Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

FRT Capability Enhancement of DFIG-based Wind Turbine with Coordination Control of MSVC and FCL

Author(s): Long Xian* and Lizhen Wu

Volume 17, Issue 7, 2024

Published on: 28 September, 2023

Page: [666 - 676] Pages: 11

DOI: 10.2174/2352096516666230816121231

Price: $65

Abstract

Objective: To address the problems of various FRT (fault ride through) schemes in DFIG (doubly fed induction generator) systems, especially their applicability under different voltage sags, a combination scheme of an MSVC (minimized series voltage compensator) and FCL (fault current limiter) is proposed.

Methods: Based on the analysis of the mathematical model of the DFIG and considering the capacity and volume in the process of practical engineering, the application structure and specific control strategy of an MSVC in DFIG systems are designed on the stator side, and the application effect is analyzed theoretically. Simultaneously, the application structure and control strategy of the FCL is proposed on the rotor side, and the application effect of the combination scheme is theoretically deduced and analyzed. Moreover, the simulation model is built on the MATLAB/Simulink platform.

Results: The simulation results show that the scheme can quickly and effectively recover the fault voltage of the DFIG under different voltage sag degrees and has better dynamic performance. At the same time, it can effectively limit the fault current and suppress the DC-link voltage of the rotor side, and the transition process is relatively stable.

Conclusion: The purpose of improving the FRT capability of the DFIG system is realized.

Graphical Abstract

[1]
L. Xian, P. Wang, L. Wu, X. Zhang, and T. Pei, "A comprehensive FRT scheme of DFIG based on an improved DC chopper and matching control strategy", I. J. Sys. Assur. Eng.Management, vol. 13, no. 5, pp. 2234-2247, 2022.
[http://dx.doi.org/10.1007/s13198-022-01631-3]
[2]
D. Zhang, H. Xu, L. Qiao, and L. Chen, "LVRT capability enhancement of DFIG based wind turbine with coordination control of dynamic voltage restorer and inductive fault current limiter", PLoS One, vol. 14, no. 8, p. e0221410, 2019.
[http://dx.doi.org/10.1371/journal.pone.0221410] [PMID: 31454380]
[3]
M.K. Döşoğlu, "Crowbar hardware design enhancement for fault ride through capability in doubly fed induction generator-based wind turbines", ISA Trans., vol. 104, pp. 321-328, 2020.
[http://dx.doi.org/10.1016/j.isatra.2020.05.024] [PMID: 32423617]
[4]
A. Jalilian, S.B. Naderi, M. Negnevitsky, M. Tarafdar Hagh, and K.M. Muttaqi, "Controllable DC-link fault current limiter augmentation with DC chopper to improve fault ride-through of DFIG", IET Renew. Power Gener., vol. 11, no. 2, pp. 313-324, 2017.
[http://dx.doi.org/10.1049/iet-rpg.2016.0146]
[5]
A.M. Rauf, V. Khadkikar, and M.S. El Moursi, "A new fault ride-through (frt) topology for induction generator based wind energy conversion systems", IEEE Trans. Power Deliv., vol. 34, no. 3, pp. 1129-1137, 2019.
[http://dx.doi.org/10.1109/TPWRD.2019.2894378]
[6]
K.D.E. Kerrouche, L. Wang, A. Mezouar, L. Boumediene, and A. Van Den Bossche, "Fractional-order sliding mode control for D-STATCOM connected wind farm based DFIG under voltage unbalanced", Arab. J. Sci. Eng., vol. 44, no. 3, pp. 2265-2280, 2019.
[http://dx.doi.org/10.1007/s13369-018-3412-y]
[7]
X. Yan, G. Venkataramanan, P.S. Flannery, Y. Wang, and B. Zhang, "Evaluation of the effect of voltage sags due to grid balanced and unbalanced faults on dfig wind turbines", EPE J., vol. 20, no. 4, pp. 51-61, 2010.
[http://dx.doi.org/10.1080/09398368.2010.11463778]
[8]
C. Wessels, F. Gebhardt, and F.W. Fuchs, "Fault ride-through of a dfig wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults", IEEE Trans. Power Electron., vol. 26, no. 3, pp. 807-815, 2011.
[http://dx.doi.org/10.1109/TPEL.2010.2099133]
[9]
J. Yao, H. Li, Z. Chen, X. Xia, X. Chen, Q. Li, and Y. Liao, "Enhanced control of a dfig-based wind-power generation system with series grid-side converter under unbalanced grid voltage conditions", IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3167-3181, 2013.
[http://dx.doi.org/10.1109/TPEL.2012.2219884]
[10]
A. Rini Ann Jerin, N. Prabaharan, K. Palanisamy, and S. Umashankar, "FRT Capability in dfig based wind turbines using dvr with combined feed-forward and feed-back control", Energy Procedia, vol. 138, no. 1, pp. 1184-1189, 2017.
[http://dx.doi.org/10.1016/j.egypro.2017.10.233]
[11]
S.E. Silveira, S.M. Silva, and B.J. Cardoso Filho, "Fault ride-through enhancement in DFIG with control of stator flux using minimised series voltage compensator", IET Renew. Power Gener., vol. 12, no. 11, pp. 1234-1240, 2018.
[http://dx.doi.org/10.1049/iet-rpg.2017.0804]
[12]
W. Guo, L. Xiao, S. Dai, X. Xu, Y. Li, and Y. Wang, "Evaluation of the performance of btfcls for enhancing lvrt capability of dfiG", IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3623-3637, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2340852]
[13]
G. Rashid, and M.H. Ali, "Transient stability enhancement of doubly fed induction machine-based wind generator by bridge-type fault current limiter", IEEE Trans. Energ. Convers., vol. 30, no. 3, pp. 939-947, 2015.
[http://dx.doi.org/10.1109/TEC.2015.2400220]
[14]
G. Rashid, and M.H. Ali, "Nonlinear control-based modified bfcl for lvrt capacity enhancement of dfig-based wind farm", IEEE Trans. Energ. Convers., vol. 32, no. 1, pp. 284-295, 2017.
[http://dx.doi.org/10.1109/TEC.2016.2603967]
[15]
M. Firouzi, and G.B. Gharehpetian, "LVRT Performance Enhancement of DFIG-Based Wind Farms by Capacitive Bridge-Type Fault Current Limiter", IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1118-1125, 2018.
[http://dx.doi.org/10.1109/TSTE.2017.2771321]
[16]
L. Chen, C. Deng, F. Zheng, S. Li, Y. Liu, and Y. Liao, "Fault ride-through capability enhancement of dfig-based wind turbine with a flux-coupling-type sfcl employed at different locations", IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1-5, 2015.
[http://dx.doi.org/10.1109/TASC.2014.2373511] [PMID: 32863691]
[17]
Chen Lei, Zheng Feng, Deng Changhong, Li Zhe, and Guo Fang, "Fault ride-through capability improvement of dfig-based wind turbine by employing a voltage-compensation-type active SFCL", Can. J. Electr. Comput. Eng., vol. 38, no. 2, pp. 132-142, 2015.
[http://dx.doi.org/10.1109/CJECE.2015.2406665]
[18]
F. Oliveira, A. Amorim, L. Encarnação, J. Fardin, M. Orlando, S. Silva, and D. Simonetti, "Enhancing LVRT of DFIG by using a superconducting current limiter on rotor circuit", Energies, vol. 9, no. 1, p. 16, 2015.
[http://dx.doi.org/10.3390/en9010016]
[19]
L. Chen, H. Chen, J. Yang, H. He, X. Liu, Y. Yu, Y. Xu, Z. Wang, and L. Ren, "Conceptual design and performance evaluation of a 35-kV/500-A Flux-Coupling-Type SFCL for protection of a dfig-based wind farm", IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-7, 2018.
[http://dx.doi.org/10.1109/TASC.2017.2775566]
[20]
K. Du, X. Xiao, Y. Wang, Z. Zheng, and C. Li, "Enhancing fault ride-through capability of dfig-based wind turbines using inductive sfcl with coordinated control", IEEE Trans. Appl. Supercond., vol. 29, no. 2, pp. 1-1, 2018.
[http://dx.doi.org/10.1109/TASC.2017.2789290]
[21]
X.Y. Xiao, R.H. Yang, X.Y. Chen, and Z.X. Zheng, "Integrated dfig protection with a modified smes-fcl under symmetrical and asymmetrical faults", IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 1-6, 2018.
[http://dx.doi.org/10.1109/TASC.2018.2802782]
[22]
L. Chen, G. Li, H. Chen, Y. Tao, X. Tian, X. Liu, Y. Xu, L. Ren, and Y. Tang, "Combined use of a resistive sfcl and dc-link regulation of a smes for frt enhancement of a dfig wind turbine under different faults", IEEE Trans. Appl. Supercond., vol. 29, no. 2, pp. 1-8, 2018.
[23]
M.N. Musarrat, A. Fekih, and M.R. Islam, "An improved fault ride through scheme and control strategy for dfig-based wind energy systems", IEEE Trans. Appl. Supercond., vol. 31, no. 8, pp. 1-6, 2021.
[http://dx.doi.org/10.1109/TASC.2021.3096181]
[24]
M.N. Musarrat, and A. Fekih, "A fault tolerant control framework for dfig-based wind energy conversion systems in a hybrid wind/pv microgrid", IEEE J. Emerging and Selected Topics in Power Electronics, PP, no. 99, pp. 1-1, 2020.
[25]
K.S. Xiahou, Y. Liu, M.S. Li, and Q.H. Wu, "Sensor fault-tolerant control of DFIG based wind energy conversion systems", Int. J. Electr. Power Energy Syst., vol. 117, p. 105563, 2020.
[http://dx.doi.org/10.1016/j.ijepes.2019.105563]
[26]
E. Kamal, and A. Aitouche, "Robust fault tolerant control of DFIG wind energy systems with unknown inputs", Renew. Energy, vol. 56, pp. 2-15, 2013.
[http://dx.doi.org/10.1016/j.renene.2012.10.024]
[27]
S. Ma, H. Geng, L. Liu, G. Yang, and B.C. Pal, "Grid-synchronization stability improvement of large scale wind farm during severe grid fault", IEEE Trans. Power Syst., vol. 33, no. 1, pp. 216-226, 2018.
[http://dx.doi.org/10.1109/TPWRS.2017.2700050]
[28]
M.J. Morshed, and A. Fekih, "A new fault ride-through control for DFIG-based wind energy systems", Electr. Power Syst. Res., vol. 146, pp. 258-269, 2017.
[http://dx.doi.org/10.1016/j.epsr.2017.02.010]
[29]
A.S. Zalhaf, M. Abdel-Salam, D.E.A. Mansour, M. Ahmed, and S. Ookawara, "An experimental study of lightning overvoltages on a small-scale wind turbine model", Energy Procedia, vol. 156, no. 156, pp. 442-446, 2019.
[http://dx.doi.org/10.1016/j.egypro.2018.11.089]
[30]
V. Mucsi, A.S. Ayub, F. Muhammad-Sukki, M. Zulkipli, M.N. Muhtazaruddin, A.S. Mohd Saudi, and J.A. Ardila-Rey, "Lightning protection methods for wind turbine blades: An alternative approach", Appl. Sci., vol. 10, no. 6, p. 2130, 2020.
[http://dx.doi.org/10.3390/app10062130]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy