Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Association of Neurokinin-1 Receptor Signaling Pathways with Cancer

In Press, (this is not the final "Version of Record"). Available online 04 October, 2023
Author(s): Francisco David Rodriguez* and Rafael Covenas
Published on: 04 October, 2023

DOI: 10.2174/0929867331666230818110812

Price: $95

Abstract

Background: Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity.

Methods: This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed.

Conclusion: NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application

[1]
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
[http://dx.doi.org/10.1016/j.ccr.2008.05.005] [PMID: 18538731]
[2]
Revathidevi, S.; Munirajan, A.K. Akt in cancer: Mediator and more. Semin. Cancer Biol., 2019, 59, 80-91.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.002] [PMID: 31173856]
[3]
Nirmaladevi, R.; Paital, B.; Jayachandran, P.; Padma, P.R.; Nirmaladevi, R. Epigenetic alterations in cancer. Front. Biosci., 2020, 25(6), 1058-1109.
[http://dx.doi.org/10.2741/4847] [PMID: 32114424]
[4]
GPCR. Database., 2022. Available from: https://gpcrdb.org/protein/nk1r_human (Accessed on: 22 December 2022).
[5]
Venkatakrishnan, A.J.; Flock, T.; Prado, D.E.; Oates, M.E.; Gough, J.; Madan Babu, M. Structured and disordered facets of the GPCR fold. Curr. Opin. Struct. Biol., 2014, 27, 129-137.
[http://dx.doi.org/10.1016/j.sbi.2014.08.002] [PMID: 25198166]
[6]
Wootten, D.; Christopoulos, A.; Sexton, P.M. Emerging paradigms in GPCR allostery: Implications for drug discovery. Nat. Rev. Drug Discov., 2013, 12(8), 630-644.
[http://dx.doi.org/10.1038/nrd4052] [PMID: 23903222]
[7]
Jiang, H.; Galtes, D.; Wang, J.; Rockman, H.A. G protein-coupled receptor signaling: Transducers and effectors. Am. J. Physiol. Cell Physiol., 2022, 323(3), C731-C748.
[http://dx.doi.org/10.1152/ajpcell.00210.2022] [PMID: 35816644]
[8]
Engelman, D.M.; Xiao Zhou, F.; Cocco, M.J.; Russ, W.P.; Brunger, A.T. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat. Struct. Biol., 2000, 7(2), 154-160.
[http://dx.doi.org/10.1038/72430] [PMID: 10655619]
[9]
DeWire, S.M.; Ahn, S.; Lefkowitz, R.J.; Shenoy, S.K. Beta-arrestins and cell signaling. Annu. Rev. Physiol., 2007, 69(1), 483-510.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154749] [PMID: 17305471]
[10]
Rajagopal, S.; Rajagopal, K.; Lefkowitz, R.J. Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nat. Rev. Drug Discov., 2010, 9(5), 373-386.
[http://dx.doi.org/10.1038/nrd3024] [PMID: 20431569]
[11]
Weis, W.I.; Kobilka, B.K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem., 2018, 87(1), 897-919.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033910] [PMID: 29925258]
[12]
Smith, J.S.; Pack, T.F.; Inoue, A.; Lee, C.; Zheng, K.; Choi, I.; Eiger, D.S.; Warman, A.; Xiong, X.; Ma, Z.; Viswanathan, G.; Levitan, I.M.; Rochelle, L.K.; Staus, D.P.; Snyder, J.C.; Kahsai, A.W.; Caron, M.G.; Rajagopal, S. Noncanonical scaffolding of G αi and β-arrestin by G protein–coupled receptors. Science., 2021, 371(6534), eaay1833.
[http://dx.doi.org/10.1126/science.aay1833] [PMID: 33479120]
[13]
DeVree, B.T.; Mahoney, J.P.; Vélez-Ruiz, G.A.; Rasmussen, S.G.F.; Kuszak, A.J.; Edwald, E.; Fung, J.J.; Manglik, A.; Masureel, M.; Du, Y.; Matt, R.A.; Pardon, E.; Steyaert, J.; Kobilka, B.K.; Sunahara, R.K. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature, 2016, 535(7610), 182-186.
[http://dx.doi.org/10.1038/nature18324] [PMID: 27362234]
[14]
Liu, Y.; An, S.; Ward, R.; Yang, Y.; Guo, X.X.; Li, W.; Xu, T.R. G protein-coupled receptors as promising cancer targets. Cancer Lett., 2016, 376(2), 226-239.
[http://dx.doi.org/10.1016/j.canlet.2016.03.031] [PMID: 27000991]
[15]
Chaudhary, P.K.; Kim, S. An insight into GPCR and G-proteins as cancer drivers. Cells, 2021, 10(12), 3288.
[http://dx.doi.org/10.3390/cells10123288] [PMID: 34943797]
[16]
Luo, J.; Yu, F.X. GPCR-hippo signaling in cancer. Cells, 2019, 8(5), 426.
[http://dx.doi.org/10.3390/cells8050426] [PMID: 31072060]
[17]
Kage, R.; Leeman, S.E.; Boyd, N.D. Biochemical characterization of two different forms of the substance P receptor in rat submaxillary gland. J. Neurochem., 1993, 60(1), 347-351.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb05857.x] [PMID: 8380195]
[18]
Holst, B.; Nygaard, R.; Valentin-Hansen, L.; Bach, A.; Engelstoft, M.S.; Petersen, P.S.; Frimurer, T.M.; Schwartz, T.W. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J. Biol. Chem., 2010, 285(6), 3973-3985.
[http://dx.doi.org/10.1074/jbc.M109.064725] [PMID: 19920139]
[19]
UniProt Database. 2022. Available from: https://www.uniprot.org/uniprot/P25103 (Accessed on: 22 December 2022).
[20]
Gayen, A.; Goswami, S.K.; Mukhopadhyay, C. NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles. Biochim. Biophys. Acta Biomembr., 2011, 1808(1), 127-139.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.023] [PMID: 20937248]
[21]
V Euler, U.S.; Gaddum, J.H. An unidentified depressor substance in certain tissue extracts. J. Physiol., 1931, 72(1), 74-87.
[http://dx.doi.org/10.1113/jphysiol.1931.sp002763] [PMID: 16994201]
[22]
Severini, C.; Improta, G.; Falconieri-Erspamer, G.; Salvadori, S.; Erspamer, V. The tachykinin peptide family. Pharmacol. Rev., 2002, 54(2), 285-322.
[http://dx.doi.org/10.1124/pr.54.2.285] [PMID: 12037144]
[23]
Almeida, T.A.; Rojo, J.; Nieto, P.M.; Pinto, F.M.; Hernandez, M.; Martín, J.D.; Candenas, M.L. Tachykinins and tachykinin receptors: Structure and activity relationships. Curr. Med. Chem., 2004, 11(15), 2045-2081.
[http://dx.doi.org/10.2174/0929867043364748] [PMID: 15279567]
[24]
Zhang, Y.; Lu, L.; Furlonger, C.; Wu, G.E.; Paige, C.J. Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat. Immunol., 2000, 1(5), 392-397.
[http://dx.doi.org/10.1038/80826] [PMID: 11062498]
[25]
Borbély, É.; Helyes, Z. Role of hemokinin-1 in health and disease. Neuropeptides, 2017, 64, 9-17.
[http://dx.doi.org/10.1016/j.npep.2016.12.003] [PMID: 27993375]
[26]
Mussap, C.J.; Geraghty, D.P.; Burcher, E. Tachykinin receptors: A radioligand binding perspective. J. Neurochem., 1993, 60(6), 1987-2009.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb03484.x] [PMID: 8388031]
[27]
Pennefather, J.N.; Lecci, A.; Candenas, M.L.; Patak, E.; Pinto, F.M.; Maggi, C.A. Tachykinins and tachykinin receptors: A growing family. Life Sci., 2004, 74(12), 1445-1463.
[http://dx.doi.org/10.1016/j.lfs.2003.09.039] [PMID: 14729395]
[28]
Preininger, A.M.; Meiler, J.; Hamm, H.E. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: A perspective. J. Mol. Biol., 2013, 425(13), 2288-2298.
[http://dx.doi.org/10.1016/j.jmb.2013.04.011] [PMID: 23602809]
[29]
Pándy-Szekeres, G.; Esguerra, M.; Hauser, A.S.; Caroli, J.; Munk, C.; Pilger, S.; Keserű, G.M.; Kooistra, A.J.; Gloriam, D.E. The G protein database, GproteinDb. Nucleic Acids Res., 2022, 50(D1), D518-D525.
[http://dx.doi.org/10.1093/nar/gkab852] [PMID: 34570219]
[30]
Deng, X.T.; Tang, S.M.; Wu, P.Y.; Li, Q.P.; Ge, X.X.; Xu, B.M.; Wang, H.S.; Miao, L. SP/NK-1R promotes gallbladder cancer cell proliferation and migration. J. Cell. Mol. Med., 2019, 23(12), 7961-7973.
[http://dx.doi.org/10.1111/jcmm.14230] [PMID: 30903649]
[31]
Muñoz, M.; Rosso, M.; Coveñas, R. Neurokinin-1 receptor antagonists against hepatoblastoma. Cancers., 2019, 11(9), 1258.
[http://dx.doi.org/10.3390/cancers11091258] [PMID: 31466222]
[32]
Muñoz, M.; Coveñas, R. Coveñas, R. The neurokinin-1 receptor antagonist aprepitant: An intelligent bullet against cancer? Cancers., 2020, 12(9), 2682.
[http://dx.doi.org/10.3390/cancers12092682] [PMID: 32962202]
[33]
Isorna, I.; Esteban, F.; Solanellas, J.; Coveñas, R.; Muñoz, M. The substance P and neurokinin-1 receptor system in human thyroid cancer: An immunohistochemical study. Eur. J. Histochem., 2020, 64(2), 3117.
[http://dx.doi.org/10.4081/ejh.2020.3117] [PMID: 32363847]
[34]
Esteban, F.; Ramos-García, P.; Muñoz, M.; González-Moles, M.Á. Substance P and neurokinin 1 receptor in chronic inflammation and cancer of the head and neck: A Review of the literature. Int. J. Environ. Res. Public Health, 2021, 19(1), 375.
[http://dx.doi.org/10.3390/ijerph19010375] [PMID: 35010633]
[35]
Coveñas, R.; Muñoz, M. Involvement of the substance P/neurokinin-1 receptor system in cancer. Cancers., 2022, 14(14), 3539.
[http://dx.doi.org/10.3390/cancers14143539] [PMID: 35884599]
[36]
García-Aranda, M.; Téllez, T.; McKenna, L.; Redondo, M. Neurokinin-1 receptor (NK-1R) antagonists as a new strategy to overcome cancer resistance. Cancers., 2022, 14(9), 2255.
[http://dx.doi.org/10.3390/cancers14092255] [PMID: 35565383]
[37]
Ji, T.; Ma, K.; Wu, H.; Cao, T.; Substance, P. (SP)/neurokinin-1 receptor axis promotes perineural invasion of pancreatic cancer and is affected by lncRNA LOC389641. J. Immunol. Res., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5582811] [PMID: 35600049]
[38]
Muñoz, M.; Rosso, M.; Coveñas, R. Triple negative breast cancer: How neurokinin-1 receptor antagonists could be used as a new therapeutic approach. Mini Rev. Med. Chem., 2020, 20(5), 408-417.
[http://dx.doi.org/10.2174/1389557519666191112152642] [PMID: 31721701]
[39]
Ebrahimi, S.; Mirzavi, F.; Aghaee-Bakhtiari, S.H.; Hashemy, S.I. SP/NK1R system regulates carcinogenesis in prostate cancer: Shedding light on the antitumoral function of aprepitant. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(5), 119221.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119221] [PMID: 35134443]
[40]
Rodriguez, E.; Pei, G.; Zhao, Z.; Kim, S.; German, A.; Robinson, P. Substance P antagonism as a novel therapeutic option to enhance efficacy of cisplatin in triple negative breast cancer and protect PC12 cells against cisplatin-induced oxidative stress and apoptosis. Cancers., 2021, 13(15), 3871.
[http://dx.doi.org/10.3390/cancers13153871] [PMID: 34359773]
[41]
Zhang, X.W.; Li, L.; Hu, W.Q.; Hu, M.N.; Tao, Y.; Hu, H.; Miao, X.K.; Yang, W.L.; Zhu, Q.; Mou, L.Y. Neurokinin-1 receptor promotes non-small cell lung cancer progression through transactivation of EGFR. Cell Death Dis., 2022, 13(1), 41.
[http://dx.doi.org/10.1038/s41419-021-04485-y] [PMID: 35013118]
[42]
DeFea, K.A.; Vaughn, Z.D.; O’Bryan, E.M.; Nishijima, D.; Déry, O.; Bunnett, N.W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci., 2000, 97(20), 11086-11091.
[http://dx.doi.org/10.1073/pnas.190276697] [PMID: 10995467]
[43]
Pal, K.; Mathur, M.; Kumar, P.; DeFea, K. Divergent β-arrestin-dependent signaling events are dependent upon sequences within G-protein-coupled receptor C termini. J. Biol. Chem., 2013, 288(5), 3265-3274.
[http://dx.doi.org/10.1074/jbc.M112.400234] [PMID: 23235155]
[44]
Guo, S.; Zhao, T.; Yun, Y.; Xie, X. Recent progress in assays for GPCR drug discovery. Am. J. Physiol. Cell Physiol., 2022, 323(2), C583-C594.
[http://dx.doi.org/10.1152/ajpcell.00464.2021] [PMID: 35816640]
[45]
Stamm, S.; Gruber, S.B.; Rabchevsky, A.G.; Emeson, R.B. The activity of the serotonin receptor 2C is regulated by alternative splicing. Hum. Genet., 2017, 136(9), 1079-1091.
[http://dx.doi.org/10.1007/s00439-017-1826-3] [PMID: 28664341]
[46]
Valentin-Hansen, L.; Frimurer, T.M.; Mokrosinski, J.; Holliday, N.D.; Schwartz, T.W. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network. J. Biol. Chem., 2015, 290(40), 24495-24508.
[http://dx.doi.org/10.1074/jbc.M115.641944] [PMID: 26269596]
[47]
Smith, J.S.; Lefkowitz, R.J.; Rajagopal, S. Biased signalling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov., 2018, 17(4), 243-260.
[http://dx.doi.org/10.1038/nrd.2017.229] [PMID: 29302067]
[48]
Wootten, D.; Christopoulos, A.; Marti-Solano, M.; Babu, M.M.; Sexton, P.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2018, 19(10), 638-653.
[http://dx.doi.org/10.1038/s41580-018-0049-3] [PMID: 30104700]
[49]
Alvarez-Curto, E.; Inoue, A.; Jenkins, L.; Raihan, S.Z.; Prihandoko, R.; Tobin, A.B.; Milligan, G. Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling. J. Biol. Chem., 2016, 291(53), 27147-27159.
[http://dx.doi.org/10.1074/jbc.M116.754887] [PMID: 27852822]
[50]
Liggett, S.B. Phosphorylation barcoding as a mechanism of directing GPCR signaling. Sci. Signal., 2011, 4(185), pe36.
[http://dx.doi.org/10.1126/scisignal.2002331] [PMID: 21868354]
[51]
Steinhoff, M.S.; von Mentzer, B.; Geppetti, P.; Pothoulakis, C.; Bunnett, N.W. Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease. Physiol. Rev., 2014, 94(1), 265-301.
[http://dx.doi.org/10.1152/physrev.00031.2013] [PMID: 24382888]
[52]
Valentin-Hansen, L.; Park, M.; Huber, T.; Grunbeck, A.; Naganathan, S.; Schwartz, T.W.; Sakmar, T.P. Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J. Biol. Chem., 2014, 289(26), 18045-18054.
[http://dx.doi.org/10.1074/jbc.M113.527085] [PMID: 24831006]
[53]
Garcia-Recio, S.; Gascón, P. Biological and pharmacological aspects of the NK1-receptor. BioMed Res. Int., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/495704] [PMID: 26421291]
[54]
Spitsin, S.; Pappa, V.; Douglas, S.D. Truncation of neurokinin-1 receptor—Negative regulation of substance P signaling. J. Leukoc. Biol., 2018, 103(6), 1043-1051.
[http://dx.doi.org/10.1002/JLB.3MIR0817-348R] [PMID: 29345372]
[55]
Javid, H.; Asadi, J.; Zahedi Avval, F.; Afshari, A.R.; Hashemy, S.I. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways. Mol. Biol. Rep., 2020, 47(3), 2253-2263.
[http://dx.doi.org/10.1007/s11033-020-05330-9] [PMID: 32072401]
[56]
Ebrahimi, S.; Javid, H.; Alaei, A.; Hashemy, S.I. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with MICRORNAS. Clin. Genet., 2020, 98(4), 322-330.
[http://dx.doi.org/10.1111/cge.13750] [PMID: 32266968]
[57]
Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. J. Neurosci. Methods, 1995, 25, 366-428.
[http://dx.doi.org/10.1016/S1043-9471(05)80049-7]
[58]
Harris, J.A.; Faust, B.; Gondin, A.B.; Dämgen, M.A.; Suomivuori, C.M.; Veldhuis, N.A.; Cheng, Y.; Dror, R.O.; Thal, D.M.; Manglik, A. Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nat. Chem. Biol., 2022, 18(1), 109-115.
[http://dx.doi.org/10.1038/s41589-021-00890-8] [PMID: 34711980]
[59]
Rodriguez, F.D; Coveñas, R. The neurokinin-1 receptor: Structure dynamics and signaling. Receptors., 2022, 1(1), 54-71.
[http://dx.doi.org/10.3390/receptors1010004]
[60]
PDB. Protein Data Bank. 2022. Available from: https://pdb101.rcsb.org
[61]
Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res., 2021, 49(W1), W431-W437.
[http://dx.doi.org/10.1093/nar/gkab314] [PMID: 33956157]
[62]
Jean-Charles, P.Y.; Kaur, S.; Shenoy, S.K. Protein-coupled receptor signaling through β-Arrestin-dependent mechanisms. J. Cardiovasc. Pharmacol., 2017, 70(3), 142-158.
[http://dx.doi.org/10.1097/FJC.0000000000000482] [PMID: 28328745]
[63]
Shukla, A.K.; Dwivedi-Agnihotri, H. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Adv. Cancer Res., 2020, 145, 139-156.
[http://dx.doi.org/10.1016/bs.acr.2020.01.001] [PMID: 32089163]
[64]
Perry-Hauser, N.A.; Hopkins, J.B.; Zhuo, Y.; Zheng, C.; Perez, I.; Schultz, K.M.; Vishnivetskiy, S.A.; Kaya, A.I.; Sharma, P.; Dalby, K.N.; Chung, K.Y.; Klug, C.S.; Gurevich, V.V.; Iverson, T.M. The two non-visual arrestins engage ERK2 differently. J. Mol. Biol., 2022, 434(7), 167465.
[http://dx.doi.org/10.1016/j.jmb.2022.167465] [PMID: 35077767]
[65]
Xiao, K.; McClatchy, D.B.; Shukla, A.K.; Zhao, Y.; Chen, M.; Shenoy, S.K.; Yates, J.R., III; Lefkowitz, R.J. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci., 2007, 104(29), 12011-12016.
[http://dx.doi.org/10.1073/pnas.0704849104] [PMID: 17620599]
[66]
Peterson, Y.K.; Luttrell, L.M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev., 2017, 69(3), 256-297.
[http://dx.doi.org/10.1124/pr.116.013367] [PMID: 28626043]
[67]
Ghosh, E.; Dwivedi, H.; Baidya, M.; Srivastava, A.; Kumari, P.; Stepniewski, T.; Kim, H.R.; Lee, M.H.; van Gastel, J.; Chaturvedi, M.; Roy, D.; Pandey, S.; Maharana, J.; Guixà-González, R.; Luttrell, L.M.; Chung, K.Y.; Dutta, S.; Selent, J.; Shukla, A.K. Conformational sensors and domain swapping reveal structural and functional differences between β-Arrestin isoforms. Cell Rep., 2019, 28(13), 3287-3299.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.08.053] [PMID: 31553900]
[68]
Wess, J. The two β-arrestins regulate distinct metabolic processes: Studies with novel mutant mouse models. Int. J. Mol. Sci., 2022, 23(1), 495.
[http://dx.doi.org/10.3390/ijms23010495] [PMID: 35008921]
[69]
Han, M.; Gurevich, V.V.; Vishnivetskiy, S.A.; Sigler, P.B.; Schubert, C. Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. Structure, 2001, 9(9), 869-880.
[http://dx.doi.org/10.1016/S0969-2126(01)00644-X] [PMID: 11566136]
[70]
Milano, S.K.; Pace, H.C.; Kim, Y.M.; Brenner, C.; Benovic, J.L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry, 2002, 41(10), 3321-3328.
[http://dx.doi.org/10.1021/bi015905j] [PMID: 11876640]
[71]
Shenoy, S.K.; Lefkowitz, R.J. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J. Biol. Chem., 2003, 278(16), 14498-14506.
[http://dx.doi.org/10.1074/jbc.M209626200] [PMID: 12574160]
[72]
Shenoy, S.K.; Lefkowitz, R.J. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J. Biol. Chem., 2005, 280(15), 15315-15324.
[http://dx.doi.org/10.1074/jbc.M412418200] [PMID: 15699045]
[73]
Kim, K.; Han, Y.; Duan, L.; Chung, K.Y. Scaffolding of mitogen-activated protein kinase signaling by β-arrestins. Int. J. Mol. Sci., 2022, 23(2), 1000.
[http://dx.doi.org/10.3390/ijms23021000] [PMID: 35055186]
[74]
Cahill, T.J., III; Thomsen, A.R.B.; Tarrasch, J.T.; Plouffe, B.; Nguyen, A.H.; Yang, F.; Huang, L.Y.; Kahsai, A.W.; Bassoni, D.L.; Gavino, B.J.; Lamerdin, J.E.; Triest, S.; Shukla, A.K.; Berger, B.; Little, J., IV; Antar, A.; Blanc, A.; Qu, C.X.; Chen, X.; Kawakami, K.; Inoue, A.; Aoki, J.; Steyaert, J.; Sun, J.P.; Bouvier, M.; Skiniotis, G.; Lefkowitz, R.J. Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci., 2017, 114(10), 2562-2567.
[http://dx.doi.org/10.1073/pnas.1701529114] [PMID: 28223524]
[75]
Seckler, J.M.; Robinson, E.N.; Lewis, S.J.; Grossfield, A. Surveying nonvisual arrestins reveals allosteric interactions between functional sites. Proteins, 2023, 91(1), 99-107.
[http://dx.doi.org/10.1002/prot.26413] [PMID: 35988049]
[76]
Yang, Z.; Yang, F.; Zhang, D.; Liu, Z.; Lin, A.; Liu, C.; Xiao, P.; Yu, X.; Sun, J.P. Phosphorylation of G protein-coupled receptors: From the barcode hypothesis to the flute model. Mol. Pharmacol., 2017, 92(3), 201-210.
[http://dx.doi.org/10.1124/mol.116.107839] [PMID: 28246190]
[77]
Jean-Charles, P.Y.; Rajiv, V.; Sarker, S.; Han, S.; Bai, Y.; Masoudi, A.; Shenoy, S.K. A single phenylalanine residue in β-arrestin2 critically regulates its binding to G protein–coupled receptors. J. Biol. Chem., 2022, 298(5), 101837.
[http://dx.doi.org/10.1016/j.jbc.2022.101837] [PMID: 35307348]
[78]
Kawakami, K.; Yanagawa, M.; Hiratsuka, S.; Yoshida, M.; Ono, Y.; Hiroshima, M.; Ueda, M.; Aoki, J.; Sako, Y.; Inoue, A. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat. Commun., 2022, 13(1), 487.
[http://dx.doi.org/10.1038/s41467-022-28056-7] [PMID: 35078997]
[79]
Sarma, P.; Saha, S.; Shukla, A.K. Making the switch: The role of Gq in driving GRK selectivity at GPCRs. Sci. Signal., 2022, 15(726), eabo4949.
[http://dx.doi.org/10.1126/scisignal.abo4949] [PMID: 35316098]
[80]
Grundmann, M.; Merten, N.; Malfacini, D.; Inoue, A.; Preis, P.; Simon, K.; Rüttiger, N.; Ziegler, N.; Benkel, T.; Schmitt, N.K.; Ishida, S.; Müller, I.; Reher, R.; Kawakami, K.; Inoue, A.; Rick, U.; Kühl, T.; Imhof, D.; Aoki, J.; König, G.M.; Hoffmann, C.; Gomeza, J.; Wess, J.; Kostenis, E. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun., 2018, 9(1), 341-343.
[http://dx.doi.org/10.1038/s41467-017-02661-3] [PMID: 29362459]
[81]
Zhu, L.; Almaça, J.; Dadi, P.K.; Hong, H.; Sakamoto, W.; Rossi, M.; Lee, R.J.; Vierra, N.C.; Lu, H.; Cui, Y.; McMillin, S.M.; Perry, N.A.; Gurevich, V.V.; Lee, A.; Kuo, B.; Leapman, R.D.; Matschinsky, F.M.; Doliba, N.M.; Urs, N.M.; Caron, M.G.; Jacobson, D.A.; Caicedo, A.; Wess, J. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat. Commun., 2017, 8(1), 14295-, 8, 14295.
[http://dx.doi.org/10.1038/ncomms14295] [PMID: 28145434]
[82]
Zhang, Y.X.; Li, X.F.; Yuan, G.Q.; Hu, H.; Song, X.Y.; Li, J.Y.; Miao, X.K.; Zhou, T.X.; Yang, W.L.; Zhang, X.W.; Mou, L.Y.; Wang, R. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition. J. Biol. Chem., 2017, 292(21), 8933-8947.
[http://dx.doi.org/10.1074/jbc.M116.770420] [PMID: 28341744]
[83]
Jafri, F.; El-Shewy, H.M.; Lee, M.H.; Kelly, M.; Luttrell, D.K.; Luttrell, L.M. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor “signalsome”. J. Biol. Chem., 2006, 281(28), 19346-19357.
[http://dx.doi.org/10.1074/jbc.M512643200] [PMID: 16670094]
[84]
Schmidlin, F.; Roosterman, D.; Bunnett, N.W. The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with β-arrestins. Am. J. Physiol. Cell Physiol., 2003, 285(4), C945-C958.
[http://dx.doi.org/10.1152/ajpcell.00541.2002] [PMID: 12958028]
[85]
Bagnato, A.; Rosanò, L. Rosanò, L. New routes in GPCR/β-arrestin-driven signaling in cancer progression and metastasis. Front. Pharmacol., 2019, 10, 114.
[http://dx.doi.org/10.3389/fphar.2019.00114] [PMID: 30837880]
[86]
Foord, S.M.; Bonner, T.I.; Neubig, R.R.; Rosser, E.M.; Pin, J.P.; Davenport, A.P.; Spedding, M.; Harmar, A.J. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev., 2005, 57(2), 279-288.
[http://dx.doi.org/10.1124/pr.57.2.5] [PMID: 15914470]
[87]
Campbell, A.P.; Smrcka, A.V. Targeting G protein-coupled receptor signalling by blocking G proteins. Nat. Rev. Drug Discov., 2018, 17(11), 789-803.
[http://dx.doi.org/10.1038/nrd.2018.135] [PMID: 30262890]
[88]
Khan, S.M.; Sleno, R.; Gora, S.; Zylbergold, P.; Laverdure, J.P.; Labbé, J.C.; Miller, G.J.; Hébert, T.E. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol. Rev., 2013, 65(2), 545-577.
[http://dx.doi.org/10.1124/pr.111.005603] [PMID: 23406670]
[89]
Tennakoon, M.; Senarath, K.; Kankanamge, D.; Ratnayake, K.; Wijayaratna, D.; Olupothage, K.; Ubeysinghe, S.; Martins-Cannavino, K.; Hébert, T.E.; Karunarathne, A. Subtype-dependent regulation of Gβγ signalling. Cell. Signal., 2021, 82, 109947.
[http://dx.doi.org/10.1016/j.cellsig.2021.109947] [PMID: 33582184]
[90]
Harris, G.C.; Aston-Jones, G. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature, 1994, 371(6493), 155-157.
[http://dx.doi.org/10.1038/371155a0] [PMID: 7915401]
[91]
Thom, C.; Ehrenmann, J.; Vacca, S.; Waltenspühl, Y.; Schöppe, J.; Medalia, O.; Plückthun, A. Structures of neurokinin 1 receptor in complex with G q and G s proteins reveal substance P binding mode and unique activation features. Sci. Adv., 2021, 7(50), eabk2872.
[http://dx.doi.org/10.1126/sciadv.abk2872] [PMID: 34878828]
[92]
Inoue, A.; Raimondi, F.; Kadji, F.M.N.; Singh, G.; Kishi, T.; Uwamizu, A.; Ono, Y.; Shinjo, Y.; Ishida, S.; Arang, N.; Kawakami, K.; Gutkind, J.S.; Aoki, J.; Russell, R.B. Illuminating G-protein-coupling selectivity of GPCRs. Cell, 2019, 177(7), 1933-1947.e25.
[http://dx.doi.org/10.1016/j.cell.2019.04.044] [PMID: 31160049]
[93]
Senarath, K.; Kankanamge, D.; Samaradivakara, S.; Ratnayake, K.; Tennakoon, M.; Karunarathne, A. regulation of G protein βγ signaling. Int. Rev. Cell Mol. Biol., 2018, 339, 133-191.
[http://dx.doi.org/10.1016/bs.ircmb.2018.02.008] [PMID: 29776603]
[94]
Khan, S.M.; Sung, J.Y.; Hébert, T.E. Gβγ subunits-different spaces, different faces. Pharmacol. Res., 2016, 111, 434-441.
[http://dx.doi.org/10.1016/j.phrs.2016.06.026] [PMID: 27378564]
[95]
Khater, M.; Bryant, C.N.; Wu, G. Gβγ translocation to the Golgi apparatus activates ARF1 to spatiotemporally regulate G protein–coupled receptor signaling to MAPK. J. Biol. Chem., 2021, 296, 100805.
[http://dx.doi.org/10.1016/j.jbc.2021.100805] [PMID: 34022220]
[96]
Smrcka, A.V. G protein βγ subunits: Central mediators of G protein-coupled receptor signaling. Cell. Mol. Life Sci., 2008, 65(14), 2191-2214.
[http://dx.doi.org/10.1007/s00018-008-8006-5] [PMID: 18488142]
[97]
Klayman, L.M.; Wedegaertner, P.B. Wedegaertner, P. B. Inducible inhibition of Gβγ reveals localization-dependent functions at the plasma membrane and Golgi. J. Biol. Chem., 2017, 292(5), 1773-1784.
[http://dx.doi.org/10.1074/jbc.M116.750430] [PMID: 27994056]
[98]
Rajanala, K.; Klayman, L.M.; Wedegaertner, P.B. Gβγ regulates mitotic Golgi fragmentation and G2/M cell cycle progression. Mol. Biol. Cell, 2021, 32(20), br2.
[http://dx.doi.org/10.1091/mbc.E21-04-0175] [PMID: 34260268]
[99]
Madukwe, J.C.; Garland-Kuntz, E.E.; Lyon, A.M.; Smrcka, A.V. G protein βγ subunits directly interact with and activate phospholipase CΕ. J. Biol. Chem., 2018, 293(17), 6387-6397.
[http://dx.doi.org/10.1074/jbc.RA118.002354] [PMID: 29535186]
[100]
Gont, A.; Daneshmand, M.; Woulfe, J.; Lavictoire, S.J.; Lorimer, I.A.J. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion. Oncotarget, 2017, 8(5), 8559-8573.
[http://dx.doi.org/10.18632/oncotarget.14348] [PMID: 28051998]
[101]
Pfeil, E.M.; Brands, J.; Merten, N.; Vögtle, T.; Vescovo, M.; Rick, U.; Albrecht, I.M.; Heycke, N.; Kawakami, K.; Ono, Y.; Ngako Kadji, F.M.; Hiratsuka, S.; Aoki, J.; Häberlein, F.; Matthey, M.; Garg, J.; Hennen, S.; Jobin, M.L.; Seier, K.; Calebiro, D.; Pfeifer, A.; Heinemann, A.; Wenzel, D.; König, G.M.; Nieswandt, B.; Fleischmann, B.K.; Inoue, A.; Simon, K.; Kostenis, E. Heterotrimeric G protein subunit Gαq is a master switch for Gβγ-mediated calcium mobilization by Gi-coupled GPCRs. Mol. Cell, 2020, 80(6), 940-954.e6.
[http://dx.doi.org/10.1016/j.molcel.2020.10.027] [PMID: 33202251]
[102]
Birnbaumer, L. Expansion of signal transduction by G proteins. Biochim. Biophys. Acta Biomembr., 2007, 1768(4), 772-793.
[http://dx.doi.org/10.1016/j.bbamem.2006.12.002] [PMID: 17258171]
[103]
Davis, T.L.; Bonacci, T.M.; Sprang, S.R.; Smrcka, A.V. Structural and molecular characterization of a preferred protein interaction surface on G protein beta gamma subunits. Biochemistry, 2005, 44(31), 10593-10604.
[http://dx.doi.org/10.1021/bi050655i] [PMID: 16060668]
[104]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[105]
Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12(1), 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[106]
Barbosa, R.; Acevedo, L.A.; Marmorstein, R. The MEK/ERK network as a therapeutic target in human cancer. Mol. Cancer Res., 2021, 19(3), 361-374.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0687] [PMID: 33139506]
[107]
Chen, Q.; Kong, L.; Xu, Z.; Cao, N.; Tang, X.; Gao, R.; Zhang, J.; Deng, S.; Tan, C.; Zhang, M.; Wang, Y.; Zhang, L.; Ma, K.; Li, L.; Si, J. The role of TMEM16A/ERK/NK-1 signaling in dorsal root ganglia neurons in the development of neuropathic pain induced by spared nerve injury (SNI). Mol. Neurobiol., 2021, 58(11), 5772-5789.
[http://dx.doi.org/10.1007/s12035-021-02520-9] [PMID: 34406600]
[108]
Mazein, A.; Rougny, A.; Karr, J.R.; Saez-Rodriguez, J.; Ostaszewski, M.; Schneider, R. Reusability and composability in process description maps: RAS–RAF–MEK–ERK signalling. Brief. Bioinform., 2021, 22(5), bbab103.
[http://dx.doi.org/10.1093/bib/bbab103] [PMID: 33834185]
[109]
Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310.
[http://dx.doi.org/10.1038/sj.onc.1210422] [PMID: 17496923]
[110]
Avery, T.Y.; Köhler, N.; Zeiser, R.; Brummer, T.; Ruess, D.A. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front. Oncol., 2022, 12, 931774.
[http://dx.doi.org/10.3389/fonc.2022.931774] [PMID: 35965494]
[111]
Wan, W.; Xiao, W.; Pan, W.; Chen, L.; Liu, Z.; Xu, J. Isoprenylcysteine carboxyl methyltransferase is critical for glioblastoma growth and survival by activating Ras/Raf/Mek/Erk. Cancer Chemother. Pharmacol., 2022, 89(3), 401-411.
[http://dx.doi.org/10.1007/s00280-022-04401-x] [PMID: 35171349]
[112]
Gao, Z.; Chen, J.F.; Li, X.G.; Shi, Y.H.; Tang, Z.; Liu, W.R.; Zhang, X.; Huang, A.; Luo, X.M.; Gao, Q.; Shi, G.M.; Ke, A.W.; Zhou, J.; Fan, J.; Fu, X.T.; Ding, Z.B. KRAS acting through ERK signaling stabilizes PD-L1 via inhibiting autophagy pathway in intrahepatic cholangiocarcinoma. Cancer Cell Int., 2022, 22(1), 128.
[http://dx.doi.org/10.1186/s12935-022-02550-w] [PMID: 35305624]
[113]
Yadav, D.K. Editorial: Kinase inhibitors in cancer therapy. Front. Cell Dev. Biol., 2022, 10, 1020297.
[http://dx.doi.org/10.3389/fcell.2022.1020297] [PMID: 36393866]
[114]
Vendramini, E.; Bomben, R.; Pozzo, F.; Bittolo, T.; Tissino, E.; Gattei, V.; Zucchetto, A. KRAS and RAS-MAPK pathway deregulation in mature B cell lymphoproliferative disorders. Cancers., 2022, 14(3), 666.
[http://dx.doi.org/10.3390/cancers14030666] [PMID: 35158933]
[115]
Atif, M.; Mustaan, M.A.; Falak, S.; Ghaffar, A.; Munir, B. Targeting the effect of sofosbuvir on selective oncogenes expression level of hepatocellular carcinoma Ras/Raf/MEK/ERK pathway in Huh7 cell line. Saudi J. Biol. Sci., 2022, 29(8), 103332.
[http://dx.doi.org/10.1016/j.sjbs.2022.103332] [PMID: 35813116]
[116]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2016, 109, 314-341.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.012] [PMID: 26807863]
[117]
Yamaguchi, K.; Richardson, M.D.; Bigner, D.D.; Kwatra, M.M. Signal transduction through substance P receptor in human glioblastoma cells: roles for Src and PKCδ. Cancer Chemother. Pharmacol., 2005, 56(6), 585-593.
[http://dx.doi.org/10.1007/s00280-005-1030-3] [PMID: 16012865]
[118]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[119]
Williams, R.; Zou, X.; Hoyle, G.W. Tachykinin-1 receptor stimulates proinflammatory gene expression in lung epithelial cells through activation of NF-κB via a G q -dependent pathway. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(2), L430-L437.
[http://dx.doi.org/10.1152/ajplung.00475.2005] [PMID: 17041011]
[120]
Asl, E.R.; Amini, M.; Najafi, S.; Mansoori, B.; Mokhtarzadeh, A.; Mohammadi, A.; Lotfinejad, P.; Bagheri, M.; Shirjang, S.; Lotfi, Z.; Rasmi, Y.; Baradaran, B. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci., 2021, 278, 119499.
[http://dx.doi.org/10.1016/j.lfs.2021.119499] [PMID: 33865878]
[121]
Muñoz, M.; González-Ortega, A.; Salinas-Martín, M.V.; Carranza, A.; Garcia-Recio, S.; Almendro, V.; Coveñas, R. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int. J. Oncol., 2014, 45(4), 1658-1672.
[http://dx.doi.org/10.3892/ijo.2014.2565] [PMID: 25175857]
[122]
Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346.
[http://dx.doi.org/10.3390/ijms21072346] [PMID: 32231094]
[123]
Tangchirakhaphan, S.; Innajak, S.; Nilwarangkoon, S.; Tanjapatkul, N.; Mahabusrakum, W.; Watanapokasin, R. Mechanism of apoptosis induction associated with ERK1/2 upregulation via goniothalamin in melanoma cells. Exp. Ther. Med., 2018, 15(3), 3052-3058.
[http://dx.doi.org/10.3892/etm.2018.5762] [PMID: 29456710]
[124]
Golestaneh, M.; Firoozrai, M.; Javid, H.; Hashemy, S.I. The substance P/ neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells. Mol. Biol. Rep., 2022, 49(6), 4893-4900.
[http://dx.doi.org/10.1007/s11033-022-07348-7] [PMID: 35429316]
[125]
Ma, J.; Yuan, S.; Cheng, J.; Kang, S.; Zhao, W.; Zhang, J. Substance P promotes the progression of endometrial adenocarcinoma. Int. J. Gynecol. Cancer, 2016, 26(5), 845-850.
[http://dx.doi.org/10.1097/IGC.0000000000000683] [PMID: 27051050]
[126]
Genersch, E.; Hayeß, K.; Neuenfeld, Y.; Haller, H. Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and-independent pathways. J. Cell Sci., 2000, 113(23), 4319-4330.
[http://dx.doi.org/10.1242/jcs.113.23.4319] [PMID: 11069776]
[127]
Koon, H.W.; Zhao, D.; Na, X.; Moyer, M.P.; Pothoulakis, C. Metalloproteinases and transforming growth factor-alpha mediate substance P-induced mitogen-activated protein kinase activation and proliferation in human colonocytes. J. Biol. Chem., 2004, 279(44), 45519-45527.
[http://dx.doi.org/10.1074/jbc.M408523200] [PMID: 15319441]
[128]
Willert, K.; Nusse, R. Wnt proteins. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a007864.
[http://dx.doi.org/10.1101/cshperspect.a007864] [PMID: 22952392]
[129]
Polakis, P. Wnt signaling and cancer. Genes Dev., 2000, 14(15), 1837-1851.
[http://dx.doi.org/10.1101/gad.14.15.1837] [PMID: 10921899]
[130]
Barker, N.; Clevers, H. Catenins, Wnt signaling and cancer. BioEssays, 2000, 22(11), 961-965.
[http://dx.doi.org/10.1002/1521-1878(200011)22:11<961::AID-BIES1>3.0.CO;2-T] [PMID: 11056471]
[131]
Bienz, M. beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr. Biol., 2005, 15(2), R64-R67.
[http://dx.doi.org/10.1016/j.cub.2004.12.058] [PMID: 15668160]
[132]
DeBruine, Z.J.; Ke, J.; Harikumar, K.G.; Gu, X.; Borowsky, P.; Williams, B.O.; Xu, W.; Miller, L.J.; Xu, H.E.; Melcher, K. Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization. Genes Dev., 2017, 31(9), 916-926.
[http://dx.doi.org/10.1101/gad.298331.117] [PMID: 28546512]
[133]
Voronkov, A.; Krauss, S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr. Pharm. Des., 2013, 19(4), 634-664.
[http://dx.doi.org/10.2174/138161213804581837] [PMID: 23016862]
[134]
Mehta, S.; Hingole, S.; Chaudhary, V. The emerging mechanisms of Wnt secretion and signaling in development. Front. Cell Dev. Biol., 2021, 9, 714746.
[http://dx.doi.org/10.3389/fcell.2021.714746] [PMID: 34485301]
[135]
Corda, G.; Sala, A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis, 2017, 6(7), e364.
[http://dx.doi.org/10.1038/oncsis.2017.69] [PMID: 28737757]
[136]
Janda, C.Y.; Waghray, D.; Levin, A.M.; Thomas, C.; Garcia, K.C. Structural basis of Wnt recognition by Frizzled. Science, 2012, 337(6090), 59-64.
[http://dx.doi.org/10.1126/science.1222879] [PMID: 22653731]
[137]
Ahn, V.E.; Chu, M.L.H.; Choi, H.J.; Tran, D.; Abo, A.; Weis, W.I. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev. Cell, 2011, 21(5), 862-873.
[http://dx.doi.org/10.1016/j.devcel.2011.09.003] [PMID: 22000856]
[138]
Huang, X.; Wang, G.; Wu, Y.; Du, Z. The structure of full-length human CTNNBL1 reveals a distinct member of the armadillo-repeat protein family. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(8), 1598-1608.
[http://dx.doi.org/10.1107/S0907444913011360] [PMID: 23897482]
[139]
Brembeck, F.H.; Schwarz-Romond, T.; Bakkers, J.; Wilhelm, S.; Hammerschmidt, M.; Birchmeier, W. Essential role of BCL9-2 in the switch between β-catenin’s adhesive and transcriptional functions. Genes Dev., 2004, 18(18), 2225-2230.
[http://dx.doi.org/10.1101/gad.317604] [PMID: 15371335]
[140]
Katoh, M.; Katoh, M. WNT signaling and cancer stemness. Essays Biochem., 2022, 66(4), 319-331.
[http://dx.doi.org/10.1042/EBC20220016] [PMID: 35837811]
[141]
Pai, S.G.; Carneiro, B.A.; Mota, J.M.; Costa, R.; Leite, C.A.; Barroso-Sousa, R.; Kaplan, J.B.; Chae, Y.K.; Giles, F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol., 2017, 10(1), 101-106.
[http://dx.doi.org/10.1186/s13045-017-0471-6] [PMID: 28476164]
[142]
Taciak, B.; Pruszynska, I.; Kiraga, L.; Bialasek, M.; Krol, M. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol., 2018, 69(2)
[http://dx.doi.org/10.26402/jpp.2018.2.07] [PMID: 29980141]
[143]
Sha, Y.L.; Liu, S.; Yan, W.W.; Dong, B. Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma. Biosci. Rep., 2019, 39(9), BSR20192466.
[http://dx.doi.org/10.1042/BSR20192466] [PMID: 31511432]
[144]
Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev., 2018, 62, 50-60.
[http://dx.doi.org/10.1016/j.ctrv.2017.11.002] [PMID: 29169144]
[145]
Javid, H.; Mohammadi, F.; Zahiri, E.; Hashemy, S.I. The emerging role of substance P/neurokinin-1 receptor signaling pathways in growth and development of tumor cells. J. Physiol. Biochem., 2019, 75(4), 415-421.
[http://dx.doi.org/10.1007/s13105-019-00697-1] [PMID: 31372898]
[146]
Hong, H.S.; Lee, J.; Lee, E.; Kwon, Y.S.; Lee, E.; Ahn, W.; Jiang, M.H.; Kim, J.C.; Son, Y. A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells. Nat. Med., 2009, 15(4), 425-435.
[http://dx.doi.org/10.1038/nm.1909] [PMID: 19270709]
[147]
Garnier, A.; Vykoukal, J.; Hubertus, J.; Alt, E.; Von Schweinitz, D.; Kappler, R.; Berger, M.; Ilmer, M. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int. J. Oncol., 2015, 47(1), 151-160.
[http://dx.doi.org/10.3892/ijo.2015.3016] [PMID: 25998227]
[148]
Niu, X.L.; Hou, J.F.; Li, J.X. The NK1 receptor antagonist NKP608 inhibits proliferation of human colorectal cancer cells via Wnt signaling pathway. Biol. Res., 2018, 51(1), 14-x.
[http://dx.doi.org/10.1186/s40659-018-0163-x] [PMID: 29843798]
[149]
Ilmer, M.; Garnier, A.; Vykoukal, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M. Targeting the neurokinin-1 receptor compromises canonical Wnt signaling in hepatoblastoma. Mol. Cancer Ther., 2015, 14(12), 2712-2721.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0206] [PMID: 26516161]
[150]
Mei, G.; Zou, Z.; Fu, S.; Xia, L.; Zhou, J.; Zhang, Y.; Tuo, Y.; Wang, Z.; Jin, D. Substance P activates the Wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells. Int. J. Mol. Sci., 2014, 15(4), 6224-6240.
[http://dx.doi.org/10.3390/ijms15046224] [PMID: 24733069]
[151]
Zhou, J.; Ling, J.; Song, H.; Lv, B.; Wang, L.; Shang, J.; Wang, Y.; Chang, C.; Ping, F.; Qian, J. Neurokinin-1 receptor is a novel positive regulator of Wnt/β-catenin signaling in melanogenesis. Oncotarget, 2016, 7(49), 81268-81280.
[http://dx.doi.org/10.18632/oncotarget.13222] [PMID: 27835606]
[152]
Manning, B.D.; Toker, A. Toker, A. AKT/PKB signaling: Navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[153]
Xie, Y.; Shi, X.; Sheng, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep., 2018, 19(2), 783-791.
[http://dx.doi.org/10.3892/mmr.2018.9713] [PMID: 30535469]
[154]
Akbarzadeh, M.; Mihanfar, A.; Akbarzadeh, S.; Yousefi, B.; Majidinia, M. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci., 2021, 285, 119984.
[http://dx.doi.org/10.1016/j.lfs.2021.119984] [PMID: 34592229]
[155]
Nussinov, R.; Zhang, M.; Tsai, C.J.; Jang, H. Phosphorylation and driver mutations in PI3Kα and PTEN autoinhibition. Mol. Cancer Res., 2021, 19(4), 543-548.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0818] [PMID: 33288731]
[156]
Lien, E.C.; Dibble, C.C.; Toker, A. PI3K signaling in cancer: Beyond AKT. Curr. Opin. Cell Biol., 2017, 45, 62-71.
[http://dx.doi.org/10.1016/j.ceb.2017.02.007] [PMID: 28343126]
[157]
Carnero, A. The PKB/AKT pathway in cancer. Curr. Pharm. Des., 2010, 16(1), 34-44.
[http://dx.doi.org/10.2174/138161210789941865] [PMID: 20214616]
[158]
Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front. Oncol., 2022, 12, 819128.
[http://dx.doi.org/10.3389/fonc.2022.819128] [PMID: 35402264]
[159]
Huang, R.; Dai, Q.; Yang, R.; Duan, Y.; Zhao, Q.; Haybaeck, J.; Yang, Z. Review: PI3K/AKT/mTOR signaling pathway and its regulated eukaryotic translation initiation factors may be a potential therapeutic target in esophageal squamous cell carcinoma. Front. Oncol., 2022, 12, 817916.
[http://dx.doi.org/10.3389/fonc.2022.817916] [PMID: 35574327]
[160]
McKenna, M.; Balasuriya, N.; Zhong, S.; Li, S.S.C.; O’Donoghue, P. Phospho-form specific substrates of protein kinase B (AKT1). Front. Bioeng. Biotechnol., 2021, 8, 619252.
[http://dx.doi.org/10.3389/fbioe.2020.619252] [PMID: 33614606]
[161]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol., 2019, 59, 147-160.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[162]
Fattahi, S.; Amjadi-Moheb, F.; Tabaripour, R.; Ashrafi, G.H.; Akhavan-Niaki, H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci., 2020, 262, 118513.
[http://dx.doi.org/10.1016/j.lfs.2020.118513] [PMID: 33011222]
[163]
Nepstad, I.; Hatfield, K.J.; Grønningsæter, I.S.; Reikvam, H. The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int. J. Mol. Sci., 2020, 21(8), 2907.
[http://dx.doi.org/10.3390/ijms21082907] [PMID: 32326335]
[164]
Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci., 2020, 10(1), 31.
[http://dx.doi.org/10.1186/s13578-020-00396-1] [PMID: 32175074]
[165]
Iksen; Pothongsrisit, S.; Pongrakhananon, V. Targeting the PI3K/AKT/mTOR signaling pathway in lung cancer: An update regarding potential drugs and natural products. Molecules, 2021, 26(13), 4100.
[http://dx.doi.org/10.3390/molecules26134100] [PMID: 34279440]
[166]
Stefani, C.; Miricescu, D.; Stanescu-Spinu, I.I.; Nica, R.I.; Greabu, M.; Totan, A.R.; Jinga, M. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int. J. Mol. Sci., 2021, 22(19), 10260.
[http://dx.doi.org/10.3390/ijms221910260] [PMID: 34638601]
[167]
Miricescu, D.; Totan, A.; Stanescu-Spinu, I.I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int. J. Mol. Sci., 2020, 22(1), 173.
[http://dx.doi.org/10.3390/ijms22010173] [PMID: 33375317]
[168]
Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage, 2020, 28(4), 400-409.
[http://dx.doi.org/10.1016/j.joca.2020.02.027] [PMID: 32081707]
[169]
Yang, L.; Zhang, Z.; Wang, D.; Jiang, Y.; Liu, Y. Targeting mTOR signaling in type 2 diabetes mellitus and diabetes complications. Curr. Drug Targets, 2022, 23(7), 692-710.
[http://dx.doi.org/10.2174/1389450123666220111115528] [PMID: 35021971]
[170]
Ramasubbu, K. Devi Rajeswari, V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: A perspective review. Mol. Cell Biochem., 2023, 478(6), 1307-1324.
[http://dx.doi.org/10.1007/s11010-022-04587-x] [PMID: 36308670]
[171]
Xu, Q.; Fitzsimmons, B.; Steinauer, J.; Neill, A.O.; Newton, A.C.; Hua, X.Y.; Yaksh, T.L. Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. J. Neurosci., 2011, 31(6), 2113-2124.
[http://dx.doi.org/10.1523/JNEUROSCI.2139-10.2011] [PMID: 21307248]
[172]
Lasagni Vitar, R.; Triani, F.; Barbariga, M.; Fonteyne, P.; Rama, P.; Ferrari, G. Substance P/neurokinin-1 receptor pathway blockade ameliorates limbal stem cell deficiency by modulating mTOR pathway and preventing cell senescence. Stem Cell Rep., 2022, 17(4), 849-863.
[http://dx.doi.org/10.1016/j.stemcr.2022.02.012] [PMID: 35334220]
[173]
Lim, J.E.; Chung, E.; Son, Y. A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Sci. Rep., 2017, 7(1), 9417.
[http://dx.doi.org/10.1038/s41598-017-09639-7] [PMID: 28842601]
[174]
Wang, J.G.; Yu, J.; Hu, J.L.; Yang, W.L.; Ren, H.; Ding, D.; Zhang, L.; Liu, X.P. Neurokinin-1 activation affects EGFR related signal transduction in triple negative breast cancer. Cell. Signal., 2015, 27(7), 1315-1324.
[http://dx.doi.org/10.1016/j.cellsig.2015.03.015] [PMID: 25817575]
[175]
Akazawa, T.; Kwatra, S.G.; Goldsmith, L.E.; Richardson, M.D.; Cox, E.A.; Sampson, J.H.; Kwatra, M.M. A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas. J. Neurochem., 2009, 109(4), 1079-1086.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06032.x] [PMID: 19519779]
[176]
Kolorz, J.; Demir, S.; Gottschlich, A.; Beirith, I.; Ilmer, M.; Lüthy, D.; Walz, C.; Dorostkar, M.M.; Magg, T.; Hauck, F.; von Schweinitz, D.; Kobold, S.; Kappler, R.; Berger, M. The neurokinin-1 receptor is a target in pediatric rhabdoid tumors. Curr. Oncol., 2021, 29(1), 94-110.
[http://dx.doi.org/10.3390/curroncol29010008] [PMID: 35049682]
[177]
Fong, T.M.; Anderson, S.A.; Yu, H.; Huang, R.R.; Strader, C.D. Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol. Pharmacol., 1992, 41(1), 24-30.
[PMID: 1310144]
[178]
Baker, S.J.; Morris, J.L.; Gibbins, I.L. Cloning of a C-terminally truncated NK-1 receptor from guinea-pig nervous system. Brain Res. Mol. Brain Res., 2003, 111(1-2), 136-147.
[http://dx.doi.org/10.1016/S0169-328X(03)00002-0] [PMID: 12654513]
[179]
Mantyh, P.W.; Rogers, S.D.; Ghilardi, J.R.; Maggio, J.E.; Mantyh, C.R.; Vigna, S.R. Differential expression of two isoforms of the neurokinin-1 (substance P) receptor in vivo. Brain Res., 1996, 719(1-2), 8-13.
[http://dx.doi.org/10.1016/0006-8993(96)00050-9] [PMID: 8782857]
[180]
Page, N.M. Characterization of the gene structures, precursor processing and pharmacology of the endokinin peptides. Vascul. Pharmacol., 2006, 45(4), 200-208.
[http://dx.doi.org/10.1016/j.vph.2005.08.028] [PMID: 16931167]
[181]
Satake, H.; Kawada, T. Overview of the primary structure, tissue-distribution, and functions of tachykinins and their receptors. Curr. Drug Targets, 2006, 7(8), 963-974.
[http://dx.doi.org/10.2174/138945006778019273] [PMID: 16918325]
[182]
Douglas, S.D.; Leeman, S.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation. Ann. N. Y. Acad. Sci., 2011, 1217(1), 83-95.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05826.x] [PMID: 21091716]
[183]
Tuluc, F.; Meshki, J.; Spitsin, S.; Douglas, S.D. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P. J. Leukoc. Biol., 2014, 96(1), 143-150.
[http://dx.doi.org/10.1189/jlb.4AB0813-434RR] [PMID: 24577568]
[184]
Li, H.; Leeman, S.E.; Slack, B.E.; Hauser, G.; Saltsman, W.S.; Krause, J.E.; Blusztajn, J.K.; Boyd, N.D. A substance P (neurokinin-1) receptor mutant carboxyl-terminally truncated to resemble a naturally occurring receptor isoform displays enhanced responsiveness and resistance to desensitization. Proc. Natl. Acad. Sci. USA, 1997, 94(17), 9475-9480.
[http://dx.doi.org/10.1073/pnas.94.17.9475] [PMID: 9256507]
[185]
Richardson, M.D.; Balius, A.M.; Yamaguchi, K.; Freilich, E.R.; Barak, L.S.; Kwatra, M.M. Human substance P receptor lacking the C-terminal domain remains competent to desensitize and internalize. J. Neurochem., 2003, 84(4), 854-863.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01577.x] [PMID: 12562528]
[186]
Déry, O.; Defea, K.A.; Bunnett, N.W. Protein kinase C-mediated desensitization of the neurokinin 1 receptor. Am. J. Physiol. Cell Physiol., 2001, 280(5), C1097-C1106.
[http://dx.doi.org/10.1152/ajpcell.2001.280.5.C1097] [PMID: 11287322]
[187]
Gao, X.; Frakich, N.; Filippini, P.; Edwards, L.J.; Vinkemeier, U.; Gran, B.; Tanasescu, R.; Bayraktutan, U.; Colombo, S.; Constantinescu, C.S. Effects of substance P on human cerebral microvascular endothelial cell line hCMEC/D3 are mediated exclusively through a truncated NK-1 receptor and depend on cell confluence. Neuropeptides, 2022, 95, 102265.
[http://dx.doi.org/10.1016/j.npep.2022.102265] [PMID: 35696961]
[188]
Lai, J.P.; Lai, S.; Tuluc, F.; Tansky, M.F.; Kilpatrick, L.E.; Leeman, S.E.; Douglas, S.D. Differences in the length of the carboxyl terminus mediate functional properties of neurokinin-1 receptor. Proc. Natl. Acad. Sci., 2008, 105(34), 12605-12610.
[http://dx.doi.org/10.1073/pnas.0806632105] [PMID: 18713853]
[189]
Muñoz, M.F.; Argüelles, S.; Rosso, M.; Medina, R.; Coveñas, R.; Ayala, A.; Muñoz, M. The neurokinin-1 receptor is essential for the viability of human glioma cells: A possible target for treating glioblastoma. BioMed Res. Int., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/6291504] [PMID: 35434136]
[190]
Molinos-Quintana, A.; Trujillo-Hacha, P.; Piruat, J.I.; Bejarano-García, J.A.; García-Guerrero, E.; Pérez-Simón, J.A.; Muñoz, M. Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of neurokinin-1 receptor antagonists. Invest. New Drugs, 2019, 37(1), 17-26.
[http://dx.doi.org/10.1007/s10637-018-0607-8] [PMID: 29721755]
[191]
Mozafari, M.; Ebrahimi, S.; Darban, R.A.; Hashemy, S.I. Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Mol. Biol. Rep., 2022, 49(2), 1067-1076.
[http://dx.doi.org/10.1007/s11033-021-06928-3] [PMID: 34766230]
[192]
Zhou, Y.; Wang, M.; Tong, Y.; Liu, X.; Zhang, L.; Dong, D.; Shao, J.; Zhou, Y. miR-206 promotes cancer progression by targeting full-length neurokinin-1 receptor in breast cancer. Technol. Cancer Res. Treat., 2019, 18
[http://dx.doi.org/10.1177/1533033819875168] [PMID: 31506061]
[193]
Liu, X.; Zhang, L.; Tong, Y.; Yu, M.; Wang, M.; Dong, D.; Shao, J.; Zhang, F.; Niu, R.; Zhou, Y. MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERα. Life Sci., 2019, 217, 57-69.
[http://dx.doi.org/10.1016/j.lfs.2018.11.057] [PMID: 30502362]
[194]
Berger, M.; Neth, O.; Ilmer, M.; Garnier, A.; Salinas-Martín, M.V.; de Agustín Asencio, J.C.; von Schweinitz, D.; Kappler, R.; Muñoz, M. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J. Hepatol., 2014, 60(5), 985-994.
[http://dx.doi.org/10.1016/j.jhep.2013.12.024] [PMID: 24412605]
[195]
Pohl, A.; Kappler, R.; Mühling, J.; VON Schweinitz, D.; Berger, M. Expression of truncated neurokinin-1 receptor in childhood neuroblastoma is independent of tumor biology and stage. Anticancer Res., 2017, 37(11), 6079-6085.
[PMID: 29061788]
[196]
Gao, X.; Wang, Z. Difference in expression of two neurokinin-1 receptors in adenoma and carcinoma from patients that underwent radical surgery for colorectal carcinoma. Oncol. Lett., 2017, 14(3), 3729-3733.
[http://dx.doi.org/10.3892/ol.2017.6588] [PMID: 28927139]
[197]
Gillespie, E.; Leeman, S.E.; Watts, L.A.; Coukos, J.A.; O’Brien, M.J.; Cerda, S.R.; Farraye, F.A.; Stucchi, A.F.; Becker, J.M. Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17420-17425.
[http://dx.doi.org/10.1073/pnas.1114275108] [PMID: 21969570]
[198]
Patel, H.J.; Ramkissoon, S.H.; Patel, P.S.; Rameshwar, P. Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Proc. Natl. Acad. Sci. USA, 2005, 102(48), 17436-17441.
[http://dx.doi.org/10.1073/pnas.0506351102] [PMID: 16291810]
[199]
Nahas, G.R.; Murthy, R.G.; Patel, S.A.; Ganta, T.; Greco, S.J.; Rameshwar, P. The RNA-binding protein Musashi 1 stabilizes the oncotachykinin 1 mRNA in breast cancer cells to promote cell growth. FASEB J., 2016, 30(1), 149-159.
[http://dx.doi.org/10.1096/fj.15-278770] [PMID: 26373800]
[200]
Navarro, P.; Ramkissoon, S.H.; Shah, S.; Park, J.M.; Murthy, R.G.; Patel, S.A.; Greco, S.J.; Rameshwar, P. An indirect role for the oncomir-519b in the expression of truncated neurokinin-1 in breast cancer cells. Exp. Cell Res., 2012, 318(20), 2604-2615.
[http://dx.doi.org/10.1016/j.yexcr.2012.09.002] [PMID: 22981979]
[201]
Ramkissoon, S.H.; Patel, P.S.; Taborga, M.; Rameshwar, P. Nuclear factor-kappaB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer cell quiescence within bone marrow stroma. Cancer Res., 2007, 67(4), 1653-1659.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3813] [PMID: 17308106]
[202]
Muñoz, M.; Crespo, J.C.; Crespo, J.P.; Coveñas, R. Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: A case report. Mol. Clin. Oncol., 2019, 11(1), 50-54.
[http://dx.doi.org/10.3892/mco.2019.1857] [PMID: 31289677]
[203]
Muñoz, M.; Coveñas, R. Neurokinin receptor antagonism: a patent review (2014-present). Expert Opin. Ther. Pat., 2020, 30(7), 527-539.
[http://dx.doi.org/10.1080/13543776.2020.1769599] [PMID: 32401556]
[204]
Avet, C.; Mancini, A.; Breton, B.; Le Gouill, C.; Hauser, A.S.; Normand, C.; Kobayashi, H.; Gross, F.; Hogue, M.; Lukasheva, V.; St-Onge, S.; Carrier, M.; Héroux, M.; Morissette, S.; Fauman, E.B.; Fortin, J.P.; Schann, S.; Leroy, X.; Gloriam, D.E.; Bouvier, M. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife, 2022, 11, e74101.
[http://dx.doi.org/10.7554/eLife.74101] [PMID: 35302493]
[205]
Wang, F.I.; Ding, G.; Ng, G.S.; Dixon, S.J.; Chidiac, P. Luciferase-based GloSensor™ cAMP assay: Temperature optimization and application to cell-based kinetic studies. Methods, 2022, 203, 249-258.
[http://dx.doi.org/10.1016/j.ymeth.2021.10.009] [PMID: 34737032]
[206]
Tei, R.; Baskin, J.M. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling. J. Biol. Chem., 2022, 298(4), 101810.
[http://dx.doi.org/10.1016/j.jbc.2022.101810] [PMID: 35276134]
[207]
Leo, K.T.; Chou, C.L.; Yang, C.R.; Park, E.; Raghuram, V.; Knepper, M.A. Bayesian analysis of dynamic phosphoproteomic data identifies protein kinases mediating GPCR responses. Cell Commun. Signal., 2022, 20(1), 80-86.
[http://dx.doi.org/10.1186/s12964-022-00892-6] [PMID: 35659261]
[208]
Hijazi, M.; Smith, R.; Rajeeve, V.; Bessant, C.; Cutillas, P.R. Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring. Nat. Biotechnol., 2020, 38(4), 493-502.
[http://dx.doi.org/10.1038/s41587-019-0391-9] [PMID: 31959955]
[209]
Michel, M.C.; Charlton, S.J. Biased agonism in drug discovery-is it too soon to choose a path? Mol. Pharmacol., 2018, 93(4), 259-265.
[http://dx.doi.org/10.1124/mol.117.110890] [PMID: 29326242]
[210]
Recio, R.; Lerena, P.; Pozo, E.; Calderón-Montaño, J.M.; Burgos-Morón, E.; López-Lázaro, M.; Valdivia, V.; Pernia Leal, M.; Mouillac, B.; Organero, J.Á.; Khiar, N.; Fernández, I. Carbohydrate-based NK1R antagonists with broad-spectrum anticancer activity. J. Med. Chem., 2021, 64(14), 10350-10370.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00793] [PMID: 34236855]
[211]
Paradis, J.S.; Feng, X.; Murat, B.; Jefferson, R.E.; Sokrat, B.; Szpakowska, M.; Hogue, M.; Bergkamp, N.D.; Heydenreich, F.M.; Smit, M.J.; Chevigné, A.; Bouvier, M.; Barth, P. Computationally designed GPCR quaternary structures bias signaling pathway activation. Nat. Commun., 2022, 13(1), 6826.
[http://dx.doi.org/10.1038/s41467-022-34382-7] [PMID: 36369272]
[212]
Morales-Pastor, A.; Nerín-Fonz, F.; Aranda-García, D.; Dieguez-Eceolaza, M.; Medel-Lacruz, B.; Torrens-Fontanals, M.; Peralta-García, A.; Selent, J. In silico study of allosteric communication networks in GPCR signaling bias. Int. J. Mol. Sci., 2022, 23(14), 7809.
[http://dx.doi.org/10.3390/ijms23147809] [PMID: 35887157]
[213]
Ebrahimi, S.; Mirzavi, F.; Hashemy, S.I.; Khaleghi Ghadiri, M.; Stummer, W.; Gorji, A. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma. Biofactors, 2023, 49(4), 900-911.
[http://dx.doi.org/10.1002/biof.1953] [PMID: 37092793]
[214]
Ebrahimi, S.; Erfani, B.; Alalikhan, A.; Ghorbani, H.; Farzadnia, M.; Afshari, A.R.; Mashkani, B.; Hashemy, S.I. The in vitro pro-inflammatory functions of the SP/NK1R system in prostate cancer: A focus on nuclear factor-kappa B (NF-κB) and its pro-inflammatory target genes. Appl. Biochem. Biotechnol., 2023.
[http://dx.doi.org/10.1007/s12010-023-04495-w] [PMID: 37093533]
[215]
Królicki, L.; Kunikowska, J.; Bruchertseifer, F.; Kuliński, R.; Pawlak, D.; Koziara, H.; Rola, R.; Morgenstern, A.; Merlo, A. Locoregional treatment of glioblastoma with targeted α therapy: [ 213 Bi]Bi-DOTA-substance P versus [225 Ac]Ac-DOTA-substance P-analysis of influence parameters. Clin. Nucl. Med., 2023, 48(5), 387-392.
[http://dx.doi.org/10.1097/RLU.0000000000004608] [PMID: 36854309]
[216]
Robinson, P.; Rosso, M.; Muñoz, M. Neurokinin-1 Receptor antagonists as a potential novel therapeutic option for osteosarcoma patients. J. Clin. Med., 2023, 12(6), 2135.
[http://dx.doi.org/10.3390/jcm12062135] [PMID: 36983138]
[217]
Suthiram, J.; Pieters, A.; Mohamed Moosa, Z.; Zeevaart, J.R.; Sathekge, M.M.; Ebenhan, T.; Anderson, R.C.; Newton, C.L. Tachykinin receptor-selectivity of the potential glioblastoma-targeted therapy, DOTA-[Thi8,Met(O2)11]-substance P. Int. J. Mol. Sci., 2023, 24(3), 2134.
[http://dx.doi.org/10.3390/ijms24032134] [PMID: 36768456]
[218]
Guan, L.; Yuan, S.; Ma, J.; Liu, H.; Huang, L.; Zhang, F. Neurokinin-1 receptor is highly expressed in cervical cancer and its antagonist induces cervical cancer cell apoptosis. Eur. J. Histochem., 2023, 67(1), 3570.
[http://dx.doi.org/10.4081/ejh.2023.3570] [PMID: 36629320]
[219]
Kant, V.; Mahapatra, P.S.; Gupta, V.; Bag, S.; Gopalakrishnan, A.; Kumar, D.; Kumar, D. Substance P, a neuropeptide, promotes wound healing via neurokinin-1 receptor. Int. J. Low. Extrem. Wounds, 2023, 22(2), 291-297.
[http://dx.doi.org/10.1177/15347346211004060] [PMID: 33856252]
[220]
Choi, J.G.; Choi, S.R.; Kang, D.W.; Shin, H.J.; Lee, M.; Hwang, J.; Kim, H.W. Inhibition of angiotensin converting enzyme increases PKCβI isoform expression via activation of substance P and bradykinin receptors in cultured astrocytes of mice. J. Vet. Sci., 2023, 24(2), e26.
[http://dx.doi.org/10.4142/jvs.22275] [PMID: 37012034]
[221]
Al-Keilani, M.S.; Bdeir, R.; Elstaty, R.I.; Alqudah, M.A. Expression of substance P, neurokinin 1 receptor, Ki-67 and pyruvate kinase M2 in hormone receptor negative breast cancer and evaluation of impact on overall survival. BMC Cancer, 2023, 23(1), 158.
[http://dx.doi.org/10.1186/s12885-023-10633-8] [PMID: 36797689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy