Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Overexpression of SOCS2 Inhibits EMT and M2 Macrophage Polarization in Cervical Cancer via IL-6/JAK2/STAT3 Pathway

Author(s): Dan Li, Yandan Huang, Min Wei, Bin Chen and Yan Lu*

Volume 27, Issue 7, 2024

Published on: 06 September, 2023

Page: [984 - 995] Pages: 12

DOI: 10.2174/1386207326666230818092532

Price: $65

Abstract

Objective: SOCS2 is a member of the suppressor of cytokine signaling (SOCS) protein family associated with the occurrence and development of multiple cancers. This study revealed the expression and molecular mechanisms of SOCS2 in cervical cancer.

Methods: In this study, RT-qPCR, Western Blot, and immunohistochemistry were used to detect the expression level of SOCS2 in cervical cancer tissues and tumor cells. We overexpressed SOCS2 in SiHa cells via lentivirus. In-vitro experiments were used to investigate the changes in cervical cancer cell proliferation, migration, and invasion ability before and after SOCS2 overexpression. Western Blot was used to detect the expression of IL-6/JAK2/STAT3 pathway and EMTrelated proteins. M0 macrophages were co-cultured with the tumor-conditioned medium. The effect of SOCS2 on macrophage polarization was examined by RT-qPCR.

Results: SOCS2 expression level was significantly downregulated in cervical cancer tissues. SOCS2 was negatively correlated with CD163+M2 macrophages. Overexpression of SOCS2 inhibited the proliferation, migration, and invasion of cervical cancer cells. The expressions of Twist- 2, N-cadherin, and Vimentin were decreased, while the expression of E-cadherin was increased. Moreover, the expression of IL-6, p-JAK2, and p-STAT3 were decreased. After the addition of RhIL-6, the expression of E-cadherin protein in the LV-SOCS2 group was reversed. CM in the LV-SOCS2 group inhibited the polarization of M2 macrophages.

Conclusion: SOCS2 acts as a novel biological target and suppressor of cervical cancer through IL- 6/JAK2/STAT3 pathway.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Queiroz, A.C.M.; Fabri, V.; Mantoan, H.; Sanches, S.M.; Guimarães, A.P.G.; Ribeiro, A.R.G.; da Nogueira, S.L.J.P.; Chen, M.J.; Baiocchi, G.; da Costa, A.A.B.A. Risk factors for pelvic and distant recurrence in locally advanced cervical cancer. Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, 235, 6-12.
[http://dx.doi.org/10.1016/j.ejogrb.2019.01.028] [PMID: 30771718]
[3]
Chopra, S.; Gupta, M.; Mathew, A.; Mahantshetty, U.; Engineer, R.; Lavanya, G.; Gupta, S.; Ghosh, J.; Thakur, M.; Deodhar, K.; Menon, S.; Rekhi, B.; Bajpai, J.; Gulia, S.; Maheshwari, A.; Kerkar, R.; Shylasree, T.S.; Shrivastava, S.K. Locally advanced cervical cancer: A study of 5-year outcomes. Indian J. Cancer, 2018, 55(1), 45-49.
[http://dx.doi.org/10.4103/ijc.IJC_428_17] [PMID: 30147092]
[4]
Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: A global health crisis. Cancer, 2017, 123(13), 2404-2412.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[5]
Yoshimura, A.; Naka, T.; Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol., 2007, 7(6), 454-465.
[http://dx.doi.org/10.1038/nri2093] [PMID: 17525754]
[6]
Hilton, D.J.; Richardson, R.T.; Alexander, W.S.; Viney, E.M.; Willson, T.A.; Sprigg, N.S.; Starr, R.; Nicholson, S.E.; Metcalf, D.; Nicola, N.A. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci., 1998, 95(1), 114-119.
[http://dx.doi.org/10.1073/pnas.95.1.114] [PMID: 9419338]
[7]
Piessevaux, J.; Lavens, D.; Peelman, F.; Tavernier, J. The many faces of the SOCS box. Cytokine Growth Factor Rev., 2008, 19(5-6), 371-381.
[http://dx.doi.org/10.1016/j.cytogfr.2008.08.006] [PMID: 18948053]
[8]
Keewan, E.; Matlawska-Wasowska, K. The emerging role of suppressors of cytokine signaling (SOCS) in the development and progression of leukemia. Cancers., 2021, 13(16), 4000.
[http://dx.doi.org/10.3390/cancers13164000] [PMID: 34439155]
[9]
Letellier, E.; Haan, S. SOCS2: Physiological and pathological functions. Front. Biosci., 2016, 8(1), 189-204.
[PMID: 26709655]
[10]
Lebrun, P.; Cognard, E.; Gontard, P.; Bellon-Paul, R.; Filloux, C.; Berthault, M.F.; Magnan, C.; Ruberte, J.; Luppo, M.; Pujol, A.; Pachera, N.; Herchuelz, A.; Bosch, F.; Van Obberghen, E. The suppressor of cytokine signalling 2 (SOCS2) is a key repressor of insulin secretion. Diabetologia., 2010, 53(9), 1935-1946.
[http://dx.doi.org/10.1007/s00125-010-1786-9] [PMID: 20499047]
[11]
Sobah, M.L.; Liongue, C.; Ward, A.C. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer. Front. Med., 2021, 8, 727987.
[http://dx.doi.org/10.3389/fmed.2021.727987] [PMID: 34604264]
[12]
Liu, J.; Liu, Z.; Li, W.; Zhang, S. SOCS2 is a potential prognostic marker that suppresses the viability of hepatocellular carcinoma cells. Oncol. Lett., 2021, 21(5), 399.
[http://dx.doi.org/10.3892/ol.2021.12660] [PMID: 33777222]
[13]
Letellier, E.; Schmitz, M.; Baig, K.; Beaume, N.; Schwartz, C.; Frasquilho, S.; Antunes, L.; Marcon, N.; Nazarov, P.V.; Vallar, L.; Even, J.; Haan, S. Identification of SOCS2 and SOCS6 as biomarkers in human colorectal cancer. Br. J. Cancer., 2014, 111(4), 726-735.
[http://dx.doi.org/10.1038/bjc.2014.377] [PMID: 25025962]
[14]
Wang, F.; Wang, X.; Li, J.; Lv, P.; Han, M.; Li, L.; Chen, Z.; Dong, L.; Wang, N.; Gu, Y. CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling. J. Biomed. Sci., 2021, 28(1), 4.
[http://dx.doi.org/10.1186/s12929-020-00697-0] [PMID: 33397365]
[15]
Zhou, Y.; Zhang, Z.; Wang, N.; Chen, J.; Zhang, X.; Guo, M.; John Zhong, L.; Wang, Q. Suppressor of cytokine signalling-2 limits IGF1R-mediated regulation of epithelial–mesenchymal transition in lung adenocarcinoma. Cell. Death. Dis., 2018, 9(4), 429.
[http://dx.doi.org/10.1038/s41419-018-0457-5] [PMID: 29559623]
[16]
Zhang, Q.; Guan, F.; Fan, T.; Li, S.; Ma, S.; Zhang, Y.; Guo, W.; Liu, H. LncRNA WDFY3-AS2 suppresses proliferation and invasion in oesophageal squamous cell carcinoma by regulating miR-2355-5p/SOCS2 axis. J. Cell. Mol. Med., 2020, 24(14), 8206-8220.
[http://dx.doi.org/10.1111/jcmm.15488] [PMID: 32536038]
[17]
Dai, B.; Zhang, X. SOCS2 affects the proliferation, migration, and invasion of nasopharyngeal carcinoma cells via regulating EphA1. Neoplasma., 2020, 67(4), 794-801.
[http://dx.doi.org/10.4149/neo_2020_190807N724] [PMID: 32266818]
[18]
Hoefer, J.; Kern, J.; Ofer, P.; Eder, I.E.; Schäfer, G.; Dietrich, D.; Kristiansen, G.; Geley, S.; Rainer, J.; Gunsilius, E.; Klocker, H.; Culig, Z.; Puhr, M. SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer. Endocr. Relat. Cancer, 2014, 21(2), 175-187.
[http://dx.doi.org/10.1530/ERC-13-0446] [PMID: 24280133]
[19]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic. Acids. Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[20]
Das, R.; Gregory, P.A.; Fernandes, R.C.; Denis, I.; Wang, Q.; Townley, S.L.; Zhao, S.G.; Hanson, A.R.; Pickering, M.A.; Armstrong, H.K.; Lokman, N.A.; Ebrahimie, E.; Davicioni, E.; Jenkins, R.B.; Karnes, R.J.; Ross, A.E.; Den, R.B.; Klein, E.A.; Chi, K.N.; Ramshaw, H.S.; Williams, E.D.; Zoubeidi, A.; Goodall, G.J.; Feng, F.Y.; Butler, L.M.; Tilley, W.D.; Selth, L.A. MicroRNA-194 promotes prostate cancer metastasis by inhibiting SOCS2. Cancer. Res., 2017, 77(4), 1021-1034.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2529] [PMID: 28011622]
[21]
Aiello, N.M.; Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med., 2019, 216(5), 1016-1026.
[http://dx.doi.org/10.1084/jem.20181827] [PMID: 30975895]
[22]
Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev., 2009, 28(1-2), 15-33.
[http://dx.doi.org/10.1007/s10555-008-9169-0] [PMID: 19169796]
[23]
Loh, C.Y.; Chai, J.; Tang, T.; Wong, W.; Sethi, G.; Shanmugam, M.; Chong, P.; Looi, C. The E-Cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells., 2019, 8(10), 1118.
[http://dx.doi.org/10.3390/cells8101118] [PMID: 31547193]
[24]
Qureshi, R.; Arora, H.; Rizvi, M.A. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett., 2015, 356(2), 321-331.
[http://dx.doi.org/10.1016/j.canlet.2014.09.021] [PMID: 25281477]
[25]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[26]
Jin, W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells., 2020, 9(1), 217.
[http://dx.doi.org/10.3390/cells9010217] [PMID: 31952344]
[27]
Brabletz, S.; Schuhwerk, H.; Brabletz, T.; Stemmler, M.P.; Dynamic, E.M.T. Dynamic EMT: A multi-tool for tumor progression. EMBO J., 2021, 40(18), e108647.
[http://dx.doi.org/10.15252/embj.2021108647] [PMID: 34459003]
[28]
Cheng, M.; Liu, P.; Xu, L.X. Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment. J. Inorg. Biochem., 2020, 210, 111159.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111159] [PMID: 32652260]
[29]
Xu, J.; Lin, H.; Wu, G.; Zhu, M.; Li, M. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front. Oncol., 2021, 11, 760971.
[http://dx.doi.org/10.3389/fonc.2021.760971] [PMID: 34976809]
[30]
Lin, Y.; He, Z.; Ye, J.; Liu, Z.; She, X.; Gao, X.; Liang, R. Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. OncoTargets Ther., 2020, 13, 13023-13032.
[http://dx.doi.org/10.2147/OTT.S278013] [PMID: 33376351]
[31]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[32]
Browning, L.; Patel, M.; Bring Horvath, E.; Tawara, K.; Jorcyk, C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res., 2018, 10, 6685-6693.
[http://dx.doi.org/10.2147/CMAR.S179189] [PMID: 30584363]
[33]
Sullivan, N.J.; Sasser, A.K.; Axel, A.E.; Vesuna, F.; Raman, V.; Ramirez, N.; Oberyszyn, T.M.; Hall, B.M. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene., 2009, 28(33), 2940-2947.
[http://dx.doi.org/10.1038/onc.2009.180] [PMID: 19581928]
[34]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[35]
Liu, Y.; Li, L.; Li, Y.; Zhao, X. Research progress on tumor-associated macrophages and inflammation in cervical cancer. Bio-Med Res. Int., 2020, 2020, 1-6.
[http://dx.doi.org/10.1155/2020/6842963] [PMID: 32083131]
[36]
Wang, Q.; Steger, A.; Mahner, S.; Jeschke, U.; Heidegger, H. The formation and therapeutic update of tumor-associated macrophages in cervical cancer. Int. J. Mol. Sci., 2019, 20(13), 3310.
[http://dx.doi.org/10.3390/ijms20133310] [PMID: 31284453]
[37]
Guo, F.; Kong, W.; Zhao, G.; Cheng, Z.; Ai, L.; Lv, J.; Feng, Y.; Ma, X. The correlation between tumor-associated macrophage infiltration and progression in cervical carcinoma. Biosci. Rep., 2021, 41(5), BSR20203145.
[http://dx.doi.org/10.1042/BSR20203145] [PMID: 33928349]
[38]
Delprat, V.; Michiels, C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev., 2021, 40(2), 477-500.
[http://dx.doi.org/10.1007/s10555-021-09958-2] [PMID: 33783686]
[39]
Ding, H.; Cai, J.; Mao, M.; Fang, Y.; Huang, Z.; Jia, J.; Li, T.; Xu, L.; Wang, J.; Zhou, J.; Yang, Q.; Wang, Z. Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. Acta. Pathol. Microbiol. Scand. Suppl., 2014, 122(11), 1059-1069.
[http://dx.doi.org/10.1111/apm.12257] [PMID: 24698523]
[40]
Wang, Q.; Schmoeckel, E.; Kost, B.P.; Kuhn, C.; Vattai, A.; Vilsmaier, T.; Mahner, S.; Mayr, D.; Jeschke, U.; Heidegger, H.H. Higher CCL22+ cell infiltration is associated with poor prognosis in cervical cancer patients. Cancers., 2019, 11(12), 2004.
[http://dx.doi.org/10.3390/cancers11122004] [PMID: 31842422]
[41]
Lepique, A.P.; Daghastanli, K.R.P.; Cuccovia, I.M.; Villa, L.L. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin. Cancer Res., 2009, 15(13), 4391-4400.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0489] [PMID: 19549768]
[42]
Bolpetti, A.; Silva, J.S.; Villa, L.L.; Lepique, A.P. Interleukin-10 production by tumor infiltrating macrophages plays a role in] Human Papillomavirus 16 tumor growth. BMC Immunol., 2010, 11(1), 27.
[http://dx.doi.org/10.1186/1471-2172-11-27] [PMID: 20525400]
[43]
He, Y.; de Araújo Júnior, R.F.; Cruz, L.J.; Eich, C. Functionalized nanoparticles targeting tumor-associated macrophages as cancer therapy. Pharmaceutics., 2021, 13(10), 1670.
[http://dx.doi.org/10.3390/pharmaceutics13101670] [PMID: 34683963]
[44]
Chamseddine, A.N.; Assi, T.; Mir, O.; Chouaib, S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol. Ther., 2022, 231, 107986.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107986] [PMID: 34481812]
[45]
Tan, Y.; Wang, M.; Zhang, Y.; Ge, S.; Zhong, F.; Xia, G.; Sun, C. Tumor-associated macrophages: A potential target for cancer therapy. Front. Oncol., 2021, 11, 693517.
[http://dx.doi.org/10.3389/fonc.2021.693517] [PMID: 34178692]
[46]
Xu, T.; Yu, S.; Zhang, J.; Wu, S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J. Hematol. Oncol., 2021, 14(1), 181.
[http://dx.doi.org/10.1186/s13045-021-01198-9] [PMID: 34717710]
[47]
Heusinkveld, M.; de Vos van Steenwijk, P.J.; Goedemans, R.; Ramwadhdoebe, T.H.; Gorter, A.; Welters, M.J.P.; van Hall, T.; van der Burg, S.H. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol., 2011, 187(3), 1157-1165.
[http://dx.doi.org/10.4049/jimmunol.1100889] [PMID: 21709158]
[48]
Cho, H.; Seo, Y.; Loke, K.M.; Kim, S.W.; Oh, S.M.; Kim, J.H.; Soh, J.; Kim, H.S.; Lee, H.; Kim, J.; Min, J.J.; Jung, D.W.; Williams, D.R. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin. Cancer Res., 2018, 24(21), 5407-5421.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0125] [PMID: 29959142]
[49]
Zhou, T.; Zhou, Y.; Qian, M.; Fang, Y.; Ye, S.; Xin, W.; Yang, X.; Wu, H. Interleukin-6 induced by YAP in hepatocellular carcinoma cells recruits tumor-associated macrophages. J. Pharmacol. Sci., 2018, 138(2), 89-95.
[http://dx.doi.org/10.1016/j.jphs.2018.07.013] [PMID: 30340922]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy