Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Traditional Medicinal Plants in Cancer Therapy and Chemoprevention: A Review of Preclinical and Clinical Studies

Author(s): Jameema Sidhic, Satheesh George and Arunaksharan Narayanankutty*

Volume 20, Issue 6, 2024

Published on: 01 September, 2023

Page: [703 - 715] Pages: 13

DOI: 10.2174/1573401319666230816141305

Price: $65

Abstract

Cancer has become a significant public health concern in the past few decades, and it is now the world's second cause of death. Although there are various types of cancer treatments, such as chemotherapy, immune therapy, radiation, hormone therapy, gene editing, etc., they all have adverse reactions and significant failings. Plant and dietary mixtures have been utilized to treat malignant growth over the entire course of time. These mixtures likewise might be helpful in anticipation of malignant growth. Chemoprevention is cancer prevention that makes use of plant phytochemicals and synthetic substances. Because of their reduced toxicity and inexpensive cost, phytoconstituents are gaining much interest in chemoprevention effectiveness. As a result, the chemopreventive power of naturally occurring phytochemicals is of great interest. Populace studies propose that a decreased gamble of malignant growth is related to the maximum usage of vegetables and natural products. This review summarised the latest research on plants and their chemicals targeting various malignancies and their mechanisms of cancer suppression by modulating multiple signaling pathways. It provides a small outline of green synthesized nanoparticles, an emerging area to combat cancer.

Graphical Abstract

[1]
Making cancer data count. Lancet 2014; 383(9933): 1946.
[http://dx.doi.org/10.1016/S0140-6736(14)60939-9] [PMID: 24910219]
[2]
Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer 2021; 21(3): 162-80.
[http://dx.doi.org/10.1038/s41568-020-00320-2] [PMID: 33462499]
[3]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Sung B, Prasad S, Yadav VR, Aggarwal BB. Cancer cell signaling pathways targeted by spice-derived nutraceuticals. Nutr Cancer 2012; 64(2): 173-97.
[http://dx.doi.org/10.1080/01635581.2012.630551] [PMID: 22149093]
[5]
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[6]
Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG. Cancer invasion and metastasis: molecular and cellular perspective. 2000-13.
[7]
Adnan M, Khan S, Al-Shammari E, Patel M, Saeed M, Hadi S. In pursuit of cancer metastasis therapy by bacteria and its biofilms: History or future. Med Hypotheses 2017; 100: 78-81.
[http://dx.doi.org/10.1016/j.mehy.2017.01.018] [PMID: 28236853]
[8]
Redig AJ, McAllister SS. Breast cancer as a systemic disease: A view of metastasis. J Intern Med 2013; 274(2): 113-26.
[http://dx.doi.org/10.1111/joim.12084] [PMID: 23844915]
[9]
Pourmadadi M, Soleimani DH, Saeidi TF, et al. Properties and applications of graphene and its derivatives in biosensors for cancer detection: A comprehensive review. Biosensors 2022; 12(5): 269.
[http://dx.doi.org/10.3390/bios12050269] [PMID: 35624570]
[10]
Xu J, Liu Y, Huang K-J, Wang R, Li J. Cascade amplification strategy based on ultra-thin graphdiyne and CRISPR/Cas for realtime detection of tumor biomarker. Chem Eng J 2023; 466: 143230.
[http://dx.doi.org/10.1016/j.cej.2023.143230]
[11]
Xu J, Liu Y, Huang KJ, Wang R, Sun X. An ingenious designed dual mode self-powered biosensing platform based on graphdiyne heterostructure substrate for instant hepatocarcinoma marker detection. Talanta 2023; 261: 124656.
[http://dx.doi.org/10.1016/j.talanta.2023.124656] [PMID: 37209584]
[12]
Liu Y, Xu J, Huang KJ, Guo Y, Wang R. Precise and real-time detection of miRNA-141 realized on double-drive strategy triggered by sandwich-graphdiyne and energy conversion device. Sens Actuators B Chem 2023; 389: 133902.
[http://dx.doi.org/10.1016/j.snb.2023.133902]
[13]
Jayanthi VSPKSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 2017; 91: 15-23.
[http://dx.doi.org/10.1016/j.bios.2016.12.014] [PMID: 27984706]
[14]
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for cancer therapy: Success and limitations. Curr Med Chem 2019; 26(3): 396-426.
[http://dx.doi.org/10.2174/0929867324666170817152554] [PMID: 28820071]
[15]
Xin Y, Huang M, Guo WW, Huang Q, Zhang L, Jiang G. Nano-based delivery of RNAi in cancer therapy. Mol Cancer 2017; 16(1): 134.
[http://dx.doi.org/10.1186/s12943-017-0683-y] [PMID: 28754120]
[16]
National Cancer Institute. Types of Cancer Treatment. Available From: https://www.cancer.gov/about-cancer/treatment/types (accessed June 20, 2022).
[17]
Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: From model organisms to patients. Oncogene 2011; 30(30): 3305-16.
[http://dx.doi.org/10.1038/onc.2011.91] [PMID: 21516129]
[18]
Gezici S, Şekeroğlu N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer Agents Med Chem 2019; 19(1): 101-11.
[19]
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep 2023; 6(2): e1764.
[http://dx.doi.org/10.1002/cnr2.1764] [PMID: 36607830]
[20]
Sporn MB. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res 1976; 36(7 PT 2): 2699-702.
[PMID: 1277177]
[21]
Aung T, Qu Z, Kortschak R, Adelson D. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci 2017; 18(3): 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[22]
Gullett NP, Ruhul AARM, Bayraktar S, et al. Cancer prevention with natural compounds. Semin Oncol 2010; 37(3): 258-81.
[http://dx.doi.org/10.1053/j.seminoncol.2010.06.014] [PMID: 20709209]
[23]
Sporn MB, Dunlop NM, Newton DL, Smith JM. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 1976; 35(6): 1332-8.
[PMID: 770206]
[24]
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971; 93(9): 2325-7.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[25]
Hwang E-S, Thi ND. Anti-cancer and anti-inflammatory activities of aronia (Aronia melanocarpa) leaves. Asian Pac J Trop Biomed 2018; 8(12): 586.
[http://dx.doi.org/10.4103/2221-1691.248095]
[26]
Gaidhani SN, Lavekar GS, Juvekar AS, Sen S, Singh A, Kumari S. In-vitro anticancer activity of standard extracts used in ayurveda. Pharmacogn Mag 2009; 5(20): 425.
[27]
Sehrish S, Shahida K, Rahmatullah Q, Bajwa AA. Tagetes minuta L., a useful underutilized plant of family Asteraceae: A review. Pak J Weed Sci Res 2013; 19(2): 179-89.
[28]
Rai N, Agrawal RC, Khan A. Chemopreventive potential of Centella asiatica on B6F10 melanoma cell lines in experimental mice. Pharmacologyonline 2011; 1: 748-58.
[29]
George VC, Dellaire G, Rupasinghe HPV. Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem 2017; 45: 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[30]
Chandran A, Arunachalam G. Evaluation of in vivo anticancer activity of Scaevola taccada Roxb against Ehrlich ascites carcinoma in Swiss albino mice. J Pharm Pharm Sci 2015; 7(9): 626.
[31]
Jiménez-Medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant calendula officinalis produces a dual in vitro effect: Cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer 2006; 6(1): 119.
[http://dx.doi.org/10.1186/1471-2407-6-119] [PMID: 16677386]
[32]
Hashemzaei M, Far AD, Yari A, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep 2017; 38(2): 819-28.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[33]
Chen AH, Liu QL, Ma YL, et al. A new monoterpenoid indole alkaloid from Ochrosia elliptica. Nat Prod Res 2017; 31(13): 1490-4.
[http://dx.doi.org/10.1080/14786419.2016.1277349] [PMID: 28068850]
[34]
Yoon G, Lee MH, Kwak AW, et al. Podophyllotoxin isolated from Podophyllum peltatum induces G2/M Phase Arrest and mitochondrial-mediated apoptosis in esophageal squamous cell carcinoma cells. Forests 2019; 11(1): 8.
[http://dx.doi.org/10.3390/f11010008]
[35]
Ettinger DS. Overview of paclitaxel (Taxol) in advanced lung cancer. Semin Oncol 1993; 20(4) (Suppl. 3): 46-9.
[PMID: 8102017]
[36]
Lin CS, Chen PC, Wang CK, et al. Antitumor effects and biological mechanism of action of the aqueous extract of the Camptotheca acuminata fruit in human endometrial Carcinoma cells. Evid Based Complement Alternat Med 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/564810] [PMID: 24963324]
[37]
Radhakrishnan EK, Bava SV, Narayanan SS, et al. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One 2014; 9(8): e104401.
[http://dx.doi.org/10.1371/journal.pone.0104401] [PMID: 25157570]
[38]
Lv ZD, Liu XP, Zhao WJ, et al. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol 2014; 7(6): 2818-24.
[PMID: 25031701]
[39]
Tungpradit R, Sinchaikul S, Phutrakul S, Wongkham W, Chen ST. Anti-cancer compound screening and isolation: Coscinium fenestratum, Tinosporacrispa and Tinospora cordifolia. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai 2010; 37(3): 476-88.
[40]
Bi Y, Min M, Shen W, Liu Y. Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G 0 /G 1 cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 2018; 39: 10-6.
[http://dx.doi.org/10.1016/j.phymed.2017.12.001] [PMID: 29433670]
[41]
Rahman S, Islam R, Kamruzzaman M, Alam K, Jamal AH. Ocimum sanctum L.: A review of phytochemical and pharmacological profile. Am J Drug Discov 2011; 1: 15.
[42]
Himes RH. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol Ther 1991; 51(2): 257-67.
[http://dx.doi.org/10.1016/0163-7258(91)90081-V] [PMID: 1784631]
[43]
Zhang J, Yu Y, Liu D, Liu Z. Extraction and composition of three naturally occurring anti-cancer alkaloids in Camptotheca acuminata seed and leaf extracts. Phytomedicine 2007; 14(1): 50-6.
[http://dx.doi.org/10.1016/j.phymed.2006.11.004] [PMID: 17137773]
[44]
Zhang WK, Xu JK, Tian HY, et al. Two new vinblastine-type N -oxide alkaloids from Catharanthus roseus. Nat Prod Res 2013; 27(20): 1911-6.
[http://dx.doi.org/10.1080/14786419.2013.790029] [PMID: 23621523]
[45]
Sahi N, Mostajeran A, Ghanadian M. Changing in the production of anticancer drugs (vinblastine and vincristine) in Catharanthus roseus (L.) G. Don by potassium and ascorbic acid treatments. Plant Soil Environ 2022; 68(1): 18-28.
[http://dx.doi.org/10.17221/121/2021-PSE]
[46]
Vu PTB, Cao DM, Bui AL, Nguyen NN, Bui LV, Quach PND. In vitro growth and content of vincristine and vinblastine of Catharanthus roseus L. hairy roots in response to precursors and elicitors. Plant Sci Today 2022; 9(1): 21-8.
[http://dx.doi.org/10.14719/pst.1337]
[47]
Palem PPC, Kuriakose GC, Jayabaskaran C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 2015; 10(12): e0144476.
[http://dx.doi.org/10.1371/journal.pone.0144476] [PMID: 26697875]
[48]
Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 1966; 88(16): 3888-90.
[http://dx.doi.org/10.1021/ja00968a057]
[49]
Kang M, Fu R, Zhang P, et al. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nat Commun 2021; 12(1): 3531.
[http://dx.doi.org/10.1038/s41467-021-23872-9] [PMID: 34112794]
[50]
van Hattum AH, Pinedo HM, Schlüper HMM, Erkelens CAM, Tohgo A, Boven E. The activity profile of the hexacyclic camptothecin derivative DX-8951f in experimental human colon cancer and ovarian cancer. Biochem Pharmacol 2002; 64(8): 1267-77.
[http://dx.doi.org/10.1016/S0006-2952(02)01297-2] [PMID: 12234607]
[51]
Lazareva NF, Baryshok VP, Lazarev IM. Silicon-containing analogs of camptothecin as anticancer agents. Arch Pharm 2018; 351(1): 1700297.
[http://dx.doi.org/10.1002/ardp.201700297] [PMID: 29239010]
[52]
Thomas A, Pommier Y. Targeting topoisomerase I in the era of precision medicine. Clin Cancer Res 2019; 25(22): 6581-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1089] [PMID: 31227499]
[53]
Shi M, Gong H, Cui L, et al. Targeted metabolic engineering of committed steps improves anti-cancer drug camptothecin production in Ophiorrhiza pumila hairy roots. Ind Crops Prod 2020; 148: 112277.
[http://dx.doi.org/10.1016/j.indcrop.2020.112277]
[54]
Kalani K, Yadav DK, Alam S, et al. In-silico studies and wet-lab validation of camptothecin derivatives for anti-cancer activity against liver (HepG2) and lung (A549) cancer cell lines. Curr Top Med Chem 2021; 21(10): 908-19.
[http://dx.doi.org/10.2174/18734294MTE1jNDcg0] [PMID: 33902420]
[55]
Fan H, Zhu Z, Xian H, et al. Insight into the molecular mechanism of podophyllotoxin derivatives as anticancer drugs. Front Cell Dev Biol 2021; 9: 709075.
[http://dx.doi.org/10.3389/fcell.2021.709075] [PMID: 34447752]
[56]
Mythili A. A systematic review on synthesis and anticancer activity of podophyllotoxin from Podophyllum peltatum L.(2020). Int J Pharma Sci 2020; 11(1): 43-8.
[57]
Chattopadhyay S, Bisaria VS, Panda AK, Srivastava AK. Cytotoxicity of in vitro produced podophyllotoxin from podophyllum hexandrum on human cancer cell line. Nat Prod Res 2004; 18(1): 51-7.
[http://dx.doi.org/10.1080/1057563031000122095] [PMID: 14974618]
[58]
Chen JY, Tang YA, Li WS, Chiou YC, Shieh JM, Wang YC. A synthetic podophyllotoxin derivative exerts anti-cancer effects by inducing mitotic arrest and pro-apoptotic ER stress in lung cancer preclinical models. PLoS One 2013; 8(4): e62082.
[http://dx.doi.org/10.1371/journal.pone.0062082] [PMID: 23646116]
[59]
Utsugi T, Shibata J, Sugimoto Y, et al. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res 1996; 56(12): 2809-14.
[PMID: 8665518]
[60]
Anand U, Biswas P, Kumar V, et al. Podophyllum hexandrum and its active constituents: Novel radioprotectants. Biomed Pharmacother 2022; 146: 112555.
[http://dx.doi.org/10.1016/j.biopha.2021.112555] [PMID: 34954639]
[61]
Ventola CL. The nanomedicine revolution: Part 1: Emerging concepts. P&T 2012; 37(9): 512-25.
[PMID: 23066345]
[62]
Lee SO, Joo SH, Kwak AW, et al. Podophyllotoxin induces rosmediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling. Biomol Ther 2021; 29(6): 658-66.
[http://dx.doi.org/10.4062/biomolther.2021.143] [PMID: 34642263]
[63]
Lee SJ, Hong GY, Jeong YI, et al. Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 2012; 433(1-2): 121-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.048] [PMID: 22561793]
[64]
Qu C, Chen Z. Antitumor effect of water decoctions of taxus cuspidate on pancreatic cancer. Evid Based Complement Alternat Med 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/291675] [PMID: 24719642]
[65]
Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H, Aflatoonian B. Comparison of synthetic and natural taxol extracted from taxus plant (taxus baccata) on growth of ovarian cancer cells under in vitro condition. EurAsian J Biosci 2018; 12(2): 413-8.
[66]
Taneja SC, Qazi GN. Bioactive molecues in medicinal plants: A perspective in their therapeutic action. Drug Discov Dev 2007; 1: 1-50.
[67]
Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 2003; 3(3): 147-58.
[http://dx.doi.org/10.1046/j.1359-4117.2003.01090.x] [PMID: 14641821]
[68]
Varun S, Sellappa S. In vitro screeening of phytochemicals and anticancer activity of Argemone mexicana leaf extract. Methods 2014; 11: 12.
[69]
Komuraiah B, Chinde S, Kumar AN, et al. Isolation of phytochemicals from anticancer active extracts of syzygium alternifolium walp. leaf. Pharmacogn J 2014; 6(4): 83-5.
[http://dx.doi.org/10.5530/pj.2014.4.13]
[70]
Paul J, Gnanam R, Jayadeepa R, Arul L. Anti cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anticancerous leads. Curr Top Med Chem 2013; 13(14): 1666-73.
[http://dx.doi.org/10.2174/15680266113139990117] [PMID: 23889049]
[71]
Simon SE. Jayakumar F.A. Antioxidant activity and anticancer study on phytochemicals extract from tubers of Gloriosa superba against human cancer cell (HEP-G2). J Pharmacogn Phytochem 2016; 4(4): 7-12.
[72]
Jenifer DR, Malathy BR, Ariya SS. In vitro and in silico studies on the biochemistry and anti-cancer activity of phytochemicals from Plumbago zeylanica. Indian J Biochem Biophys 2021; 58: 272-83.
[73]
Isbilen O, Volkan E. Anticancer activities of allium sativum L. against MCF-7 and MDA-MB-231 breast cancer cell lines mediated by caspase-3 and caspase-9. Cyprus J Med Sci 2021; 5(4): 305-12.
[http://dx.doi.org/10.5152/cjms.2020.1848]
[74]
Jung Park E, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002; 21(3/4): 231-55.
[http://dx.doi.org/10.1023/A:1021254725842] [PMID: 12549763]
[75]
Huang KC. The pharmacology of Chinese herbs. In: Routledge: CRC press 1998.
[http://dx.doi.org/10.4324/9780367801892]
[76]
Wang SJ, Gao Y, Chen H, et al. Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 2010; 293(1): 99-108.
[http://dx.doi.org/10.1016/j.canlet.2010.01.001] [PMID: 20137856]
[77]
Zhang CZ, Zhang H, Yun J, Chen GG, Lai PBS. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 2012; 83(9): 1278-89.
[http://dx.doi.org/10.1016/j.bcp.2012.02.002] [PMID: 22342732]
[78]
He J, Ning C, Wang Y, et al. Natural plant flavonoid apigenin directly disrupts Hsp90/Cdc37 complex and inhibits pancreatic cancer cell growth and migration. J Funct Foods 2015; 18: 10-21.
[http://dx.doi.org/10.1016/j.jff.2015.06.052]
[79]
Ghosh S, Dutta N, Banerjee P, et al. Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Radic Biol Med 2021; 172: 136-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.05.037] [PMID: 34097996]
[80]
Jeddi F, Soozangar N, Sadeghi MR, et al. Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed Pharmacother 2018; 97: 286-92.
[http://dx.doi.org/10.1016/j.biopha.2017.10.129] [PMID: 29091877]
[81]
Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7(1): 11624.
[http://dx.doi.org/10.1038/ncomms11624] [PMID: 27211851]
[82]
Keshet Y, Seger R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661: 3-38.
[http://dx.doi.org/10.1007/978-1-60761-795-2_1] [PMID: 20811974]
[83]
Akev N, Candoken E, Erdem Kuruca S. Comparative study on the anticancer drug potential of a lectin purified from aloe vera and aloe-emodin. Asian Pac J Cancer Prev 2020; 21(1): 99-106.
[http://dx.doi.org/10.31557/APJCP.2020.21.1.99] [PMID: 31983171]
[84]
Zheng ZQ, Fu YY, Li BH, Zhang ML, Yang XL, Xin CW, et al. PSY-1, a Taxus chinensis var. mairei extract, inhibits cancer cell metastasis by interfering with MMPs. Nat Prod Commun 2014; 9(2): 1934578X1400900228.
[85]
Xu J, Liu Y, Huang KJ, Hou YY, Sun X, Li J. Real-time biosensor platform based on novel sandwich graphdiyne for ultrasensitive detection of tumor marker. Anal Chem 2022; 94(49): 16980-6.
[http://dx.doi.org/10.1021/acs.analchem.2c04278] [PMID: 36445725]
[86]
Jeong JT, Moon JH, Park KH, Shin CS. Isolation and characterization of a new compound from Prunus mume fruit that inhibits cancer cells. J Agric Food Chem 2006; 54(6): 2123-8.
[http://dx.doi.org/10.1021/jf0523770] [PMID: 16536585]
[87]
Sharma V. A polyphenolic compound rottlerin demonstrates significant in vitro cytotoxicity against human cancer cell lines: Isolation and characterization from the fruits of Mallotus philippinensis. J Plant Biochem Biotechnol 2011; 20(2): 190-5.
[http://dx.doi.org/10.1007/s13562-011-0045-6]
[88]
Chen V, Staub RE, Baggett S, et al. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle. PLoS One 2012; 7(1): e30107.
[http://dx.doi.org/10.1371/journal.pone.0030107] [PMID: 22272282]
[89]
Matsushime H, Roussel MF, Ashmun RA, Sherr CJ. Colonystimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 1991; 65(4): 701-13.
[http://dx.doi.org/10.1016/0092-8674(91)90101-4] [PMID: 1827757]
[90]
Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002; 3(9): 663-72.
[http://dx.doi.org/10.1038/nrm906] [PMID: 12209126]
[91]
Chapa-Oliver A, Mejía-Teniente L. Capsaicin: From plants to a cancer-suppressing agent. Molecules 2016; 21(8): 931.
[http://dx.doi.org/10.3390/molecules21080931] [PMID: 27472308]
[92]
Li H, Wang Y, Liu L, et al. Soybean (Glycine max) prevents the progression of breast cancer cells by downregulating the level of histone demethylase JMJD5. J Cancer Res Ther 2018; 14(10) (Suppl.): 609.
[http://dx.doi.org/10.4103/0973-1482.187292] [PMID: 30249876]
[93]
Ma Y, Karunakaran T, Veeraraghavan VP, Mohan SK, Li S. Sesame inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in thyroid cancer cell lines (FTC-133). Biotechnol Bioprocess Eng; BBE 2019; 24(4): 646-52.
[http://dx.doi.org/10.1007/s12257-019-0151-1]
[94]
Ruela-de-Sousa RR, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP. Cytotoxicity of apigenin on leukemia cell lines: Implications for prevention and therapy. Cell Death Dis 2010; 1(1): e19.
[http://dx.doi.org/10.1038/cddis.2009.18] [PMID: 21364620]
[95]
Seo HS, Jo JK, Ku JM, et al. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep 2015; 35(6): e00276.
[http://dx.doi.org/10.1042/BSR20150165] [PMID: 26500281]
[96]
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194(1): 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[97]
Gambini J, López-Grueso R, Olaso-González G, et al. Resveratrol: Distribución, propiedades y perspectivas. Rev Esp Geriatr Gerontol 2013; 48(2): 79-88.
[http://dx.doi.org/10.1016/j.regg.2012.04.007] [PMID: 23332579]
[98]
Xavier CPR, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: The role in MAPK/ERK pathway. Nutr Cancer 2009; 61(4): 564-71.
[http://dx.doi.org/10.1080/01635580802710733] [PMID: 19838929]
[99]
Nadkarni MV, Hartwell JL, Maury PB, Leiter J. Components of podophyllin. XI. Isolation of two new compounds from podophyllum emodi wall. 2. J Am Chem Soc 1953; 75(6): 1308-12.
[http://dx.doi.org/10.1021/ja01102a012]
[100]
Rastogi N, Duggal S, Singh SK, et al. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells. Oncotarget 2015; 6(41): 43310-25.
[http://dx.doi.org/10.18632/oncotarget.6383] [PMID: 26621832]
[101]
Shalabi M, Khilo K, Zakaria MM, Elsebaei MG, Abdo W, Awadin W. Anticancer activity of Aloe vera and Calligonum comosum extracts separetely on hepatocellular carcinoma cells. Asian Pac J Trop Biomed 2015; 5(5): 375-81.
[http://dx.doi.org/10.1016/S2221-1691(15)30372-5]
[102]
Vinogradov S, Wei X. Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine (Lond) 2012; 7(4): 597-615.
[http://dx.doi.org/10.2217/nnm.12.22] [PMID: 22471722]
[103]
Brzeziński J, Migodziński A, Gosek A, Tazbir J, Dedecjus M. Cyclin E expression in papillary thyroid carcinoma: relation to staging. Int J Cancer 2004; 109(1): 102-5.
[http://dx.doi.org/10.1002/ijc.11673] [PMID: 14735474]
[104]
Wang XD, Li CY, Jiang MM, et al. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine 2016; 23(6): 641-53.
[http://dx.doi.org/10.1016/j.phymed.2016.03.003] [PMID: 27161405]
[105]
Jiang M, Zhang L, Liang L, Reza Khedri M. Physico-chemical characterization and anti-laryngeal cancer effects of the gold nanoparticles. Arab J Chem 2023; 16(4): 104545.
[http://dx.doi.org/10.1016/j.arabjc.2023.104545]
[106]
Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 2004; 14(6): 433-9.
[http://dx.doi.org/10.1016/j.semcancer.2004.06.006] [PMID: 15489136]
[107]
Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002; 3(5): 481-90.
[http://dx.doi.org/10.2174/1389200023337171] [PMID: 12369894]
[108]
Zaid H, Silbermann M, Amash A, Gincel D, Abdel-Sattar E, Sarikahya NB. Medicinal plants and natural active compounds for cancer chemoprevention/chemotherapy. Evid Based Complementary Altern Med 2017; 2017.
[109]
Jovanović M, Tenji D, Nikolić B, Srdić-Rajić T, Svirčev E, MitićĆulafić D. In vitro study of two edible polygonoideae plants: phenolic profile, cytotoxicity, and modulation of Keap1-Nrf2 gene expression. Foods 2021; 10(4): 811.
[http://dx.doi.org/10.3390/foods10040811] [PMID: 33918566]
[110]
Akhdar H, Loyer P, Rauch C, Corlu A, Guillouzo A, Morel F. Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur J Cancer 2009; 45(12): 2219-27.
[http://dx.doi.org/10.1016/j.ejca.2009.05.017] [PMID: 19524433]
[111]
Hybertson BM, Gao B, Bose S, McCord JM. Phytochemical combination PB125 activates the Nrf2 pathway and induces cellular protection against oxidative injury. Antioxidants 2019; 8(5): 119.
[http://dx.doi.org/10.3390/antiox8050119] [PMID: 31058853]
[112]
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19(3): 1997-2007.
[PMID: 32104259]
[113]
Lee KH, Hyun MS, Kim JR. Growth factor-dependent activation of the MAPK pathway in human pancreatic cancer: MEK/ERK and p38 MAP kinase interaction in uPA synthesis. Clin Exp Metastasis 2003; 20(6): 499-505.
[http://dx.doi.org/10.1023/A:1025824816021] [PMID: 14598883]
[114]
Liu P, Du R, Yu X. Ursolic acid exhibits potent anticancer effects in human metastatic melanoma cancer cells (SK-MEL-24) via apoptosis induction, inhibition of cell migration and invasion, cell cycle arrest, and inhibition of mitogen-activated protein kinase (MAPK)/ERK signaling pathway. Med Sci Monit 2019; 25: 1283-90.
[http://dx.doi.org/10.12659/MSM.913069] [PMID: 30772887]
[115]
Qu JL, Qu XJ, Zhao MF, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 2009; 41(12): 875-80.
[http://dx.doi.org/10.1016/j.dld.2009.04.006] [PMID: 19473897]
[116]
Roy SK, Srivastava RK, Shankar S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 2010; 5(1): 10.
[http://dx.doi.org/10.1186/1750-2187-5-10] [PMID: 20642839]
[117]
Mori A, Lehmann S, O’Kelly J, et al. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 2006; 66(6): 3222-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0087] [PMID: 16540674]
[118]
Roy A, Jauhari N, Bharadvaja N. Medicinal plants as a potential source of chemopreventive agents. Anticancer Plants: Natural Products and Biotechnological Implements 2018; 2: 109-39.
[http://dx.doi.org/10.1007/978-981-10-8064-7_6]
[119]
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells 2020; 9(9): 2125.
[http://dx.doi.org/10.3390/cells9092125] [PMID: 32961708]
[120]
Zhu M, Yu X, Zheng Z, Huang J, Yang X, Shi H. Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytother Res 2020; 34(4): 817-24.
[http://dx.doi.org/10.1002/ptr.6563] [PMID: 31782192]
[121]
Al-Radadi NS. Green biosynthesis of flaxseed gold nanoparticles (Au-NPs) as potent anti-cancer agent against breast cancer cells. J Saudi Chem Soc 2021; 25(6): 101243.
[http://dx.doi.org/10.1016/j.jscs.2021.101243]
[122]
Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S. Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 2014; 49(1): 160-72.
[http://dx.doi.org/10.1016/j.procbio.2013.10.007]
[123]
Ma L, Zhang M, Zhao R, Wang D, Ma Y, Ai L. Plant natural products: promising resources for cancer chemoprevention. Molecules 2021; 26(4): 933.
[http://dx.doi.org/10.3390/molecules26040933] [PMID: 33578780]
[124]
Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C 2016; 68: 430-5.
[http://dx.doi.org/10.1016/j.msec.2016.03.101] [PMID: 27524038]
[125]
Priyadharshini Raman R, Parthiban S, Srinithya B, et al. Biogenic silver nanoparticles synthesis using the extract of the medicinal plant Clerodendron serratum and its in-vitro antiproliferative activity. Mater Lett 2015; 160: 400-3.
[http://dx.doi.org/10.1016/j.matlet.2015.08.009]
[126]
Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH. Suppressing growth, migration, and invasion of human hepatocellular carcinoma HepG2 cells by Catharanthus roseus-silver nanoparticles. Toxicol In vitro 2020; 67: 104910.
[http://dx.doi.org/10.1016/j.tiv.2020.104910] [PMID: 32526345]
[127]
Suman TY, Radhika Rajasree SR, Kanchana A, Elizabeth SB. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 2013; 106: 74-8.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.037] [PMID: 23434694]
[128]
Aljabali AAA, Obeid MA, Bakshi HA, et al. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules 2022; 27(6): 1827.
[http://dx.doi.org/10.3390/molecules27061827] [PMID: 35335190]
[129]
Shedrack RK, Peter K, Judith S, Dominic O, Peter M, Naomi M. Biogenic synthesis of silver nanoparticles using Azadirachta indica methanolic bark extract and their anti-proliferative activities against DU-145 human prostate cancer cells. Afr J Biotechnol 2022; 21(2): 64-72.
[130]
Zhou X, Wang W, Li P, et al. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res 2016; 23(1): 29-34.
[http://dx.doi.org/10.3727/096504015X14452563486011] [PMID: 26802648]
[131]
Buhrmann C, Shayan P, Kraehe P, Popper B, Goel A, Shakibaei M. Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol 2015; 98(1): 51-68.
[http://dx.doi.org/10.1016/j.bcp.2015.08.105] [PMID: 26310874]
[132]
Desai A, Qazi G, Ganju R, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab 2008; 9(7): 581-91.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy