Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

A Novel Nucleic Acid Sensing-related Genes Signature for Predicting Immunotherapy Efficacy and Prognosis of Lung Adenocarcinoma

Author(s): Xinhao Peng, Hong Wu, Biqin Zhang, Chuan Xu and Jinyi Lang*

Volume 24, Issue 4, 2024

Published on: 12 October, 2023

Page: [425 - 444] Pages: 20

DOI: 10.2174/1568009623666230817101843

Abstract

Background: As a novel pillar for lung adenocarcinoma (LUAD) treatment, immunotherapy has limited efficiency in LUAD patients. The nucleic acid sensing (NAS) pathways are critical in the anti-tumor immune response, but their role in LUAD remains controversial.

Objective: The study aims to develop a classification system to identify immune subtypes of LUAD based on nucleic acid sensing-related genes so that it can help screen patients who may respond to immunotherapy.

Methods: We performed a comprehensive bioinformatics analysis of the NAS molecule expression profiles across multiple public datasets. Using qRT-PCR to verify the NAS genes in multiple lung cancer cell lines. Molecular docking was performed to screen drug candidates.

Results: The NAS-activated subgroup and NAS-suppressed subgroup were validated based on the different patterns of gene expression and pathways enrichment. The NAS-activated subgroup displayed a stronger immune infiltration and better prognosis of patients. Moreover, we constructed a seven nucleic acid sensing-related risk score (NASRS) model for the convenience of clinical application. The predictive values of NASRS in prognosis and immunotherapy were subsequently fully validated in the lung adenocarcinoma dataset and the uroepithelial carcinoma dataset. Additionally, five potential drugs binding to the core target of the NAS signature were predicted through molecular docking.

Conclusion: We found a significant correlation between nucleic acid sensing function and the immune treatment efficiency in LUAD. The NASRS can be used as a robust biomarker for the predicting of prognosis and immunotherapy efficiency and may help in clinical decisions for LUAD patients.

Graphical Abstract

[1]
Bade, B.C.; Dela Cruz, C.S. Lung cancer 2020. Clin. Chest Med., 2020, 41(1), 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[2]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[3]
Wang, P. H.; He, J. G. Nucleic acid sensing in invertebrate antiviral immunity. Int. Rev. Cell Mol. Biol., 2019, 345, 287-360.
[http://dx.doi.org/10.1016/bs.ircmb.2018.11.002]
[4]
Wu, J.; Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol, 2014, 32, 461-488.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120156]
[5]
Shetab Boushehri, M.A.; Lamprecht, A. TLR4-based immunotherapeutics in cancer: A review of the achievements and shortcomings. Mol. Pharm., 2018, 15(11), 4777-4800.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00691] [PMID: 30226786]
[6]
Zhang, W.; Wang, G.; Xu, Z.G.; Tu, H.; Hu, F.; Dai, J.; Chang, Y.; Chen, Y.; Lu, Y.; Zeng, H.; Cai, Z.; Han, F.; Xu, C.; Jin, G.; Sun, L.; Pan, B.S.; Lai, S.W.; Hsu, C.C.; Xu, J.; Chen, Z.Z.; Li, H.Y.; Seth, P.; Hu, J.; Zhang, X.; Li, H.; Lin, H.K. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell, 2019, 178(1), 176-189.e15.
[http://dx.doi.org/10.1016/j.cell.2019.05.003] [PMID: 31155231]
[7]
Sharma, B.R.; Kanneganti, T.D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 2021, 22(5), 550-559.
[http://dx.doi.org/10.1038/s41590-021-00886-5] [PMID: 33707781]
[8]
Baik, J.Y.; Liu, Z.; Jiao, D.; Kwon, H.J.; Yan, J.; Kadigamuwa, C.; Choe, M.; Lake, R.; Kruhlak, M.; Tandon, M.; Cai, Z.; Choksi, S.; Liu, Z. ZBP1 not RIPK1 mediates tumor necroptosis in breast cancer. Nat. Commun., 2021, 12(1), 2666.
[http://dx.doi.org/10.1038/s41467-021-23004-3] [PMID: 33976222]
[9]
Kwon, J.; Bakhoum, S.F. The cytosolic DNA-sensing cGAS–STING pathway in cancer. Cancer Discov., 2020, 10(1), 26-39.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0761] [PMID: 31852718]
[10]
Huang, R.X.; Zhou, P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 60.
[http://dx.doi.org/10.1038/s41392-020-0150-x] [PMID: 32355263]
[11]
Schlee, M.; Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol., 2016, 16(9), 566-580.
[http://dx.doi.org/10.1038/nri.2016.78] [PMID: 27455396]
[12]
Yang, Y.; Wu, M.; Cao, D.; Yang, C.; Jin, J.; Wu, L.; Hong, X.; Li, W.; Lu, L.; Li, J.; Wang, X.; Meng, X.; Zhang, Z.; Cheng, J.; Ye, Y.; Xiao, H.; Yu, J.; Deng, L. ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Sci. Adv., 2021, 7(41), eabf6290.
[http://dx.doi.org/10.1126/sciadv.abf6290] [PMID: 34613770]
[13]
Mali, S.N.; Sawant, S.; Chaudhari, H.K.; Mandewale, M.C. In silico appraisal, synthesis, antibacterial screening and dna cleavage for 1,2,5-thiadiazole derivative. Curr. Computeraided Drug Des., 2019, 15(5), 445-455.
[http://dx.doi.org/10.2174/1573409915666190206142756] [PMID: 30727910]
[14]
Ghosh, S.; Mali, S.N.; Bhowmick, D.N.; Pratap, A.P. Neem oil as natural pesticide: Pseudo ternary diagram and computational study. J. Indian Chem. Soc., 2021, 98(7), 100088.
[http://dx.doi.org/10.1016/j.jics.2021.100088]
[15]
Mali, S.N.; Pandey, A. Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors. J. Indian Chem. Soc., 2021, 98(6), 100082.
[http://dx.doi.org/10.1016/j.jics.2021.100082]
[16]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Multiple 3D- and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct. Chem., 2022, 33(3), 679-694.
[http://dx.doi.org/10.1007/s11224-022-01879-2]
[17]
Mali, S.N.; Pandey, A.; Bhandare, R.R.; Shaik, A.B. Identification of hydantoin based Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools. Sci. Rep., 2022, 12(1), 16368.
[http://dx.doi.org/10.1038/s41598-022-20325-1] [PMID: 36180452]
[18]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T. I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54, 1.30.1-1.30.33.
[19]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[20]
Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol., 2015, 1A(1A), 68-77.
[http://dx.doi.org/10.5114/wo.2014.47136] [PMID: 25691825]
[21]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[22]
Mezheyeuski, A.; Bergsland, C.H.; Backman, M.; Djureinovic, D.; Sjöblom, T.; Bruun, J.; Micke, P. Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients. J. Pathol., 2018, 244(4), 421-431.
[http://dx.doi.org/10.1002/path.5026] [PMID: 29282718]
[23]
Okayama, H.; Kohno, T.; Ishii, Y.; Shimada, Y.; Shiraishi, K.; Iwakawa, R.; Furuta, K.; Tsuta, K.; Shibata, T.; Yamamoto, S.; Watanabe, S.; Sakamoto, H.; Kumamoto, K.; Takenoshita, S.; Gotoh, N.; Mizuno, H.; Sarai, A.; Kawano, S.; Yamaguchi, R.; Miyano, S.; Yokota, J. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res., 2012, 72(1), 100-111.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1403] [PMID: 22080568]
[24]
Botling, J.; Edlund, K.; Lohr, M.; Hellwig, B.; Holmberg, L.; Lambe, M.; Berglund, A.; Ekman, S.; Bergqvist, M.; Pontén, F.; König, A.; Fernandes, O.; Karlsson, M.; Helenius, G.; Karlsson, C.; Rahnenführer, J.; Hengstler, J.G.; Micke, P. Biomarker discovery in non-small cell lung cancer: Integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin. Cancer Res., 2013, 19(1), 194-204.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1139] [PMID: 23032747]
[25]
Lee, E.S.; Son, D.S.; Kim, S.H.; Lee, J.; Jo, J.; Han, J.; Kim, H.; Lee, H.J.; Choi, H.Y.; Jung, Y.; Park, M.; Lim, Y.S.; Kim, K.; Shim, Y.M.; Kim, B.C.; Lee, K.; Huh, N.; Ko, C.; Park, K.; Lee, J.W.; Choi, Y.S.; Kim, J. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin. Cancer Res., 2008, 14(22), 7397-7404.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4937] [PMID: 19010856]
[26]
Der, S.D.; Sykes, J.; Pintilie, M.; Zhu, C.Q.; Strumpf, D.; Liu, N.; Jurisica, I.; Shepherd, F.A.; Tsao, M.S. Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. J. Thorac. Oncol., 2014, 9(1), 59-64.
[http://dx.doi.org/10.1097/JTO.0000000000000042] [PMID: 24305008]
[27]
Necchi, A.; Joseph, R.W.; Loriot, Y.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Petrylak, D.P.; Derleth, C.L.; Tayama, D.; Zhu, Q.; Ding, B.; Kaiser, C.; Rosenberg, J.E. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: post-progression outcomes from the phase II IMvigor210 study. Ann. Oncol., 2017, 28(12), 3044-3050.
[http://dx.doi.org/10.1093/annonc/mdx518] [PMID: 28950298]
[28]
Cho, J.W.; Hong, M.H.; Ha, S.J.; Kim, Y.J.; Cho, B.C.; Lee, I.; Kim, H.R. Genome-wide identification of differentially methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell lung cancer. Exp. Mol. Med., 2020, 52(9), 1550-1563.
[http://dx.doi.org/10.1038/s12276-020-00493-8] [PMID: 32879421]
[29]
Jung, H.; Kim, H.S.; Kim, J.Y.; Sun, J.M.; Ahn, J.S.; Ahn, M.J.; Park, K.; Esteller, M.; Lee, S.H.; Choi, J.K. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat. Commun., 2019, 10(1), 4278.
[http://dx.doi.org/10.1038/s41467-019-12159-9] [PMID: 31537801]
[30]
Monti, S.; Tamayo, P.; Mesirov, J.P.; Golub, T.R. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn., 2003, 52(1/2), 91-118.
[http://dx.doi.org/10.1023/A:1023949509487]
[31]
Shin, E.C.; Craft, B.D.; Pegg, R.B.; Phillips, R.D.; Eitenmiller, R.R. Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chem., 2010, 119(3), 1262-1270.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.058]
[32]
Jelena, B.; Jianqing, F. Jiancheng & jiang. regularization for cox’s proportional hazards model with np-dimensionality. Ann. Stat., 2011, 39(6), 3092-3120.
[33]
Maelfait, J.; Liverpool, L.; Rehwinkel, J. Nucleic acid sensors and programmed cell death. J. Mol. Biol., 2020, 432(2), 552-568.
[http://dx.doi.org/10.1016/j.jmb.2019.11.016] [PMID: 31786265]
[34]
Kroemer, G.; Galassi, C.; Zitvogel, L.; Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol., 2022, 23(4), 487-500.
[http://dx.doi.org/10.1038/s41590-022-01132-2] [PMID: 35145297]
[35]
Weijie, G.; Yao, Z.; Dingwei, Y. Nutritional screening is strongly associated with overall survival in patients treated with targeted agents for metastatic renal cell carcinoma. J. Cachexia Sarcopenia Muscle, 2015, 193(4), e867-e868.
[36]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[37]
Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[38]
Hu, M.; Zhou, M.; Bao, X.; Pan, D.; Li, C.Y. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage/cGAS-STING activation. J. Clin. Invest., 2021, 131(3), e139333.
[PMID: 33290271]
[39]
Sheng, H.; Huang, Y.; Xiao, Y.; Zhu, Z.; Shen, M.; Zhou, P.; Guo, Z.; Wang, J.; Wang, H.; Dai, W.; Zhang, W.; Sun, J.; Cao, C. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. J. Immunother. Cancer, 2020, 8(1), e000340.
[http://dx.doi.org/10.1136/jitc-2019-000340] [PMID: 32461345]
[40]
Haines, E.; Nishida, Y.; Carr, M. I.; Montoya, R. H.; Vassilev, L. T. DNA-PK inhibitor peposertib enhances p53-dependent cytotoxicity of DNA double-strand break inducing therapy in acute leukemia. Sci Rep., 2021, 11(1), 12148.
[http://dx.doi.org/10.1038/s41598-021-90500-3]
[41]
Peters, N.E.; Ferguson, B.J.; Mazzon, M.; Fahy, A.S.; Krysztofinska, E.; Arribas-Bosacoma, R.; Pearl, L.H.; Ren, H.; Smith, G.L.; Barry, M. A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathog., 2013, 9(10), e1003649.
[http://dx.doi.org/10.1371/journal.ppat.1003649] [PMID: 24098118]
[42]
Li, Y.; Huang, H.; Chen, X.; Yu, N.; Ye, X.; Chen, L.; Huang, Z. PAR2 promotes tumor-associated angiogenesis in lung adenocarcinoma through activating EGFR pathway. Tissue & Cell, 2022, 79, 101918..
[http://dx.doi.org/10.1016/j.tice.2022.101918]
[43]
Wu, K.; Xu, L.; Cheng, L. PAR2 promoter hypomethylation regulates PAR2 gene expression and promotes lung adenocarcinoma cell progression. Computational and mathematical methods in medicine, 2021, 2021, 5542485.
[http://dx.doi.org/10.1155/2021/5542485]
[44]
Wang, Y.; Li, X.; Xu, X.; Yu, J.; Chen, X.; Cao, X.; Zou, J.; Shen, B.; Ding, X. Clec7a expression in inflammatory macrophages orchestrates progression of acute kidney injury. Frontiers in immunology, 2022, 13, 1008727.
[http://dx.doi.org/10.3389/fimmu.2022.1008727]
[45]
Oliveira-Nascimento, L.; Massari, P.; Wetzler, L. M. The role of TLR2 in infection and immunity. Front Immunol, 2012, 3, 79.
[http://dx.doi.org/10.3389/fimmu.2012.00079]
[46]
Aprahamian, C.J.; Lorenz, R.G.; Harmon, C.M.; Dimmit, R.A. Toll-like receptor 2 is protective of ischemia–reperfusion-mediated small-bowel injury in a murine model. Pediatr. Crit. Care Med., 2008, 9(1), 105-109.
[http://dx.doi.org/10.1097/01.PCC.0000288717.44702.C0] [PMID: 17906593]
[47]
Di Lorenzo, A.; Bolli, E.; Tarone, L.; Cavallo, F.; Conti, L. Toll-like receptor 2 at the crossroad between cancer cells, the immune system, and the microbiota. Int. J. Mol. Sci., 2020, 21(24), 9418.
[http://dx.doi.org/10.3390/ijms21249418] [PMID: 33321934]
[48]
Hu, W.; Spaink, H.P. The role of TLR2 in Infectious diseases caused by mycobacteria: From cell biology to therapeutic target. Biology, 2022, 11(2), 246.
[http://dx.doi.org/10.3390/biology11020246] [PMID: 35205112]
[49]
Gergen, A.K.; Kohtz, P.D.; Halpern, A.L.; Li, A.; Meng, X.; Reece, T.B.; Fullerton, D.A.; Weyant, M.J. Activation of toll-like receptor 2 promotes proliferation of human lung adenocarcinoma cells. Anticancer Res., 2020, 40(10), 5361-5369.
[http://dx.doi.org/10.21873/anticanres.14544] [PMID: 32988855]
[50]
Deng, Y.; Yang, J.; Qian, J.; Liu, R.; Huang, E.; Wang, Y.; Luo, F.; Chu, Y. TLR1/TLR2 signaling blocks the suppression of monocytic myeloid-derived suppressor cell by promoting its differentiation into M1-type macrophage. Mol Immunol., 2019, 112, 266-273.
[51]
Li, J.X.; Bi, Y.P.; Wang, J.; Yang, X.; Tian, Y.F.; Sun, Z.F. JTC-801 inhibits the proliferation and metastasis of ovarian cancer cell SKOV3 through inhibition of the PI3K - AKT signaling pathway. Pharmazie, 2018, 73(5), 283-287.
[PMID: 29724295]
[52]
Ketron, A.C.; Denny, W.A.; Graves, D.E.; Osheroff, N. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry, 2012, 51(8), 1730-1739.
[http://dx.doi.org/10.1021/bi201159b] [PMID: 22304499]
[53]
Nishiya, N.; Sakamoto, Y.; Oku, Y.; Nonaka, T.; Uehara, Y. JAK3 inhibitor VI is a mutant specific inhibitor for epidermal growth factor receptor with the gatekeeper mutation T790M. World J. Biol. Chem., 2015, 6(4), 409-418.
[http://dx.doi.org/10.4331/wjbc.v6.i4.409] [PMID: 26629323]
[54]
Chilamakuri, R.; Rouse, D.C.; Yu, Y.; Kabir, A.S.; Muth, A.; Yang, J.; Lipton, J.M.; Agarwal, S. BX-795 inhibits neuroblastoma growth and enhances sensitivity towards chemotherapy. Transl. Oncol., 2022, 15(1), 101272.
[http://dx.doi.org/10.1016/j.tranon.2021.101272] [PMID: 34823094]
[55]
Dammeijer, F.; van Gulijk, M.; Klaase, L.; van Nimwegen, M.; Bouzid, R.; Hoogenboom, R.; Joosse, M.E.; Hendriks, R.W.; van Hall, T.; Aerts, J.G. Low-Dose JAK3 inhibition improves antitumor T-Cell immunity and immunotherapy efficacy. Mol. Cancer Ther., 2022, 21(9), 1393-1405.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0943] [PMID: 35732501]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy