Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Anti-tumor Mechanism of Camellia nitidissima Based on Network Pharmacology and Molecular Docking

Author(s): Jun Wang* and Jingjing Cheng

Volume 21, Issue 13, 2024

Published on: 26 September, 2023

Page: [2604 - 2617] Pages: 14

DOI: 10.2174/1570180820666230818092456

Price: $65

Abstract

Background: Modern pharmacological research indicated that Camellia nitidissima (CAM) had significant anti-tumor activity, but the investigation of its mechanism was still lacking.

Objective: The multi-component, multi-target and multi-pathway mechanism of CAM against tumor was investigated based on network pharmacology and molecular docking.

Methods: The active ingredients and targets of CAM were selected through a literature search, Traditional Chinese Medicine Systems Pharmacology database and PharmMapper database, and tumor-related targets were selected by GeneCards database, then to obtain the anti-tumor related targets of CAM. The protein interaction relationship was obtained through STRING database, protein-protein interaction network was constructed using Cytoscape 3.7.2 software, and enrichment analysis of GO and KEGG was conducted. AutoDock Tools 1.5.6 software was used to verify the molecular docking between the key ingredients and the key targets.

Results: Catechin, epicatechin and luteolin were identified as the key anti-tumor related ingredients, and ESR1, EGFR, MAPK8, MAPK10, AR, PGR, F2 and PIK3CG were identified as the key targets. The GO entries mainly involved metabolic process, cellular process, response to stimulus, organelle, cytosol, etc. The KEGG enrichment showed that the key pathways included pathways in cancer, prostate cancer, pancreatic cancer, breast cancer, estrogen signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, etc. KEGG pathway maps indicated that the anti-tumor effect of CAM may be mainly achieved by intervening related targets in the following pathways: AR-HSP/AR-AR/PSA/proliferation and evading apoptosis; F2/GPCR/…/ROCK/tissue invasion and metastasis; F2/GPCR/…/Raf/MAPK signaling pathway/ proliferation and sustained angiogenesis; EGFR/PI3K-Akt signaling pathway/proliferation, evading apoptosis and sustained angiogenesis; EGFR/Grb2/…/Raf/MAPK signaling pathway/proliferation and sustained angiogenesis; ER/Estrogen signaling pathway/proliferation; PR/PR-COR/Wnts- RANKL/proliferation; oxidative stress (.O₂-, .OH, H₂O₂)/KEAP1/NRF2/.../proliferation and evading apoptosis. The results of molecular docking showed that the key active ingredients had a good binding activity with each key target.

Conclusion: It was predicted that the main active ingredients of CAM could bind to tumor-related targets, such as receptor and coagulation-promoting factor, scavenge free radicals, and then interfere with the occurrence and development of tumors.

[1]
Song, L.; Wang, X.; Zheng, X.; Huang, D. Polyphenolic antioxidant profiles of yellow camellia. Food Chem., 2011, 129(2), 351-357.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.083] [PMID: 30634237]
[2]
Yang, R.; Guan, Y.; Wang, W.; Chen, H.; He, Z.; Jia, A.Q. Antioxidant capacity of phenolics in Camellia nitidissima Chi flowers and their identification by HPLC Triple TOF MS/MS. PLoS One, 2018, 13(4), e0195508.
[http://dx.doi.org/10.1371/journal.pone.0195508] [PMID: 29634769]
[3]
Chen, Y.Y.; Huang, Y.L.; Wen, Y.X. Advance in study on chemical constituents and pharmacological action of Camellia chrysantha. Guangxi Tropical Agriculture, 2009, 1, 14-16.
[4]
Li, Y.F.; Ouyang, S.H.; Chang, Y.Q.; Wang, T.M.; Li, W.X.; Tian, H.Y.; Cao, H.; Kurihara, H.; He, R.R. A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS. Food Chem., 2017, 216, 282-288.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.017] [PMID: 27596421]
[5]
Hou, X.; Du, H.; Yang, R.; Qi, J.; Huang, Y.; Feng, S.; Wu, Y.; Lin, S.; Liu, Z.; Jia, A.Q.; Yuan, S.; Sun, L. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi. Int. J. Mol. Med., 2018, 41(5), 2793-2801.
[http://dx.doi.org/10.3892/ijmm.2018.3502] [PMID: 29484370]
[6]
He, X.; Li, H.; Zhan, M.; Li, H.; Jia, A.; Lin, S.; Sun, L.; Du, H.; Yuan, S.; Li, Y. Camellia nitidissima Chi extract potentiates the sensitivity of gastric cancer cells to paclitaxel via the induction of autophagy and apoptosis. OncoTargets Ther., 2019, 12, 10811-10825.
[http://dx.doi.org/10.2147/OTT.S220453] [PMID: 31853183]
[7]
Dai, L.; Li, J.L.; Liang, X.Q.; Li, L.; Feng, Y.; Liu, H.Z.; Wei, W.E.; Ning, S.F.; Zhang, L.T. Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line. Mol. Med. Rep., 2016, 14(2), 1117-1122.
[http://dx.doi.org/10.3892/mmr.2016.5385] [PMID: 27314447]
[8]
Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048.
[http://dx.doi.org/10.1002/minf.201700048] [PMID: 28692140]
[9]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[10]
Liu, J.H.; Lyu, D.Y.; Zhou, H.M.; Kuang, W.H.; Chen, Z.X.; Zhang, S.J. Study on molecular mechanism of Solanum nigrum in treatment of hepatocarcinoma based on network pharmacology and molecular docking. Zhongguo Zhongyao Zazhi, 2020, 45(1), 163-168.
[PMID: 32237426]
[11]
Kataria, R.; Khatkar, A. Molecular docking of natural phenolic compounds for the screening of urease inhibitors. Curr. Pharm. Biotechnol., 2019, 20(5), 410-421.
[http://dx.doi.org/10.2174/1389201020666190409110948] [PMID: 30963969]
[12]
Saikia, S.; Bordoloi, M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets, 2019, 20(5), 501-521.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[13]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13-18.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[14]
Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38(Suppl. 2), W609-W614.
[http://dx.doi.org/10.1093/nar/gkq300] [PMID: 20430828]
[15]
Wang, X.; Pan, C.; Gong, J.; Liu, X.; Li, H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J. Chem. Inf. Model., 2016, 56(6), 1175-1183.
[http://dx.doi.org/10.1021/acs.jcim.5b00690] [PMID: 27187084]
[16]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[17]
Morgans, A.K.; Renzulli, J., II; Olivier, K.; Shore, N.D. Risk of cognitive effects in comorbid patients with prostate cancer treated with androgen receptor inhibitors. Clin. Genitourin. Cancer, 2021, 19(5), 467.e1-467.e11.
[http://dx.doi.org/10.1016/j.clgc.2021.03.014] [PMID: 33893042]
[18]
Anderson, H.; Hills, M.; Zabaglo, L.; A’Hern, R.; Leary, A.F.; Haynes, B.P.; Smith, I.E.; Dowsett, M. Relationship between estrogen receptor, progesterone receptor, HER-2 and Ki67 expression and efficacy of aromatase inhibitors in advanced breast cancer. Ann. Oncol., 2011, 22(8), 1770-1776.
[http://dx.doi.org/10.1093/annonc/mdq700] [PMID: 21285137]
[19]
Salman, M.I.; Altaee, M.F.; Umran, M.A. Evaluation the avoidance effects of oxidroxeductase and catechines for catechol cytotoxicity in some tumor cell lines. Biochem. Cell. Arch., 2020, 20, 3351-3357.
[20]
Syed Hussein, S.S.; Kamarudin, M.N.A.; Abdul Kadir, H. (+)-Catechin attenuates NF-κB activation through regulation of Akt, MAPK, and AMPK signaling pathways in LPS-induced BV-2 microglial cells. Am. J. Chin. Med., 2015, 43(5), 927-952.
[http://dx.doi.org/10.1142/S0192415X15500548] [PMID: 26227399]
[21]
Pratheeshkumar, P.; Son, Y.; Budhraja, A.; Wang, X.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.; Pratheeshkumar, P.; Son, Y.O.; Budhraja, A.; Wang, X.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.C.; Kim, D.; Divya, S.P.; Chen, G.; Zhang, Z.; Luo, J.; Shi, X. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One, 2012, 7(12), e52279.
[http://dx.doi.org/10.1371/journal.pone.0052279] [PMID: 23300633]
[22]
Liu, C.; Lin, Y.; Xu, J.; Chu, H.; Hao, S.; Liu, X.; Song, X.; Jiang, L.; Zheng, H. Luteolin suppresses tumor progression through lncRNA BANCR and its downstream TSHR/CCND1 signaling in thyroid carcinoma. Int. J. Clin. Exp. Pathol., 2017, 10(9), 9591-9598.
[PMID: 31966836]
[23]
Sedky, N.K.; El Gammal, Z.H.; Wahba, A.E.; Mosad, E.; Waly, Z.Y.; El-Fallal, A.A.; Arafa, R.K.; El-Badri, N. The molecular basis of cytotoxicity of α‐spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines. J. Cell. Biochem., 2018, 119(5), 3892-3902.
[http://dx.doi.org/10.1002/jcb.26515] [PMID: 29143969]
[24]
Sharmila, R.; Sindhu, G. Modulation of angiogenesis, proliferative response and apoptosis by β-sitosterol in rat model of renal carcinogenesis. Indian J. Clin. Biochem., 2017, 32(2), 142-152.
[http://dx.doi.org/10.1007/s12291-016-0583-8] [PMID: 28428688]
[25]
Cheng, S.; Gao, N.; Zhang, Z.; Chen, G.; Budhraja, A.; Ke, Z.; Son, Y.; Wang, X.; Luo, J.; Shi, X. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax. Clin. Cancer Res., 2010, 16(23), 5679-5691.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1565] [PMID: 21138867]
[26]
Loh, Y.S.; Li, G.; Fan, K.; Ahmed, I.; Roufogalis, B.; Sze, D. Kaempferide targets side population, the putative cancer stem cell, in myeloma and induced apoptosis in dose-dependant manner. Blood, 2010, 116(21), 5029-5029.
[http://dx.doi.org/10.1182/blood.V116.21.5029.5029]
[27]
Dang, Q.; Song, W.; Xu, D.; Ma, Y.; Li, F.; Zeng, J.; Zhu, G.; Wang, X.; Chang, L.S.; He, D.; Li, L. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol. Carcinog., 2015, 54(9), 831-840.
[http://dx.doi.org/10.1002/mc.22154] [PMID: 24700700]
[28]
Mohammad, H.F.; Lindner, D.J.; Kalafatis, M. Abstract 1933: Ellagic acid induces apoptosis and cell cycle arrest in HeLa cells and inhibits HPV oncogene expression. Cancer Res., 2012, 72(Suppl. 8), 1933.
[http://dx.doi.org/10.1158/1538-7445.AM2012-1933]
[29]
Ruan, X.; Cai, G.; Wei, Y.; Gu, M.; Zhang, Y.; Zhao, Y.; Mueck, A.O. Association of circulating Progesterone Receptor Membrane Component-1 (PGRMC1) with breast tumor characteristics and comparison with known tumor markers. Menopause, 2020, 27(2), 183-193.
[http://dx.doi.org/10.1097/GME.0000000000001436] [PMID: 31876619]
[30]
Osako, T.; Nishimura, R.; Okumura, Y.; Toyozumi, Y.; Arima, N. Predictive significance of the proportion of ER-positive or PgR-positive tumor cells in response to neoadjuvant chemotherapy for operable HER2-negative breast cancer. Exp. Ther. Med., 2012, 3(1), 66-71.
[http://dx.doi.org/10.3892/etm.2011.359] [PMID: 22969846]
[31]
Hopper-Borge, E.A.; Nasto, R.E.; Ratushny, V.; Weiner, L.M.; Golemis, E.A.; Astsaturov, I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin. Ther. Targets, 2009, 13(3), 339-362.
[http://dx.doi.org/10.1517/14712590902735795] [PMID: 19236156]
[32]
Kashatus, J.A.; Nascimento, A.; Myers, L.J.; Sher, A.; Byrne, F.L.; Hoehn, K.L.; Counter, C.M.; Kashatus, D.F. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell, 2015, 57(3), 537-551.
[http://dx.doi.org/10.1016/j.molcel.2015.01.002] [PMID: 25658205]
[33]
Gao, S.; Gao, Y.; He, H.H.; Han, D.; Han, W.; Avery, A.; Macoska, J.A.; Liu, X.; Chen, S.; Ma, F.; Chen, S.; Balk, S.P.; Cai, C. Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep., 2016, 17(4), 966-976.
[http://dx.doi.org/10.1016/j.celrep.2016.09.064] [PMID: 27760327]
[34]
Alexander, E.T.; Minton, A.R.; Peters, M.C.; van Ryn, J.; Gilmour, S.K. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget, 2016, 7(51), 85291-85305.
[http://dx.doi.org/10.18632/oncotarget.13300] [PMID: 27852034]
[35]
Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers, 2021, 13(16), 3949.
[http://dx.doi.org/10.3390/cancers13163949] [PMID: 34439105]
[36]
Bogolyubova, A.V. Human oncogenic viruses: Old facts and new hypotheses. Mol. Biol., 2019, 53(5), 871-880.
[PMID: 31661485]
[37]
Tracey, L.; Villuendas, R.; Dotor, A.M.; Spiteri, I.; Ortiz, P.; García, J.F.; Peralto, J.L.R.; Lawler, M.; Piris, M.A. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: An expression profile study. Blood, 2003, 102(3), 1042-1050.
[http://dx.doi.org/10.1182/blood-2002-11-3574] [PMID: 12689942]
[38]
Liang, B.; Moussaif, M.; Kuan, C.J.; Gargus, J.J.; Sze, J.Y. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab., 2006, 4(6), 429-440.
[http://dx.doi.org/10.1016/j.cmet.2006.11.004] [PMID: 17141627]
[39]
Shaw, E.E.; Wood, P.; Kulpa, J.; Yang, F.H.; Summerlee, A.J.; Pyle, W.G. Relaxin alters cardiac myofilament function through a PKC-dependent pathway. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H29-H36.
[http://dx.doi.org/10.1152/ajpheart.00482.2008] [PMID: 19429819]

© 2024 Bentham Science Publishers | Privacy Policy