Xie, T.; Xie, Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur. J. Med. Chem., 2021, 213, 113165.
[http://dx.doi.org/10.1016/j.ejmech.2021.113165] [PMID: 33454546]
[17]
Kong, Y.R.; Tay, K.C.; Su, Y.X.; Wong, C.K.; Tan, W.N.; Khaw, K.Y. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. Molecules, 2021, 26(3), 728.
[http://dx.doi.org/10.3390/molecules26030728] [PMID: 33573300]
[18]
Karasneh, R.A.; Murray, L.J.; Cardwell, C.R. Cardiac glycosides and breast cancer risk: A systematic review and meta-analysis of observational studies. Int. J. Cancer, 2017, 140(5), 1035-1041.
[http://dx.doi.org/10.1002/ijc.30520] [PMID: 27861859]
[19]
Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84, 1036-1041.
[http://dx.doi.org/10.1016/j.biopha.2016.10.030] [PMID: 27780131]
[20]
Škubník, J.; Pavlíčková, V.; Rimpelová, S. Cardiac glycosides as immune system modulators. Biomolecules, 2021, 11(5), 659.
[http://dx.doi.org/10.3390/biom11050659] [PMID: 33947098]
[21]
Prescott, R.J.; Harris, M.; Banerjee, S.S. Fungal infections of the small and large intestine. J. Clin. Pathol., 1992, 45(9), 806-811.
[http://dx.doi.org/10.1136/jcp.45.9.806] [PMID: 1401213]
[22]
Yourassowsky, E. Collection and transport of specimens for bacteriological analysis: A neglected subject in medical teaching. Infection, 1980, 8(S2), S143-S145.
[http://dx.doi.org/10.1007/BF01639875] [PMID: 7005094]
[23]
Loessner, H.; Weiss, S. Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin. Biol. Ther., 2004, 4(2), 157-168.
[http://dx.doi.org/10.1517/14712598.4.2.157] [PMID: 14998775]
[24]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[25]
Li, S.; Wang, Q.; Shen, Y.; Hassan, M.; Shen, J.; Jiang, W.; Su, Y.; Chen, J.; Bai, L.; Zhou, W.; Wang, Y. Pseudoneutrophil cytokine sponges disrupt myeloid expansion and tumor trafficking to improve cancer immunotherapy. Nano Lett., 2020, 20(1), 242-251.
[http://dx.doi.org/10.1021/acs.nanolett.9b03753] [PMID: 31790598]
[26]
Deng, G.; Sun, Z.; Li, S.; Peng, X.; Li, W.; Zhou, L.; Ma, Y.; Gong, P.; Cai, L. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano, 2018, 12(12), 12096-12108.
[http://dx.doi.org/10.1021/acsnano.8b05292] [PMID: 30444351]
[27]
Li, C.; Zhao, Z.; Luo, Y.; Ning, T.; Liu, P.; Chen, Q.; Chu, Y.; Guo, Q.; Zhang, Y.; Zhou, W.; Chen, H.; Zhou, Z.; Wang, Y.; Su, B.; You, H.; Zhang, T.; Li, X.; Song, H.; Li, C.; Sun, T.; Jiang, C. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv. Sci., 2021, 8(20), 2101526.
[http://dx.doi.org/10.1002/advs.202101526] [PMID: 34436822]
[28]
Liang, H.; Huang, K.; Su, T.; Li, Z.; Hu, S.; Dinh, P.U.; Wrona, E.A.; Shao, C.; Qiao, L.; Vandergriff, A.C.; Hensley, M.T.; Cores, J.; Allen, T.; Zhang, H.; Zeng, Q.; Xing, J.; Freytes, D.O.; Shen, D.; Yu, Z.; Cheng, K. Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano, 2018, 12(7), 6536-6544.
[http://dx.doi.org/10.1021/acsnano.8b00553] [PMID: 29943967]
[29]
Chen, L.; Zhou, Z.; Hu, C.; Maitz, M.F.; Yang, L.; Luo, R.; Wang, Y. Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD47 antibody for atherosclerotic therapy Research., 2022, 2022(3), 2022/9845459.
[http://dx.doi.org/10.34133/2022/9845459] [PMID: 35118420]
[30]
Zhou, Y.K.; Patel, H.H.; Roth, D.M. Extracellular vesicles: A new paradigm for cellular communication in perioperative medicine, critical care, and pain management. Anesth. Analg., 2021, 133(5), 1162-1179.
[http://dx.doi.org/10.1213/ANE.0000000000005655] [PMID: 34304233]
[31]
Stanley, S. Biological nanoparticles and their influence on organisms. Curr. Opin. Biotechnol., 2014, 28, 69-74.
[http://dx.doi.org/10.1016/j.copbio.2013.11.014] [PMID: 24832077]
[32]
Pitchaimani, A.; Nguyen, T.D.T.; Aryal, S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials, 2018, 160, 124-137.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.018] [PMID: 29407341]
[33]
Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics, 2017, 7(10), 2575-2592.
[http://dx.doi.org/10.7150/thno.20118] [PMID: 28819448]
[34]
Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Dostdar, S.A.; Sokolov, A.V.; Brzecka, A.; Sukocheva, O.; Neganova, M.E.; Klochkov, S.G.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Extracellular vesicles in cancer nanomedicine. Semin. Cancer Biol., 2021, 69, 212-225.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.017] [PMID: 31421263]
[35]
Singh, M.; Bhatnagar, P.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing ehrlich ascites carcinoma. [Retraction]. Int. J. Nanomedicine, 2019, 14, 7625-7626.
[http://dx.doi.org/10.2147/IJN.S230533] [PMID: 31571867]
[36]
Guo, W.; Li, A.; Jia, Z.; Yuan, Y.; Dai, H.; Li, H. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma. Eur. J. Pharmacol., 2013, 718(1-3), 41-47.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.034] [PMID: 24070814]
[37]
Yang, R.; Yan, Y.; Wu, Z.; Wei, Y.; Song, H.; Zhu, L.; Zhao, C.; Xu, N.; Fu, J.; Huo, K. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. Mater. Sci. Eng. C, 2021, 131, 112513.
[http://dx.doi.org/10.1016/j.msec.2021.112513] [PMID: 34857292]
[38]
Trotta, V.; Pavan, B.; Ferraro, L.; Beggiato, S.; Traini, D.; Des Reis, L.G.; Scalia, S.; Dalpiaz, A. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur. J. Pharm. Biopharm., 2018, 127, 250-259.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.010] [PMID: 29486302]
[39]
Zhang, W.; Jiang, W. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. Int. J. Biol. Macromol., 2020, 155, 1252-1261.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.093] [PMID: 31726160]
[40]
Ghasemzadeh, F.; Najafpour, G.D.; Mohammadi, M. Antiinfective properties of ursolic acid-loaded chitosan nanoparticles against Staphylococcus aureus. Turk. J. Chem., 2021, 45(5), 1454-1462.
[http://dx.doi.org/10.3906/kim-2104-13] [PMID: 34849059]
[41]
Lőrincz, A.; Mihály, J.; Wacha, A.; Németh, C.; Besztercei, B.; Gyulavári, P.; Varga, Z.; Peták, I.; Bóta, A. Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. Mater. Sci. Eng. C, 2021, 131, 112481.
[http://dx.doi.org/10.1016/j.msec.2021.112481] [PMID: 34857267]
[42]
Yu, X.; Wang, Y.; Liu, X.; Ge, Y.; Zhang, S. Ursolic acid loaded-mesoporous hydroxylapatite/chitosan therapeutic scaffolds regulate bone regeneration ability by promoting the M2-type polarization of macrophages. Int. J. Nanomedicine, 2021, 16, 5301-5315.
[http://dx.doi.org/10.2147/IJN.S323033] [PMID: 34393482]
[43]
Lan, J.S.; Qin, Y.H.; Liu, L.; Zeng, R.F.; Yang, Y.; Wang, K.; Ding, Y.; Zhang, T.; Ho, R.J.Y. A carrier-free folate receptor-targeted ursolic acid/methotrexate nanodelivery system for synergetic anticancer therapy. Int. J. Nanomedicine, 2021, 16, 1775-1787.
[http://dx.doi.org/10.2147/IJN.S287806] [PMID: 33692622]
[44]
Liu, C.J.; Yao, L.; Hu, Y.M.; Zhao, B.T. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int. J. Nanomedicine, 2021, 16, 741-752.
[http://dx.doi.org/10.2147/IJN.S277377] [PMID: 33564233]
[45]
Li, F.; Jin, H.; Xiao, J.; Yin, X.; Liu, X.; Li, D.; Huang, Q. The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res. Int., 2018, 111, 351-360.
[http://dx.doi.org/10.1016/j.foodres.2018.05.038] [PMID: 30007696]
[46]
Wang, Y.; Li, C.; Wan, Y.; Qi, M.; Chen, Q.; Sun, Y.; Sun, X.; Fang, J.; Fu, L.; Xu, L.; Dong, B.; Wang, L. Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation via macrophage polarization against periodontal inflammation. Small, 2021, 17(41), 2101505.
[http://dx.doi.org/10.1002/smll.202101505] [PMID: 34499411]
[47]
Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524.
[http://dx.doi.org/10.1021/acsnano.9b02875] [PMID: 31664821]
[48]
Ren, T.; Gou, J.; Sun, W.; Tao, X.; Tan, X.; Wang, P.; Zhang, Y.; He, H.; Yin, T.; Tang, X. Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel. Mol. Pharm., 2018, 15(7), 2870-2882.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00357] [PMID: 29863879]
[49]
Chen, Q.; Luo, R.; Han, X.; Zhang, J.; He, Y.; Qi, S.; Pu, X.; Nie, W.; Dong, L.; Xu, H.; Liu, F.; Lin, M.; Zhong, H.; Fu, C.; Gao, F. Entrapment of macrophage-target nanoparticles by yeast microparticles for rhein delivery in ulcerative colitis treatment. Biomacromolecules, 2021, 22(6), 2754-2767.
[http://dx.doi.org/10.1021/acs.biomac.1c00425] [PMID: 34019390]
[50]
Li, Y.; Ma, X.; Yue, Y.; Zhang, K.; Cheng, K.; Feng, Q.; Ma, N.; Liang, J.; Zhang, T.; Zhang, L.; Chen, Z.; Wang, X.; Ren, L.; Zhao, X.; Nie, G. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv. Mater., 2022, 34(20), 2109984.
[http://dx.doi.org/10.1002/adma.202109984] [PMID: 35315546]
[51]
Yan, N.; Xu, J.; Liu, G.; Ma, C.; Bao, L.; Cong, Y.; Wang, Z.; Zhao, Y.; Xu, W.; Chen, C. Penetrating macrophage-based nanoformulation for periodontitis treatment. ACS Nano, 2022, 16(11), 18253-18265.
[http://dx.doi.org/10.1021/acsnano.2c05923] [PMID: 36288552]
[52]
Fu, L.; Zhang, W.; Zhou, X.; Fu, J.; He, C. Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma. Bioact. Mater., 2022, 17, 221-233.
[http://dx.doi.org/10.1016/j.bioactmat.2022.01.035] [PMID: 35386464]
[53]
Guo, Y.; Fan, Y.; Wang, Z.; Li, G.; Zhan, M.; Gong, J.; Majoral, J.P.; Shi, X.; Shen, M. Chemotherapy mediated by biomimetic polymeric nanoparticles potentiates enhanced tumor immunotherapy via amplification of endoplasmic reticulum stress and mitochondrial dysfunction. Adv. Mater., 2022, 34(47), 2206861.
[http://dx.doi.org/10.1002/adma.202206861] [PMID: 36125843]
[54]
Yin, T.; Fan, Q.; Hu, F.; Ma, X.; Yin, Y.; Wang, B.; Kuang, L.; Hu, X.; Xu, B.; Wang, Y. Engineered macrophage-membrane-coated nanoparticles with enhanced PD-1 expression induce immunomodulation for a synergistic and targeted antiglioblastoma activity. Nano Lett., 2022, 22(16), 6606-6614.
[http://dx.doi.org/10.1021/acs.nanolett.2c01863] [PMID: 35948420]
[55]
Yang, T.; Wang, A.; Nie, D.; Fan, W.; Jiang, X.; Yu, M.; Guo, S.; Zhu, C.; Wei, G.; Gan, Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun., 2022, 13(1), 6649.
[http://dx.doi.org/10.1038/s41467-022-34357-8] [PMID: 36333321]
[56]
Yang, J.; Su, T.; Zou, H.; Yang, G.; Ding, J.; Chen, X. Spatiotemporally targeted polypeptide nanoantidotes improve chemotherapy tolerance of cisplatin. Angew. Chem. Int. Ed., 2022, 61(47), e202211136.
[http://dx.doi.org/10.1002/anie.202211136] [PMID: 36069260]
[57]
Ma, B.; Hu, G.; Guo, S.; Zeng, Q.; Chen, Y.; Hwan Oh, D.; Jin, Y.; Fu, X. Use of peptide-modified nanoparticles as a bacterial cell targeting agent for enhanced antibacterial activity and other biomedical applications. Food Res. Int., 2022, 161, 111638.
[http://dx.doi.org/10.1016/j.foodres.2022.111638] [PMID: 36192867]
[58]
Gu, Y.; Zhao, Y.; Zhang, Z.; Hao, J.; Zheng, Y.; Liu, Q.; Liu, Y.; Shi, L. An antibody-like polymeric nanoparticle removes intratumoral galectin-1 to enhance antitumor T-cell responses in cancer immunotherapy. ACS Appl. Mater. Interfaces, 2021, 13(19), 22159-22168.
[http://dx.doi.org/10.1021/acsami.1c02116] [PMID: 33955217]
[59]
Qi, S.; Luo, R.; Han, X.; Nie, W.; Ye, N.; Fu, C.; Gao, F. pH/ROS dual-sensitive natural polysaccharide nanoparticles enhance “one stone four birds” effect of rhein on ulcerative colitis. ACS Appl. Mater. Interfaces, 2022, 14(45), 50692-50709.
[http://dx.doi.org/10.1021/acsami.2c17827] [PMID: 36326017]
[60]
Yang, W.; Frickenstein, A.N.; Sheth, V.; Holden, A.; Mettenbrink, E.M.; Wang, L.; Woodward, A.A.; Joo, B.S.; Butterfield, S.K.; Donahue, N.D.; Green, D.E.; Thomas, A.G.; Harcourt, T.; Young, H.; Tang, M.; Malik, Z.A.; Harrison, R.G.; Mukherjee, P.; DeAngelis, P.L.; Wilhelm, S. Controlling nanoparticle uptake in innate immune cells with heparosan polysaccharides. Nano Lett., 2022, 22(17), 7119-7128.
[http://dx.doi.org/10.1021/acs.nanolett.2c02226] [PMID: 36048773]
[61]
Liu, J.; Wen, Q.; Zhou, B.; Yuan, C.; Du, S.; Li, L.; Jiang, L.; Yao, S.Q.; Ge, J. “Clickable” ZIF-8 for cell-type-specific delivery of functional proteins. ACS Chem. Biol., 2022, 17(1), 32-38.
[http://dx.doi.org/10.1021/acschembio.1c00872] [PMID: 34936351]
[62]
Jun, H.; Jang, E.; Kim, H.; Yeo, M.; Park, S.G.; Lee, J.; Shin, K.J.; Chae, Y.C.; Kang, S.; Kim, E. TRAIL & EGFR affibody dual-display on a protein nanoparticle synergistically suppresses tumor growth. J. Control. Release, 2022, 349, 367-378.
[http://dx.doi.org/10.1016/j.jconrel.2022.07.004] [PMID: 35809662]
[63]
Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C.; Rao, A.M.; Marcus, R.K. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol., 2013, 13(1), 37.
[http://dx.doi.org/10.1186/1472-6750-13-37] [PMID: 23622112]
[64]
Nair, H.B.; Sung, B.; Yadav, V.R.; Kannappan, R.; Chaturvedi, M.M.; Aggarwal, B.B. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem. Pharmacol., 2010, 80(12), 1833-1843.
[http://dx.doi.org/10.1016/j.bcp.2010.07.021] [PMID: 20654584]
[65]
Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A.C.; Zarrabi, A.; Melero, A.; Jafari, S.M.; Shakibaei, M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics, 2021, 13(2), 291.
[http://dx.doi.org/10.3390/pharmaceutics13020291] [PMID: 33672366]
[66]
Pangeni, R.; Sahni, J.K.; Ali, J.; Sharma, S.; Baboota, S. Resveratrol: Review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv., 2014, 11(8), 1285-1298.
[http://dx.doi.org/10.1517/17425247.2014.919253] [PMID: 24830814]
[67]
Ding, N.; Dou, C.; Wang, Y.; Liu, F.; Guan, G.; Huo, D.; Li, Y.; Yang, J.; Wei, K.; Yang, M.; Tan, J.; Zeng, W.; Zhu, C. Antishear stress bionic carbon nanotube mesh coating with intracellular controlled drug delivery constructing small-diameter tissue-engineered vascular grafts. Adv. Healthc. Mater., 2018, 7(11), 1800026.
[http://dx.doi.org/10.1002/adhm.201800026] [PMID: 29637716]
[68]
Lamothe, S.; Azimy, N.; Bazinet, L.; Couillard, C.; Britten, M. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 2014, 5(10), 2621-2631.
[http://dx.doi.org/10.1039/C4FO00203B] [PMID: 25154916]
[69]
Yang, Z.; Peng, Z.; Li, J.; Li, S.; Kong, L.; Li, P.; Wang, Q. Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chem., 2014, 145, 272-277.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.074] [PMID: 24128477]
[70]
Mukherjee, S.; Ghosh, S.; Das, D.K.; Chakraborty, P.; Choudhury, S.; Gupta, P.; Adhikary, A.; Dey, S.; Chattopadhyay, S. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection — synthesis, characterization and in vitro evaluation. J. Nutr. Biochem., 2015, 26(11), 1283-1297.
[http://dx.doi.org/10.1016/j.jnutbio.2015.06.003] [PMID: 26310506]
[71]
Peters, C.M.; Green, R.J.; Janle, E.M.; Ferruzzi, M.G. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food Res. Int., 2010, 43(1), 95-102.
[http://dx.doi.org/10.1016/j.foodres.2009.08.016] [PMID: 20161530]
[72]
Yin, C.; Cheng, L.; Zhang, X.; Wu, Z. Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols. J. Food Biochem., 2020, 44(9), e13380.
[http://dx.doi.org/10.1111/jfbc.13380] [PMID: 32667062]
[73]
Son, J.; Lee, S.Y. Therapeutic potential of ursonic acid: Comparison with ursolic acid. Biomolecules, 2020, 10(11), 1505.
[http://dx.doi.org/10.3390/biom10111505] [PMID: 33147723]
[74]
Wan, S.Z.; Liu, C.; Huang, C.K.; Luo, F.Y.; Zhu, X. Ursolic acid improves intestinal damage and bacterial dysbiosis in liver fibrosis mice. Front. Pharmacol., 2019, 10, 1321.
[http://dx.doi.org/10.3389/fphar.2019.01321] [PMID: 31736766]
[75]
Wang, L.; Yin, Q.; Liu, C.; Tang, Y.; Sun, C.; Zhuang, J. Nanoformulations of ursolic acid: A modern natural anticancer molecule. Front. Pharmacol., 2021, 12, 706121.
[http://dx.doi.org/10.3389/fphar.2021.706121] [PMID: 34295253]
[76]
Jin, H.; Pi, J.; Yang, F.; Wu, C.; Cheng, X.; Bai, H.; Huang, D.; Jiang, J.; Cai, J.; Chen, Z.W. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Appl. Microbiol. Biotechnol., 2016, 100(15), 6643-6652.
[http://dx.doi.org/10.1007/s00253-016-7360-8] [PMID: 26883344]
[77]
Antônio, E.; Antunes, O.R.; de Araújo, I.S.; Khalil, N.M.; Mainardes, R.M. Poly(lactic acid) nanoparticles loaded with ursolic acid: Characterization and in vitro evaluation of radical scavenging activity and cytotoxicity. Mater. Sci. Eng. C, 2017, 71, 156-166.
[http://dx.doi.org/10.1016/j.msec.2016.09.080] [PMID: 27987693]
[78]
Zhang, H.; Zheng, D.; Ding, J.; Xu, H.; Li, X.; Sun, W. Efficient delivery of ursolic acid by poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles for inhibiting the growth of hepatocellular carcinoma in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 1909-1920.
[PMID: 25792825]
[79]
Liu, Z.; Ye, W.; Zheng, J.; Wang, Q.; Ma, G.; Liu, H.; Wang, X. Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. Regen. Biomater., 2020, 7(4), 381-390.
[http://dx.doi.org/10.1093/rb/rbaa009] [PMID: 32793383]
[80]
Baishya, R.; Nayak, D.K.; Kumar, D.; Sinha, S.; Gupta, A.; Ganguly, S.; Debnath, M.C. Ursolic acid loaded PLGA nanoparticles: in vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm. Res., 2016, 33(11), 2691-2703.
[http://dx.doi.org/10.1007/s11095-016-1994-1] [PMID: 27431865]
[81]
Cui, D.; Liang, T.; Sun, L.; Meng, L.; Yang, C.; Wang, L.; Liang, T.; Li, Q. Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm. Biol., 2018, 56(1), 528-534.
[http://dx.doi.org/10.1080/13880209.2018.1510974] [PMID: 30387372]
[82]
Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci., 2020, 21(16), 5920.
[http://dx.doi.org/10.3390/ijms21165920] [PMID: 32824664]
[83]
Yin, R.; Li, T.; Tian, J.X.; Xi, P.; Liu, R.H. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 568-574.
[http://dx.doi.org/10.1080/10408398.2016.1203755] [PMID: 27469428]
[84]
Buda, V.; Brezoiu, A.M.; Berger, D.; Pavel, I.Z.; Muntean, D.; Minda, D.; Dehelean, C.A.; Soica, C.; Diaconeasa, Z.; Folescu, R.; Danciu, C. Biological evaluation of black chokeberry extract free and embedded in two mesoporous silica-type matrices. Pharmaceutics, 2020, 12(9), 838.
[http://dx.doi.org/10.3390/pharmaceutics12090838] [PMID: 32882983]
[85]
Iwashina, T.J.J.P.R. Structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299.
[86]
Schröder, L.; Marahrens, P.; Koch, J.G.; Heidegger, H.; Vilsmeier, T.; Phan-Brehm, T.; Hofmann, S.; Mahner, S.; Jeschke, U.; Richter, D.U. Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF 7 and MDA-MB-231 breast carcinoma cells. Oncol. Rep., 2019, 41(1), 387-396.
[PMID: 30320348]
[87]
Davoodvandi, A.; Shabani Varkani, M.; Clark, C.C.T.; Jafarnejad, S. Quercetin as an anticancer agent: Focus on esophageal cancer. J. Food Biochem., 2020, 44(9), e13374.
[http://dx.doi.org/10.1111/jfbc.13374] [PMID: 32686158]
[88]
Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biol., 2016, 37(10), 12927-12939.
[http://dx.doi.org/10.1007/s13277-016-5184-x] [PMID: 27448306]
[89]
Khan, F.; Niaz, K.; Maqbool, F.; Ismail, H.F.; Abdollahi, M.; Nagulapalli, V.K.; Nabavi, S.; Bishayee, A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 2016, 8(9), 529.
[http://dx.doi.org/10.3390/nu8090529] [PMID: 27589790]
[90]
Sak, K. Site-specific anticancer effects of dietary flavonoid quercetin. Nutr. Cancer, 2014, 66(2), 177-193.
[http://dx.doi.org/10.1080/01635581.2014.864418] [PMID: 24377461]
[91]
Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582.
[http://dx.doi.org/10.2174/09298673113209990120] [PMID: 23514412]
[92]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnol., 2012, 3(1-6), 65-81.
[http://dx.doi.org/10.1007/s12645-012-0031-2] [PMID: 26069496]
[93]
Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2017.08.097] [PMID: 28881205]
[94]
Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother., 2017, 91, 287-294.
[http://dx.doi.org/10.1016/j.biopha.2017.02.112] [PMID: 28463792]
[95]
Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[96]
Xu, J.; Ma, Q.; Zhang, Y.; Fei, Z.; Sun, Y.; Fan, Q.; Liu, B.; Bai, J.; Yu, Y.; Chu, J.; Chen, J.; Wang, C. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun., 2022, 13(1), 110.
[http://dx.doi.org/10.1038/s41467-021-27750-2] [PMID: 35013252]
[97]
Zhou, X.; Ling, K.; Liu, M.; Zhang, X.; Ding, J.; Dong, Y.; Liang, Z.; Li, J.; Zhang, J. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route. Theranostics, 2019, 9(22), 6568-6586.
[http://dx.doi.org/10.7150/thno.35353] [PMID: 31588236]
[98]
Yin, L.; Peng, C.; Tang, Y.; Yuan, Y.; Liu, J.; Xiang, T.; Liu, F.; Zhou, X.; Li, X. Biomimetic oral targeted delivery of bindarit for immunotherapy of atherosclerosis. Biomater. Sci., 2020, 8(13), 3640-3648.
[http://dx.doi.org/10.1039/D0BM00418A] [PMID: 32458838]
[99]
Zhou, X.; Zhang, X.; Han, S.; Dou, Y.; Liu, M.; Zhang, L.; Guo, J.; Shi, Q.; Gong, G.; Wang, R.; Hu, J.; Li, X.; Zhang, J. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett., 2017, 17(2), 1056-1064.
[http://dx.doi.org/10.1021/acs.nanolett.6b04523] [PMID: 28075596]
[100]
Hu, X.; Zhang, J. Yeast capsules for targeted delivery: The future of nanotherapy? Nanomedicine, 2017, 12(9), 955-957.
[http://dx.doi.org/10.2217/nnm-2017-0059] [PMID: 28440701]
[101]
Zhang, X.; Xu, X.; Chen, Y.; Dou, Y.; Zhou, X.; Li, L.; Li, C.; An, H.; Tao, H.; Hu, H.J.M.T. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater. Today, 2017, 20(6)
[http://dx.doi.org/10.1016/j.mattod.2017.05.006]
[102]
Cecile, B.; Ellison, C.K.; Adrien, D.; Brun, Y.V.J.N.R.M. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol., 2018, 16(10), 616-627.
[103]
Asadi, A.; Razavi, S.; Talebi, M.; Gholami, M. Correction to: A review on anti-adhesion therapies of bacterial diseases. Infection, 2019, 47(1), 25-26.
[104]
Zhang, Y.; Chen, Y.; Lo, C.; Zhuang, J.; Angsantikul, P.; Zhang, Q.; Wei, X.; Zhou, Z.; Obonyo, M.; Fang, R.H.; Gao, W.; Zhang, L. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew. Chem. Int. Ed., 2019, 58(33), 11404-11408.
[http://dx.doi.org/10.1002/anie.201906280] [PMID: 31206942]
[105]
Naskar, A.; Cho, H.; Lee, S.; Kim, K. Biomimetic nanoparticles coated with bacterial outer membrane vesicles as a new-generation platform for biomedical applications. Pharmaceutics, 2021, 13(11), 1887.
[http://dx.doi.org/10.3390/pharmaceutics13111887] [PMID: 34834302]
[106]
Jan, A.T. Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front. Microbiol., 2017, 8, 1053.
[http://dx.doi.org/10.3389/fmicb.2017.01053] [PMID: 28649237]
[107]
Huang, J.; Wu, Z.; Xu, J. Effects of biofilm nano-composite drugs OMVs-MSN-5-FU on cervical lymph node metastases from oral squamous cell carcinoma. Front. Oncol., 2022, 12, 881910.
[http://dx.doi.org/10.3389/fonc.2022.881910] [PMID: 35515126]
[108]
Fang, R.H.; Jiang, Y.; Fang, J.C.; Zhang, L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials, 2017, 128, 69-83.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.041] [PMID: 28292726]
[109]
Zhang, Y.; Wang, Y.; Xin, Q.; Li, M.; Yu, P.; Luo, J.; Xu, X.; Chen, X.; Li, J. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): A general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(14), 2497-2503.
[http://dx.doi.org/10.1039/D1TB02493K] [PMID: 35019930]
[110]
Chen, H.; Sha, H.; Zhang, L.; Qian, H.; Chen, F.; Ding, N.; Ji, L.; Zhu, A.; Xu, Q.; Meng, F.; Yu, L.; Zhou, Y.; Liu, B. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int. J. Nanomedicine, 2018, 13, 5347-5359.
[http://dx.doi.org/10.2147/IJN.S165109] [PMID: 30254439]
[111]
He, M.; Yu, P.; Hu, Y.; Zhang, J.; He, M.; Nie, C.; Chu, X. Erythrocyte-membrane-enveloped biomineralized metal–organic framework nanoparticles enable intravenous glucose-responsive insulin delivery. ACS Appl. Mater. Interfaces, 2021, 13(17), 19648-19659.
[http://dx.doi.org/10.1021/acsami.1c01943] [PMID: 33890785]
[112]
Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun., 2021, 12(1), 1999.
[http://dx.doi.org/10.1038/s41467-021-22311-z] [PMID: 33790276]
[113]
Hu, C.M.J.; Fang, R.H.; Wang, K.C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571), 118-121.
[http://dx.doi.org/10.1038/nature15373] [PMID: 26374997]
[114]
Zhang, N.; Lin, J.; Chew, S.Y. Neural cell membrane-coated nanoparticles for targeted and enhanced uptake by central nervous system cells. ACS Appl. Mater. Interfaces, 2021, 13(47), 55840-55850.
[http://dx.doi.org/10.1021/acsami.1c16543] [PMID: 34792341]
[115]
Liu, H.; Han, Y.; Wang, T.; Zhang, H.; Xu, Q.; Yuan, J.; Li, Z. Targeting microglia for therapy of parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52), 21730-21742.
[http://dx.doi.org/10.1021/jacs.0c09390] [PMID: 33315369]
[116]
Gong, C.; Yu, X.; You, B.; Wu, Y.; Wang, R.; Han, L.; Wang, Y.; Gao, S.; Yuan, Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J. Nanobiotechnology, 2020, 18(1), 92.
[http://dx.doi.org/10.1186/s12951-020-00649-8] [PMID: 32546174]
[117]
Wang, D.; Dong, H.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W.; Wang, C.; Zhang, X. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano, 2018, 12(6), 5241-5252.
[http://dx.doi.org/10.1021/acsnano.7b08355] [PMID: 29800517]
[118]
Dehaini, D.; Wei, X.; Fang, R.H.; Masson, S.; Angsantikul, P.; Luk, B.T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A.V.; Gao, W.; Zhang, L. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater., 2017, 29(16), 1606209.
[http://dx.doi.org/10.1002/adma.201606209] [PMID: 28199033]
[119]
Hu, C.; Lei, T.; Wang, Y.; Cao, J.; Yang, X.; Qin, L.; Liu, R.; Zhou, Y.; Tong, F.; Umeshappa, C.S.; Gao, H. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255, 120159.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120159] [PMID: 32554131]
[120]
Xiao, T.; He, M.; Xu, F.; Fan, Y.; Jia, B.; Shen, M.; Wang, H.; Shi, X. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano, 2021, 15(12), 20377-20390.
[http://dx.doi.org/10.1021/acsnano.1c08689] [PMID: 34860014]
[121]
Xue, J.; Zhao, Z.; Zhang, L.; Xue, L.; Shen, S.; Wen, Y.; Wei, Z.; Wang, L.; Kong, L.; Sun, H.; Ping, Q.; Mo, R.; Zhang, C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol., 2017, 12(7), 692-700.
[http://dx.doi.org/10.1038/nnano.2017.54] [PMID: 28650441]
[122]
Wu, J.; Ma, T.; Zhu, M.; Huang, T.; Zhang, B.; Gao, J.; Lin, N.J.N.T. Nanotechnology reinforced neutrophil-based therapeutic strategies for inflammatory diseases therapy. Nano Today, 2022, 46, 101577.
[123]
Zhang, C.Y.; Dong, X.; Gao, J.; Lin, W.; Liu, Z.; Wang, Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci. Adv., 2019, 5(11), eaax7964.
[http://dx.doi.org/10.1126/sciadv.aax7964] [PMID: 31723603]
[124]
Li, M.J.; Gao, F.; Huang, Q.X.; Feng, J.; Liu, C.J.; Gong, S.L.; Zhang, X.Z.J.S.C.M. Natural killer cell-mimicking nanomaterial for overcoming the multidrug resistance of tumor via cascade catalysis. Sci. China Mater., 2022, 66, 1215-1226.
[125]
Deng, G.; Peng, X.; Sun, Z.; Zheng, W.; Yu, J.; Du, L.; Chen, H.; Gong, P.; Zhang, P.; Cai, L.; Tang, B.Z. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano, 2020, 14(9), 11452-11462.
[http://dx.doi.org/10.1021/acsnano.0c03824] [PMID: 32820907]
[126]
Ye, C.; Zheng, F.; Wu, N.; Zhu, G.; Li, X. Extracellular vesicles in vascular remodeling. Acta Pharmacol. Sin., 2022, 43(9), 2191-2201.
[http://dx.doi.org/10.1038/s41401-021-00846-7] [PMID: 35022541]
[127]
Lu, M.; Xing, H.; Shao, W.; Zhang, T.; Zhang, M.; Wang, Y.; Li, F.; Weng, Y.; Zheng, A.; Huang, Y.; Liang, X.J. Photoactivatable silencing extracellular vesicle (PASEV) sensitizes cancer immunotherapy. Adv. Mater., 2022, 34(35), 2204765.
[http://dx.doi.org/10.1002/adma.202204765] [PMID: 35793475]
[128]
Hu, M.; Zhang, J.; Kong, L.; Yu, Y.; Hu, Q.; Yang, T.; Wang, Y.; Tu, K.; Qiao, Q.; Qin, X.; Zhang, Z. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano, 2021, 15(2), 3123-3138.
[http://dx.doi.org/10.1021/acsnano.0c09681] [PMID: 33470095]
[129]
Jiang, X.C.; Gao, J.Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharm., 2017, 521(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[130]
Liu, R.; Liu, J.; Ji, X.; Liu, Y. Synthetic nucleic acids delivered by exosomes: a potential therapeutic for generelated metabolic brain diseases. Metab. Brain Dis., 2013, 28(4), 551-562.
[http://dx.doi.org/10.1007/s11011-013-9434-y] [PMID: 24022398]
[131]
Lakhal, S.; Wood, M.J.A. Exosome nanotechnology: An emerging paradigm shift in drug delivery. BioEssays, 2011, 33(10), 737-741.
[http://dx.doi.org/10.1002/bies.201100076] [PMID: 21932222]
[132]
Zhang, Z.G.; Chopp, M. Exosomes in stroke pathogenesis and therapy. J. Clin. Invest., 2016, 126(4), 1190-1197.
[http://dx.doi.org/10.1172/JCI81133] [PMID: 27035810]
[133]
Pei, W.; Li, X.; Bi, R.; Zhang, X.; Zhong, M.; Yang, H.; Zhang, Y.; Lv, K. Exosome membrane-modified M2 macrophages targeted nanomedicine: Treatment for allergic asthma. J. Control. Release, 2021, 338, 253-267.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.024] [PMID: 34418524]
[134]
Cheng, Q.; Dai, Z.; Smbatyan, G.; Epstein, A.L.; Lenz, H.J.; Zhang, Y. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol. Ther., 2022, 30(9), 3066-3077.
[http://dx.doi.org/10.1016/j.ymthe.2022.06.013] [PMID: 35746867]
[135]
Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev., 2018, 118(14), 6844-6892.
[http://dx.doi.org/10.1021/acs.chemrev.8b00199] [PMID: 29957926]
[136]
Xuan, W.; Peng, Y.; Deng, Z.; Peng, T.; Kuai, H.; Li, Y.; He, J.; Jin, C.; Liu, Y.; Wang, R.; Tan, W. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials, 2018, 182, 216-226.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.021] [PMID: 30138784]
[137]
Ouyang, C.; Zhang, S.; Xue, C.; Yu, X.; Xu, H.; Wang, Z.; Lu, Y.; Wu, Z.S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc., 2020, 142(3), 1265-1277.
[http://dx.doi.org/10.1021/jacs.9b09782] [PMID: 31895985]
[138]
Xia, F.; He, A.; Zhao, H.; Sun, Y.; Duan, Q.; Abbas, S.J.; Liu, J.; Xiao, Z.; Tan, W. Molecular engineering of aptamer self-assemblies increases in vivo stability and targeted recognition. ACS Nano, 2022, 16(1), 169-179.
[http://dx.doi.org/10.1021/acsnano.1c05265] [PMID: 34935348]
[139]
Geng, Z.; Wang, L.; Liu, K.; Liu, J.; Tan, W. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates. Angew. Chem. Int. Ed., 2021, 60(28), 15459-15465.
[http://dx.doi.org/10.1002/anie.202102631] [PMID: 33904236]
[140]
Lupold, S.E.; Hicke, B.J.; Lin, Y.; Coffey, D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res., 2002, 62(14), 4029-4033.
[PMID: 12124337]
[141]
Guo, S.; Vieweger, M.; Zhang, K.; Yin, H.; Wang, H.; Li, X.; Li, S.; Hu, S.; Sparreboom, A.; Evers, B.M.; Dong, Y.; Chiu, W.; Guo, P. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun., 2020, 11(1), 972.
[http://dx.doi.org/10.1038/s41467-020-14780-5] [PMID: 32080195]
[142]
Rehmani, H.; Li, Y.; Li, T.; Padia, R.; Calbay, O.; Jin, L.; Chen, H.; Huang, S. Addiction to protein kinase Cɩ due to PRKCI gene amplification can be exploited for an aptamer-based targeted therapy in ovarian cancer. Signal Transduct. Target. Ther., 2020, 5(1), 140.
[http://dx.doi.org/10.1038/s41392-020-0197-8] [PMID: 32820156]
[143]
Chen, X.; He, X.; Gao, R.; Lan, X.; Zhu, L.; Chen, K.; Hu, Y.; Huang, K.; Xu, W. Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy. ACS Nano, 2022, 16(1), 1036-1050.
[http://dx.doi.org/10.1021/acsnano.1c08690] [PMID: 34967620]
[144]
Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome-coated Aptamer–DNA tetrahedron/maytansine conjugates: ph-responsive and targeted cytotoxicity for her2‐positive breast cancer. Adv. Mater., 2022, 34(46), 2109609.
[http://dx.doi.org/10.1002/adma.202109609] [PMID: 35064993]
[145]
Saw, P.E.; Xu, X.; Kim, S.; Jon, S. Biomedical applications of a novel class of high-affinity peptides. Acc. Chem. Res., 2021, 54(18), 3576-3592.
[http://dx.doi.org/10.1021/acs.accounts.1c00239] [PMID: 34406761]
[146]
Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N.J.A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N.M.; Qiao, G.G. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev., 2020, 49(14), 4737-4834.
[http://dx.doi.org/10.1039/C9CS00738E] [PMID: 32573586]
[147]
Landgraf, M.; Lahr, C.A.; Kaur, I.; Shafiee, A.; Sanchez-Herrero, A.; Janowicz, P.W.; Ravichandran, A.; Howard, C.B.; Cifuentes-Rius, A.; McGovern, J.A.; Voelcker, N.H.; Hutmacher, D.W. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119791] [PMID: 32109589]
[148]
Li, M.; Song, Y.; Song, N.; Wu, G.; Zhou, H.; Long, J.; Zhang, P.; Shi, L.; Yu, Z. Supramolecular antagonists promote mitochondrial dysfunction. Nano Lett., 2021, 21(13), 5730-5737.
[http://dx.doi.org/10.1021/acs.nanolett.1c01469] [PMID: 34142834]
[149]
Cao, M.; Lu, S.; Wang, N.; Xu, H.; Cox, H.; Li, R.; Waigh, T.; Han, Y.; Wang, Y.; Lu, J.R. Enzyme-triggered morphological transition of peptide nanostructures for tumor-targeted drug delivery and enhanced cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16357-16366.
[http://dx.doi.org/10.1021/acsami.9b03519] [PMID: 30991000]
[150]
Wang, M.D.; Lv, G.T.; An, H.W.; Zhang, N.Y.; Wang, H. In situ self-assembly of bispecific peptide for cancer immunotherapy. Angew. Chem. Int. Ed., 2022, 61(10), e202113649.
[http://dx.doi.org/10.1002/anie.202113649] [PMID: 34994999]
[151]
Qi, J.; Jia, S.; Kang, X.; Wu, X.; Hong, Y.; Shan, K.; Kong, X.; Wang, Z.; Ding, D. Semiconducting polymer nanoparticles with surface-mimicking protein secondary structure as lysosome-targeting chimaeras for self-synergistic cancer immunotherapy. Adv. Mater., 2022, 34(31), 2203309.
[http://dx.doi.org/10.1002/adma.202203309] [PMID: 35704513]
[152]
Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci., 2017, 8(1), 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[153]
Shaw, A.; Hoffecker, I.T.; Smyrlaki, I.; Rosa, J.; Grevys, A.; Bratlie, D.; Sandlie, I.; Michaelsen, T.E.; Andersen, J.T.; Högberg, B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol., 2019, 14(2), 184-190.
[http://dx.doi.org/10.1038/s41565-018-0336-3] [PMID: 30643273]
[154]
Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs, 2016, 8(4), 659-671.
[http://dx.doi.org/10.1080/19420862.2016.1156829] [PMID: 27045800]
[155]
Wu, S.Y.; Wu, F.G.; Chen, X. Antibody-incorporated nanomedicines for cancer therapy. Adv. Mater., 2022, 34(24), 2109210.
[http://dx.doi.org/10.1002/adma.202109210] [PMID: 35142395]
[156]
Di, J.; Xie, F.; Xu, Y. When liposomes met antibodies: Drug delivery and beyond. Adv. Drug Deliv. Rev., 2020, 154-155, 151-162.
[http://dx.doi.org/10.1016/j.addr.2020.09.003] [PMID: 32926944]
[157]
Helmi, O.; Elshishiny, F.; Mamdouh, W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int. J. Biol. Macromol., 2021, 184, 325-338.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.014] [PMID: 34119547]
[158]
Martínez-Jothar, L.; Beztsinna, N.; van Nostrum, C.F.; Hennink, W.E.; Oliveira, S. Selective cytotoxicity to HER2 positive breast cancer cells by saporin-loaded nanobody-targeted polymeric nanoparticles in combination with photochemical internalization. Mol. Pharm., 2019, 16(4), 1633-1647.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01318] [PMID: 30817164]
[159]
del Solar, V.; Contel, M. Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer. J. Inorg. Biochem., 2019, 199, 110780.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110780] [PMID: 31434020]
[160]
Flamm, J.; Hartung, S.; Gänger, S.; Maigler, F.; Pitzer, C.; Schindowski, K. Establishment of an olfactory region-specific intranasal delivery technique in mice to target the central nervous system. Front. Pharmacol., 2022, 12, 789780.
[http://dx.doi.org/10.3389/fphar.2021.789780] [PMID: 35082672]
[161]
Pan, J.; Attia, S.A.; Subhan, M.A.; Filipczak, N.; Mendes, L.P.; Li, X.; Kishan, Y.S.S.; Torchilin, V.P. Monoclonal antibody 2C5-modified mixed dendrimer micelles for tumor-targeted codelivery of chemotherapeutics and siRNA. Mol. Pharm., 2020, 17(5), 1638-1647.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00075] [PMID: 32233497]
[162]
Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138.
[http://dx.doi.org/10.1039/C9TB02289A] [PMID: 31971528]
[163]
Wu, H.; Shi, H.; Zhang, H.; Wang, X.; Yang, Y.; Yu, C.; Hao, C.; Du, J.; Hu, H.; Yang, S. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35(20), 5369-5380.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.038] [PMID: 24709520]
[164]
Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R.D.; Cavicchi, R.E.; Avedisian, C.T.; Mitra, S.; Savla, R.; Wagner, P.D.; Srivastava, S.; He, H. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9(1), 351.
[http://dx.doi.org/10.1186/1471-2407-9-351] [PMID: 19799784]
[165]
Liu, N.; Liang, X.; Yang, C.; Hu, S.; Luo, Q.; Luo, H. Dual-targeted magnetic mesoporous silica nanoparticles reduce brain amyloid-β burden via depolymerization and intestinal metabolism. Theranostics, 2022, 12(15), 6646-6664.
[http://dx.doi.org/10.7150/thno.76574] [PMID: 36185606]
[166]
Trabulo, S.; Aires, A.; Aicher, A.; Heeschen, C.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(6), 1597-1605.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.035] [PMID: 28161480]
[167]
Alt, K.; Carraro, F.; Jap, E.; Linares-Moreau, M.; Riccò, R.; Righetto, M.; Bogar, M.; Amenitsch, H.; Hashad, R.A.; Doonan, C.; Hagemeyer, C.E.; Falcaro, P. Self-assembly of oriented antibody-decorated metal–organic framework nanocrystals for active-targeting applications. Adv. Mater., 2022, 34(21), 2106607.
[http://dx.doi.org/10.1002/adma.202106607] [PMID: 34866253]
[168]
Luo, T.; Ni, K.; Culbert, A.; Lan, G.; Li, Z.; Jiang, X.; Kaufmann, M.; Lin, W. Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and Type II photodynamic therapy. J. Am. Chem. Soc., 2020, 142(16), 7334-7339.
[http://dx.doi.org/10.1021/jacs.0c02129] [PMID: 32248686]
[169]
Schmid, D.; Park, C.G.; Hartl, C.A.; Subedi, N.; Cartwright, A.N.; Puerto, R.B.; Zheng, Y.; Maiarana, J.; Freeman, G.J.; Wucherpfennig, K.W.; Irvine, D.J.; Goldberg, M.S. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun., 2017, 8(1), 1747.
[http://dx.doi.org/10.1038/s41467-017-01830-8] [PMID: 29170511]
[170]
Hu, N.; Li, W.; Hong, Y.; Zeng, Z.; Zhang, J.; Wu, X.; Zhou, K.; Wu, F.A. PD1 targeted nano-delivery system based on epigenetic alterations of T cell responses in the treatment of gastric cancer. Mol. Ther. Oncolytics, 2022, 24, 148-159.
[http://dx.doi.org/10.1016/j.omto.2021.12.006] [PMID: 35024441]
[171]
Mittelheisser, V.; Coliat, P.; Moeglin, E.; Goepp, L.; Goetz, J.G.; Charbonnière, L.J.; Pivot, X.; Detappe, A. Optimal physicochemical properties of antibody–nanoparticle conjugates for improved tumor targeting. Adv. Mater., 2022, 34(24), 2110305.
[http://dx.doi.org/10.1002/adma.202110305] [PMID: 35289003]
[172]
Houdaihed, L.; Evans, J.C.; Allen, C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: A novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res., 2020, 37(3), 39.
[http://dx.doi.org/10.1007/s11095-019-2684-6] [PMID: 31965330]
[173]
Chen, H.; Lin, J.; Shan, Y.; Zhengmao, L. The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. Biomed. Pharmacother., 2019, 115, 108857.
[http://dx.doi.org/10.1016/j.biopha.2019.108857] [PMID: 31048191]
[174]
Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci., 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[175]
Greene, M.K.; Nogueira, J.C.F.; Tracey, S.R.; Richards, D.A.; McDaid, W.J.; Burrows, J.F.; Campbell, K.; Longley, D.B.; Chudasama, V.; Scott, C.J. Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. Nanoscale, 2020, 12(21), 11647-11658.
[http://dx.doi.org/10.1039/D0NR02387F] [PMID: 32436550]
[176]
Zou, J.; Chen, S.; Li, Y.; Zeng, L.; Lian, G.; Li, J.; Chen, S.; Huang, K.; Chen, Y. Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer. Nanoscale, 2020, 12(7), 4473-4490.
[http://dx.doi.org/10.1039/C9NR04976B] [PMID: 32031201]
[177]
Schlör, A.; Hirschberg, S.; Amor, G.B.; Meister, T.L.; Arora, P.; Pöhlmann, S.; Hoffmann, M.; Pfaender, S.; Eddin, O.K.; Kamhieh-Milz, J.; Hanack, K. SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications. Front. Immunol., 2022, 13, 930975.
[http://dx.doi.org/10.3389/fimmu.2022.930975] [PMID: 36189209]
[178]
Van de Broek, B.; Devoogdt, N.; D’Hollander, A.; Gijs, H.L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano, 2011, 5(6), 4319-4328.
[http://dx.doi.org/10.1021/nn1023363] [PMID: 21609027]
[179]
Dragan, E.S.; Dinu, M.V. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr. Polym., 2019, 225, 115210.
[http://dx.doi.org/10.1016/j.carbpol.2019.115210] [PMID: 31521316]
[180]
Thomas, D. KurienThomas, K.; Latha, M.S. Preparation and evaluation of alginate nanoparticles prepared by green method for drug delivery applications. Int. J. Biol. Macromol., 2020, 154, 888-895.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.167] [PMID: 32209372]
[181]
Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural polysaccharide nanomaterials: An overview of their immunological properties. Int. J. Mol. Sci., 2019, 20(20), 5092.
[http://dx.doi.org/10.3390/ijms20205092] [PMID: 31615111]
[182]
Yang, H.; Luo, Y.; Hu, H.; Yang, S.; Li, Y.; Jin, H.; Chen, S.; He, Q.; Hong, C.; Wu, J.; Wan, Y.; Li, M.; Li, Z.; Yang, X.; Su, Y.; Zhou, Y.; Hu, B. pH-sensitive, cerebral vasculature-targeting hydroxyethyl starch functionalized nanoparticles for improved angiogenesis and neurological function recovery in ischemic stroke. Adv. Healthc. Mater., 2021, 10(12), 2100028.
[http://dx.doi.org/10.1002/adhm.202100028] [PMID: 34028998]
[183]
Tan, R.; Tian, D.; Liu, J.; Wang, C.; Wan, Y. Doxorubicin-bound hydroxyethyl starch conjugate nanoparticles with pH/Redox responsive linkage for enhancing antitumor therapy. Int. J. Nanomedicine, 2021, 16, 4527-4544.
[http://dx.doi.org/10.2147/IJN.S314705] [PMID: 34276212]
[184]
Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[185]
Xu, M.; Asghar, S.; Dai, S.; Wang, Y.; Feng, S.; Jin, L.; Shao, F.; Xiao, Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int. J. Biol. Macromol., 2019, 134, 1002-1012.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.201] [PMID: 31063785]
[186]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[187]
Ragothaman, M.; Kannan Villalan, A.; Dhanasekaran, A.; Palanisamy, T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater. Sci. Eng. C, 2021, 128, 112328.
[http://dx.doi.org/10.1016/j.msec.2021.112328] [PMID: 34474879]
[188]
Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012.
[http://dx.doi.org/10.1021/acsnano.6b04268] [PMID: 27934069]
[189]
Wang, X.; Wei, B.; Cheng, X.; Wang, J.; Tang, R. Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Nanotechnology, 2016, 27(38), 385101.
[http://dx.doi.org/10.1088/0957-4484/27/38/385101] [PMID: 27514078]
[190]
Akolpoğlu Başaran, D.D.; Gündüz, U.; Tezcaner, A.; Keskin, D. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int. J. Pharm., 2021, 597, 120207.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120207] [PMID: 33524526]
[191]
Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther., 2021, 29(1), 13-31.
[http://dx.doi.org/10.1016/j.ymthe.2020.11.030] [PMID: 33278566]
[192]
Lu, M.; Huang, Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials, 2020, 242, 119925.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119925] [PMID: 32151860]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy