Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

NAD+ Protects against Hyperlipidemia-induced Kidney Injury in Apolipoprotein E-deficient Mice

Author(s): Zuowei Pei*, Yu Li, Wei Yao, Feiyi Sun and Xiaofang Pan*

Volume 25, Issue 4, 2024

Published on: 06 September, 2023

Page: [488 - 498] Pages: 11

DOI: 10.2174/1389201024666230817161454

Price: $65

Abstract

Background: Hyperlipidemia is an independent risk factor for kidney injury. Several studies have shown that nicotinamide adenine dinucleotide (NAD+) is an important coenzyme involved in normal body metabolism. Therefore, this study aimed to investigate the possible protective effects of NAD+ against hyperlipidemia-induced kidney injury in apolipoprotein Edeficient (ApoE-/-) mice.

Methods: Twenty-five eight-week-old male ApoE-/- mice were randomly assigned into four groups: normal diet (ND), ND supplemented with NAD+ (ND+NAD+), high-fat diet (HFD), and HFD supplemented with NAD+ (HFD+NAD+). The mice were subjected to their respective diets for a duration of 16 weeks. Blood samples were obtained from the inferior vena cava, collected in serum tubes, and stored at -80°C until use. Kidney tissues was fixed in 10% formalin and then embedded in paraffin for histological evaluation. The remainder of the kidney tissues was snapfrozen in liquid nitrogen for Western blot analysis.

Results: Metabolic parameters (total cholesterol, triglycerides, low-density lipoprotein-cholesterol, creatinine, and blood urea nitrogen) were significantly higher in the HFD group compared to the other groups. Histological analysis revealed prominent pathological manifestations in the kidneys of the HFD group. The HFD+NAD+ group showed increased levels of oxidative stress markers (NRF2 and SOD2) and decreased levels of NOX4 compared to the HFD group. Furthermore, the HFD group exhibited higher levels of TGF-β, Smad3, Collagen I, Collagen III, Bax, and Bak compared to the other groups. NAD+ supplementation in the HFD+NAD+ group significantly increased the levels of SIRT3, HO-1, Bcl-2, and Bcl-xL compared to the HFD group. Additionally, NF-κB protein expression was higher in the HFD group than in the HFD+NAD+ group.

Conclusion: These findings demonstrated that NAD+ may hold potential as a clinical treatment for kidney injury caused by hyperlipidemia.

Graphical Abstract

[1]
Song, Y.; Liu, J.; Zhao, K.; Gao, L.; Zhao, J. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases. Cell Metab., 2021, 33(10), 1911-1925.
[http://dx.doi.org/10.1016/j.cmet.2021.09.001] [PMID: 34562355]
[2]
Ding, M.; Si, D.; Zhang, W.; Feng, Z.; He, M.; Yang, P. Red yeast rice repairs kidney damage and reduces inflammatory transcription factors in rat models of hyperlipidemia. Exp. Ther. Med., 2014, 8(6), 1737-1744.
[http://dx.doi.org/10.3892/etm.2014.2035] [PMID: 25371725]
[3]
Ruan, X.Z.; Varghese, Z.; Moorhead, J.F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol., 2009, 5(12), 713-721.
[http://dx.doi.org/10.1038/nrneph.2009.184] [PMID: 19859071]
[4]
Tokgözoğlu, L.; Casula, M.; Pirillo, A.; Catapano, A.L. Similarities and differences between European and American guidelines on the management of blood lipids to reduce cardiovascular risk. Atheroscler. Suppl., 2020, 42, e1-e5.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2021.01.001] [PMID: 33589218]
[5]
Chirumamilla, R.; Mina, D.; Siyahian, S.; Park, M. Subclinical metabolic and cardiovascular abnormalities in autosomal dominant polycystic kidney disease. Clin. Nephrol., 2018, 90(4), 237-245.
[http://dx.doi.org/10.5414/CN109233] [PMID: 30106364]
[6]
Tanaka, A.; Nakamura, T.; Sato, E.; Chihara, A.; Node, K. Effect of pemafibrate, a novel selective peroxisome proliferator-activated receptor-alpha modulator (SPPARMα), on urinary protein excretion in IgA nephropathy with hypertriglyceridemia. CEN Case Rep., 2020, 9(2), 141-146.
[http://dx.doi.org/10.1007/s13730-020-00444-2] [PMID: 31950425]
[7]
Gong, P.; Zhang, Z.; Zhang, D.; Zou, Z.; Zhang, Q.; Ma, H.; Li, J.; Liao, L.; Dong, J. Effects of endothelial progenitor cells transplantation on hyperlipidemia associated kidney damage in ApoE knockout mouse model. Lipids Health Dis., 2020, 19(1), 53.
[http://dx.doi.org/10.1186/s12944-020-01239-1] [PMID: 32209093]
[8]
Kuwahara, M.; Bannai, K.; Segawa, H.; Miyamoto, K.; Yamato, H. Cardiac remodeling associated with protein increase and lipid accumulation in early-stage chronic kidney disease in rats. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(9), 1433-1443.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.026] [PMID: 24798235]
[9]
Ralto, K.M.; Rhee, E.P.; Parikh, S.M. NAD+ homeostasis in renal health and disease. Nat. Rev. Nephrol., 2020, 16(2), 99-111.
[http://dx.doi.org/10.1038/s41581-019-0216-6] [PMID: 31673160]
[10]
Hershberger, K.A.; Martin, A.S.; Hirschey, M.D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol., 2017, 13(4), 213-225.
[http://dx.doi.org/10.1038/nrneph.2017.5] [PMID: 28163307]
[11]
Hossain, E.; Li, Y.; Anand-Srivastava, M.B. Angiotensin II-induced overexpression of sirtuin 1 contributes to enhanced expression of Giα proteins and hyperproliferation of vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol., 2021, 321(3), H496-H508.
[http://dx.doi.org/10.1152/ajpheart.00898.2020] [PMID: 34270373]
[12]
Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 119-141.
[http://dx.doi.org/10.1038/s41580-020-00313-x] [PMID: 33353981]
[13]
Chini, C.C.S.; Zeidler, J.D.; Kashyap, S.; Warner, G.; Chini, E.N. Evolving concepts in NAD+ metabolism. Cell Metab., 2021, 33(6), 1076-1087.
[http://dx.doi.org/10.1016/j.cmet.2021.04.003] [PMID: 33930322]
[14]
Tannous, C.; Booz, G.W.; Altara, R.; Muhieddine, D.H.; Mericskay, M.; Refaat, M.M.; Zouein, F.A. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol. (Oxf.), 2021, 231(3)e13551
[http://dx.doi.org/10.1111/apha.13551] [PMID: 32853469]
[15]
Bugarski, M.; Ghazi, S.; Polesel, M.; Martins, J.R.; Hall, A.M. Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury. J. Am. Soc. Nephrol., 2021, 32(2), 342-356.
[http://dx.doi.org/10.1681/ASN.2020071003] [PMID: 33478973]
[16]
Pazoki-Toroudi, H.R.; Hesami, A.; Vahidi, S.; Sahebjam, F.; Seifi, B.; Djahanguiri, B. The preventive effect of captopril or enalapril on reperfusion injury of the kidney of rats is independent of angiotensin II AT1 receptors. Fundam. Clin. Pharmacol., 2003, 17(5), 595-598.
[http://dx.doi.org/10.1046/j.1472-8206.2003.00188.x] [PMID: 14703720]
[17]
Wahba, I.M.; Mak, R.H. Obesity and obesity-initiated metabolic syndrome: Mechanistic links to chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2007, 2(3), 550-562.
[http://dx.doi.org/10.2215/CJN.04071206] [PMID: 17699463]
[18]
Arany, I.; Hall, S.; Reed, D.K.; Reed, C.T.; Dixit, M. Nicotine enhances high-fat diet-induced oxidative stress in the kidney. Nicotine Tob. Res., 2016, 18(7), 1628-1634.
[http://dx.doi.org/10.1093/ntr/ntw029] [PMID: 26896163]
[19]
Soetikno, V.; Sari, S.; Ul Maknun, L.; Sumbung, N.; Rahmi, D.; Pandhita, B.; Louisa, M.; Estuningtyas, A. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res. (Stuttg.), 2019, 69(2), 75-82.
[http://dx.doi.org/10.1055/a-0641-5148] [PMID: 29945277]
[20]
Kang, B.E.; Choi, J.Y.; Stein, S.; Ryu, D. Implications of NAD + boosters in translational medicine. Eur. J. Clin. Invest., 2020, 50(10)e13334
[http://dx.doi.org/10.1111/eci.13334] [PMID: 32594513]
[21]
Gai, Z.; Wang, T.; Visentin, M.; Kullak-Ublick, G.; Fu, X.; Wang, Z. Lipid accumulation and chronic kidney disease. Nutrients, 2019, 11(4), 722.
[http://dx.doi.org/10.3390/nu11040722] [PMID: 30925738]
[22]
Qian, C.; Yang, Q.; Guo, L.; Zhu, H.; You, X.; Liu, H.; Sun, Y. Exercise reduces hyperlipidemia induced kidney damage in apolipoprotein E deficient mice. Exp. Ther. Med., 2020, 21(2), 153.
[http://dx.doi.org/10.3892/etm.2020.9585] [PMID: 33456520]
[23]
Scheuer, H.; Gwinner, W.; Hohbach, J.; Gröne, E.F.; Brandes, R.P.; Malle, E.; Olbricht, C.J.; Walli, A.K.; Gröne, H.J. Oxidant stress in hyperlipidemia-induced renal damage. Am. J. Physiol. Renal Physiol., 2000, 278(1), F63-F74.
[http://dx.doi.org/10.1152/ajprenal.2000.278.1.F63] [PMID: 10644656]
[24]
Napoli, C.; Lerman, L.O. Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin. Proc., 2001, 76(6), 619-631.
[http://dx.doi.org/10.1016/S0025-6196(11)62413-0] [PMID: 11393501]
[25]
Aminzadeh, M.A.; Nicholas, S.B.; Norris, K.C.; Vaziri, N.D. Role of impaired Nrf2 activation in the pathogenesis of oxidative stress and inflammation in chronic tubulo-interstitial nephropathy. Nephrol. Dial. Transplant., 2013, 28(8), 2038-2045.
[http://dx.doi.org/10.1093/ndt/gft022] [PMID: 23512109]
[26]
Calkins, M.J.; Johnson, D.A.; Townsend, J.A.; Vargas, M.R.; Dowell, J.A.; Williamson, T.P.; Kraft, A.D.; Lee, J.M.; Li, J.; Johnson, J.A. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Signal., 2009, 11(3), 497-508.
[http://dx.doi.org/10.1089/ars.2008.2242] [PMID: 18717629]
[27]
Annaldas, S.; Saifi, M.A.; Khurana, A.; Godugu, C. Nimbolide ameliorates unilateral ureteral obstruction-induced renal fibrosis by inhibition of TGF-β and EMT/Slug signalling. Mol. Immunol., 2019, 112, 247-255.
[http://dx.doi.org/10.1016/j.molimm.2019.06.003] [PMID: 31202101]
[28]
Il Jeong, S.; Ju Kim, K.; Kug Choo, Y.; Soo Keum, K.; Kyu Choi, B.; Yong Jung, K. Phytolacca americana inhibits the high glucose-induced mesangial proliferation via suppressing extracellular matrix accumulation and TGF-β production. Phytomedicine, 2004, 11(2-3), 175-181.
[http://dx.doi.org/10.1078/0944-7113-00291] [PMID: 15070169]
[29]
Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β The master regulator of fibrosis. Nat. Rev. Nephrol., 2016, 12(6), 325-338.
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
[30]
Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[31]
Domino, M.; Jasinski, T.; Kautz, E.; Juszczuk-Kubiak, E.; Ferreira-Dias, G.; Zabielski, R.; Sady, M.; Gajewski, Z. Expression of genes involved in the NF-κB-dependent pathway of the fibrosis in the mare endometrium. Theriogenology, 2020, 147, 18-24.
[http://dx.doi.org/10.1016/j.theriogenology.2020.01.055] [PMID: 32074495]
[32]
Umezawa, K. Possible role of peritoneal NF-κB in peripheral inflammation and cancer: Lessons from the inhibitor DHMEQ. Biomed. Pharmacother., 2011, 65(4), 252-259.
[http://dx.doi.org/10.1016/j.biopha.2011.02.003] [PMID: 21723080]
[33]
Sosińska, P.; Baum, E.; Maćkowiak, B.; Staniszewski, R.; Jasinski, T.; Umezawa, K.; Bręborowicz, A. Inhibition of NF-kappaB with Dehydroxymethylepoxyquinomicin modifies the function of human peritoneal mesothelial cells. Am. J. Transl. Res., 2016, 8(12), 5756-5765.
[PMID: 28078047]
[34]
Zhang, Z.Y.; Wang, N.; Qian, L.L.; Dang, S.P.; Wu, Y.; Tang, X.; Liu, X.Y.; Wang, R.X. Zhonghua Xin Xue Guan Bing Za Zhi, 2020, 48(5), 401-407. [Impact and related mechanisms of glucose fluctuations on aortic fibrosis in type 1 diabetic rats
[PMID: 32450657]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy