Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Meta-Analysis

MSC-Derived Extracellular Vesicles against Pulmonary Fibrosis of Rodent Model: A Meta-Analysis

In Press, (this is not the final "Version of Record"). Available online 01 February, 2024
Author(s): Xinghong Zhou, Ya Liu, Jiahui Xie, Ziqi Wen, Jiaqi Yang, Hanyue Zhang, Zijing Zhou, Jinyu Zhang, Huixian Cui* and Jun Ma*
Published on: 01 February, 2024

DOI: 10.2174/1574888X18666230817111559

Price: $95

Abstract

Background: Pulmonary fibrosis (PF) is a fatal disease distinguished by structural destruction and dysfunction, accompanied by continuous accumulation of fibroblasts, which eventually leads to lung failure. Preclinical studies have shown that the administration of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be a safe and effective treatment for PF. The purpose of our meta-analysis is to evaluate the efficacy of MSC-EVs therapy and identify therapeutic aspects related to PF.

Methods: Our study (up to April 6, 2022) identified English and Chinese, preclinical, controlled, and in vivo studies to examine the application of MSC-EVs in the treatment of PF. The risk of bias (ROB) is assessed using the SYRCLE bias risk tool. The primary outcomes include collagen content, α-smooth muscle actin (α-SMA), hydroxyproline (HYP) content, and transforming growth factor-β1 (TGF-β1).

Results: Thirteen studies were included in this meta-analysis. Ten studies evaluated the collagen content, five studies evaluated the α-SMA, five studies evaluated the HYP content, and six studies evaluated the TGF-β1. Compared to the control group, MSC-EVs therapy was associated with a significant reduction of collagen accumulation, α-SMA, HYP content, and TGF-β1.

Conclusion: The administration of MSC-EVs is beneficial for the treatment of rodent PF models. However, the safety and effectiveness of the application in human PF diseases have yet to be confirmed. The application of MSC-EVs in the treatment of PF needs to be further standardized in terms of source, route of administration, and culture method.

[1]
Yu QY, Tang XX. Irreversibility of Pulmonary Fibrosis. Aging Dis 2022; 13(1): 73-86.
[http://dx.doi.org/10.14336/AD.2021.0730] [PMID: 35111363]
[2]
Lv X, Li K, Hu Z. Autophagy and Pulmonary Fibrosis. Adv Exp Med Biol 2020; 1207: 569-79.
[http://dx.doi.org/10.1007/978-981-15-4272-5_40] [PMID: 32671775]
[3]
Birjandi SZ, Palchevskiy V, Xue YY, et al. CD4+CD25hiFoxp3+ Cells Exacerbate Bleomycin-Induced Pulmonary Fibrosis. Am J Pathol 2016; 186(8): 2008-20.
[http://dx.doi.org/10.1016/j.ajpath.2016.03.020] [PMID: 27317904]
[4]
Ni K, Liu M, Zheng J, et al. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. Am J Respir Cell Mol Biol 2018; 58(6): 684-95.
[http://dx.doi.org/10.1165/rcmb.2017-0326OC] [PMID: 29220578]
[5]
Li DY, Li RF, Sun DX, Pu DD, Zhang YH. Mesenchymal stem cell therapy in pulmonary fibrosis: A meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12(1): 461.
[http://dx.doi.org/10.1186/s13287-021-02496-2] [PMID: 34407861]
[6]
Tzouvelekis A, Bonella F, Spagnolo P. Update on therapeutic management of idiopathic pulmonary fibrosis. Ther Clin Risk Manag 2015; 11: 359-70.
[PMID: 25767391]
[7]
Liu Y, Chen S, Yu L, et al. Pemafibrate attenuates pulmonary fibrosis by inhibiting myofibroblast differentiation. Int Immunopharmacol 2022; 108: 108728.
[http://dx.doi.org/10.1016/j.intimp.2022.108728] [PMID: 35397395]
[8]
Prasse A, Holle JU, Müller-Quernheim J. Lungenfibrose. Internist (Berl) 2010; 51(1): 6-13.
[http://dx.doi.org/10.1007/s00108-009-2406-y] [PMID: 19956919]
[9]
Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther 2022; 13(1): 71.
[http://dx.doi.org/10.1186/s13287-022-02746-x] [PMID: 35168663]
[10]
Lederer DJ, Kawut SM, Sonett JR, et al. Successful bilateral lung transplantation for pulmonary fibrosis associated with the Hermansky-Pudlak syndrome. J Heart Lung Transplant 2005; 24(10): 1697-9.
[http://dx.doi.org/10.1016/j.healun.2004.11.015] [PMID: 16210149]
[11]
Pojda Z, Machaj E, Kurzyk A, et al. Mesenchymal stem cells. Postepy Biochem 2013; 59(2): 187-97.
[PMID: 24044283]
[12]
Ma Y, Liu X, Long Y, Chen Y. Emerging Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Chronic Respiratory Diseases: An Overview of Recent Progress. Front Bioeng Biotechnol 2022; 10: 845042.
[http://dx.doi.org/10.3389/fbioe.2022.845042] [PMID: 35284423]
[13]
Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front Immunol 2019; 10: 1191.
[http://dx.doi.org/10.3389/fimmu.2019.01191] [PMID: 31214172]
[14]
Monsel A, Zhu Y, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16(7): 859-71.
[http://dx.doi.org/10.1517/14712598.2016.1170804] [PMID: 27011289]
[15]
Huang K, Kang X, Wang X, et al. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Mol Med Rep 2015; 11(3): 1685-92.
[http://dx.doi.org/10.3892/mmr.2014.2981] [PMID: 25411925]
[16]
Gad ES, Salama AAA, El-Shafie MF, Arafa HMM, Abdelsalam RM, Khattab M. The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow–Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 2020; 43(1): 123-34.
[http://dx.doi.org/10.1007/s10753-019-01101-2] [PMID: 31646446]
[17]
Chen S, Cui G, Peng C, et al. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther 2018; 9(1): 110.
[http://dx.doi.org/10.1186/s13287-018-0846-9] [PMID: 29673394]
[18]
Kusuma GD, Menicanin D, Gronthos S, et al. Ectopic Bone Formation by Mesenchymal Stem Cells Derived from Human Term Placenta and the Decidua. PLoS One 2015; 10(10): e0141246.
[http://dx.doi.org/10.1371/journal.pone.0141246] [PMID: 26484666]
[19]
Lee HY, Hong IS. Double‐edged sword of mesenchymal stem cells: Cancer‐promoting versus therapeutic potential. Cancer Sci 2017; 108(10): 1939-46.
[http://dx.doi.org/10.1111/cas.13334] [PMID: 28756624]
[20]
Wang S, Guo L, Ge J, et al. Excess Integrins Cause Lung Entrapment of Mesenchymal Stem Cells. Stem Cells 2015; 33(11): 3315-26.
[http://dx.doi.org/10.1002/stem.2087] [PMID: 26148841]
[21]
Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis. Front Bioeng Biotechnol 2020; 8: 575057.
[http://dx.doi.org/10.3389/fbioe.2020.575057] [PMID: 33251195]
[22]
Qiu G, Zheng G, Ge M, et al. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10(1): 359.
[http://dx.doi.org/10.1186/s13287-019-1484-6] [PMID: 31779700]
[23]
Mansouri N, Willis GR, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight 2019; 4(21): e128060.
[http://dx.doi.org/10.1172/jci.insight.128060] [PMID: 31581150]
[24]
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11: 590972.
[http://dx.doi.org/10.3389/fphar.2020.590972] [PMID: 33343360]
[25]
Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front Immunol 2021; 12: 749192.
[http://dx.doi.org/10.3389/fimmu.2021.749192] [PMID: 34646275]
[26]
Liu H, Deng S, Han L, et al. Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy. Colloids Surf B Biointerfaces 2022; 209(Pt 1): 112163.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112163] [PMID: 34736220]
[27]
Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K. Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. J Clin Med 2018; 7(10): 355.
[http://dx.doi.org/10.3390/jcm7100355] [PMID: 30322213]
[28]
Bandeira E, Oliveira H, Silva JD, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respir Res 2018; 19(1): 104.
[http://dx.doi.org/10.1186/s12931-018-0802-3] [PMID: 29843724]
[29]
Wan X, Chen S, Fang Y, Zuo W, Cui J, Xie S. Mesenchymal stem cell‐derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA‐29b‐3p in idiopathic pulmonary fibrosis. J Cell Physiol 2020; 235(11): 8613-25.
[http://dx.doi.org/10.1002/jcp.29706] [PMID: 32557673]
[30]
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21(11): 1539-58.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[31]
Xiao K, He W, Guan W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis 2020; 11(10): 863.
[http://dx.doi.org/10.1038/s41419-020-03034-3] [PMID: 33060560]
[32]
Shi L, Ren J, Li J, et al. Extracellular vesicles derived from umbilical cord mesenchymal stromal cells alleviate pulmonary fibrosis by means of transforming growth factor-β signaling inhibition. Stem Cell Res Ther 2021; 12(1): 230.
[http://dx.doi.org/10.1186/s13287-021-02296-8] [PMID: 33845892]
[33]
Xu C, Hou L, Zhao J, et al. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. Ecotoxicol Environ Saf 2022; 233: 113302.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113302] [PMID: 35189518]
[34]
Zhang E, Geng X, Shan S, et al. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial-mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis. Toxicol Mech Methods 2021; 31(9): 655-66.
[http://dx.doi.org/10.1080/15376516.2021.1950250] [PMID: 34225584]
[35]
Zhou J, Lin Y, Kang X, Liu Z, Zhang W, Xu F. microRNA-186 in extracellular vesicles from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1. Stem Cell Res Ther 2021; 12(1): 96.
[http://dx.doi.org/10.1186/s13287-020-02083-x] [PMID: 33536061]
[36]
Xu C, Zhao J, Li Q, et al. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther 2020; 11(1): 503.
[http://dx.doi.org/10.1186/s13287-020-02023-9] [PMID: 33239075]
[37]
Yang J, Hu H, Zhang S, et al. Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transition Nan Fang Yi Ke Da Xue Xue Bao 2020; 40(7): 988-94.
[PMID: 32895166]
[38]
Gao Y, Sun J, Dong C, Zhao M, Hu Y, Jin F. Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Alleviate PM2.5-Induced Lung Injury and Pulmonary Fibrosis. Med Sci Monit 2020; 26: e922782.
[http://dx.doi.org/10.12659/MSM.922782] [PMID: 32304204]
[39]
Lee M-R, Lee G-H, Lee H-Y, et al. BAX inhibitor-1-associated V-ATPase glycosylation enhances collagen degradation in pulmonary fibrosis. Cell Death Dis 2014; 5(3): e1113.
[http://dx.doi.org/10.1038/cddis.2014.86] [PMID: 24625972]
[40]
Yang K, Palm J, König J, et al. Matrix-Metallo-Proteinases and their tissue inhibitors in radiation-induced lung injury. Int J Radiat Biol 2007; 83(10): 665-76.
[http://dx.doi.org/10.1080/09553000701558977] [PMID: 17729161]
[41]
Escalona-Nandez I, Guerrero-Escalera D, Estanes-Hernández A, Ortíz-Ortega V, Tovar AR, Pérez-Monter C. The activation of peroxisome proliferator-activated receptor γ is regulated by Krüppel-like transcription factors 6 & 9 under steatotic conditions. Biochem Biophys Res Commun 2015; 458(4): 751-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.145] [PMID: 25686501]
[42]
Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018; 50(1): 29-38.
[http://dx.doi.org/10.1007/s00726-017-2490-6] [PMID: 28929384]
[43]
Khalil N, Xu YD, O’Connor R, Duronio V. Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem 2005; 280(52): 43000-9.
[http://dx.doi.org/10.1074/jbc.M510441200] [PMID: 16246848]
[44]
Ruiz V, Ordóñez RM, Berumen J, et al. Unbalanced collagenases/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2003; 285(5): L1026-36.
[http://dx.doi.org/10.1152/ajplung.00183.2003] [PMID: 12882763]
[45]
Ding H, Chen J, Qin J, Chen R, Yi Z. TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells. Mol Med 2021; 27(1): 22.
[http://dx.doi.org/10.1186/s10020-021-00283-6] [PMID: 33663392]
[46]
Kirkham AM, Bailey AJM, Tieu A, et al. MSC-Derived Extracellular Vesicles in Preclinical Animal Models of Bone Injury: A Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2022; 18(3): 1054-66.
[http://dx.doi.org/10.1007/s12015-021-10208-9] [PMID: 34313927]
[47]
Njock MS, Guiot J, Henket MA, et al. Sputum exosomes: Promising biomarkers for idiopathic pulmonary fibrosis. Thorax 2019; 74(3): 309-12.
[http://dx.doi.org/10.1136/thoraxjnl-2018-211897] [PMID: 30244194]
[48]
Tieu A, Lalu MM, Slobodian M, et al. An analysis of mesenchymal stem cell-derived extracellular vesicles for preclinical use. ACS Nano 2020; 14(8): 9728-43.
[http://dx.doi.org/10.1021/acsnano.0c01363] [PMID: 32697573]
[49]
Wang J, Huang R, Xu Q, et al. Mesenchymal stem cell–derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Crit Care Med 2020; (7): e599-610.
[http://dx.doi.org/10.1097/CCM.0000000000004315] [PMID: 32317602]
[50]
Lou G, Yang Y, Liu F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med 2017; 21(11): 2963-73.
[http://dx.doi.org/10.1111/jcmm.13208] [PMID: 28544786]
[51]
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy