Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Recent Advances in Various Inorganic Nanoparticle Embedded Chitosan-based Multifunctional Materials for Wound Healing

Author(s): Dipsikha Bhattacharya*, Lipika Ray, Panchanan Pramanik and Jitendra Kumar Pandey

Volume 13, Issue 2, 2023

Published on: 22 August, 2023

Page: [75 - 90] Pages: 16

DOI: 10.2174/2468187313666230816095330

Price: $65

Abstract

Scarless wound management remains a clinical challenge worldwide because of its complicated and overlapping phases of inflammation, clearing, and regeneration. Among the currently available dressing materials, hydrogels have attracted emerging attention as potential wound dressing materials because of their specific properties, such as porosity, tissue-mimicking architecture, softness, and improved mechanical, biological as well as physicochemical properties. However, naturally driven hydrogels have shown several advantages over conventional hydrogels because of their biodegradability, biocompatibility, high mechanical strength, and functionality. Recently, nanoparticle (NPs) integrated polymeric hydrogels (metals, non-metals, metal oxides, and polymeric moieties) have been established as analogous to these naturally driven hydrogels because of the synergistic effects of the NPs and polymers in the three-dimensional composite material. Over the years, researchers have reported the synthesis and potential applications of diverse inorganic and organic nanocomposite gels with antioxidant or antibacterial properties where they have exploited the intelligent incorporation of biomolecules into the NP-polymeric network that are beneficial for wound healing. Among various natural polymers as hydrogel matrix, chitosan-mediated hydrogel dressings have received extensive interest resulting in improved mechanical, biological, and physicochemical properties due to the well-reported antibacterial, antitumor, antioxidant, and tissue regeneration efficacies of chitosan polymer. This review is intended to summarize the recent developments of inorganic nanoparticle-incorporated chitosan-based hydrogels as wound dressing materials where various synthetic methodologies of these nanocomposite gels are extensively discussed via incorporating nanoparticles, active biomolecules, and other substances into the intrinsic structure of the gels. In addition, the future and prospects of chitosan-based nanocomposite hydrogels as a novel wound dressing as well as tissue engineering materials are also highlighted.

« Previous
Graphical Abstract

[1]
Zhao X, Sun X, Yildirimer L, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 2017; 49: 66-77.
[http://dx.doi.org/10.1016/j.actbio.2016.11.017] [PMID: 27826004]
[2]
Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018; 183: 185-99.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.044] [PMID: 30172244]
[3]
Zhang M, Chen S, Zhong L, Wang B, Wang H, Hong F. Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing. Int J Biol Macromol 2020; 143: 235-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.046] [PMID: 31816370]
[4]
Biondi M, Borzacchiello A, Mayol L, Ambrosio L. Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels 2015; 1(2): 162-78.
[http://dx.doi.org/10.3390/gels1020162] [PMID: 30674171]
[5]
Liang Y, Zhao X, Hu T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing. Small 2019; 15(12): 1900046-63.
[http://dx.doi.org/10.1002/smll.201900046]
[6]
Ghobril C, Grinstaff MW. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem Soc Rev 2015; 44(7): 1820-35.
[http://dx.doi.org/10.1039/C4CS00332B] [PMID: 25649260]
[7]
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014; 111(3): 441-53.
[http://dx.doi.org/10.1002/bit.25160] [PMID: 24264728]
[8]
Tavakoli J, Mirzaei S, Tang Y. Cost-effective double-layer hydrogel composites for wound dressing applications. Polymers 2018; 10(3): 305-20.
[http://dx.doi.org/10.3390/polym10030305] [PMID: 30966340]
[9]
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199: 445-60.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.114] [PMID: 30143150]
[10]
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019; 111: 134-51.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.12.019]
[11]
Mokhtari PN, Ghorbani M, Roshangar L, Rad JS. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 2019; 117: 64-76.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.004]
[12]
Bi B, Ma M, Lv S, Zhuo R, Jiang X. In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture. Carbohydr Polym 2019; 212: 368-77.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.058] [PMID: 30832869]
[13]
Wahid F, Wang HS, Zhong C, Chu LQ. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr Polym 2017; 165: 455-61.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.085] [PMID: 28363572]
[14]
Wang H, Zhao Z, Liu Y, Shao C, Bian F, Zhao Y. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci Adv 2018; 4(6): eaat2816.
[http://dx.doi.org/10.1126/sciadv.aat2816]
[15]
Tonsomboon K, Butcher AL, Oyen ML. Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Mater Sci Eng C 2017; 72: 220-7.
[http://dx.doi.org/10.1016/j.msec.2016.11.025]
[16]
Pinnaratip R, Bhuiyan MSA, Meyers K, Rajachar RM, Lee BP. Multifunctional biomedical adhesives. Adv Healthc Mater 2019; 8(11): 1801568.
[http://dx.doi.org/10.1002/adhm.201801568]
[17]
Wahid F, Zhao X-J, Jia SR, Bai H, Zhong C. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Compos, Part B Eng 2020; 200: 108208.
[http://dx.doi.org/10.1016/j.compositesb.2020.108208]
[18]
Zhao W, Shi Z, Chen X, Yang G, Lenardi C, Liu C. Microstructural and mechanical characteristics of PHEMA-based nanofibre-reinforced hydrogel under compression. Compos, Part B Eng 2015; 76: 292-9.
[http://dx.doi.org/10.1016/j.compositesb.2015.02.033]
[19]
Sousa MP, Neto AI, Correia TR, et al. Bioinspired multilayer membranes as potential adhesive patches for skin wound healing. Biomater Sci 2018; 6(7): 1962-75.
[http://dx.doi.org/10.1039/C8BM00319J] [PMID: 29850674]
[20]
Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015; 11(1): 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004]
[21]
Li X, Cho B, Martin R, et al. Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Sci Transl Med 2019; 11(490): eaau6210.
[http://dx.doi.org/10.1126/scitranslmed.aau6210]
[22]
Bhattacharya S, Samanta SK. Soft-nanocomposites of nanoparticles and nanocarbons with supramolecular and polymer gels and their applications. Chem Rev 2016; 116(19): 11967-2028.
[http://dx.doi.org/10.1021/acs.chemrev.6b00221] [PMID: 27564453]
[23]
Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr Polym 2018; 195: 453-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.103] [PMID: 29804999]
[24]
Zhang K, Jia Z, Yang B, et al. Adaptable hydrogels mediate cofactor-assisted activation of biomarker-responsive drug delivery via positive feedback for enhanced tissue regeneration. Adv Sci 2018; 5(12): 1800875-87.
[http://dx.doi.org/10.1002/advs.201800875]
[25]
Song HS, Kwon OS, Kim JH, Conde J, Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 2017; 89(Pt 1): 187-200.
[http://dx.doi.org/10.1016/j.bios.2016.03.045] [PMID: 27020065]
[26]
Wei Y, Zeng Q, Wang M, Huang J, Guo X, Wang L. Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens Bioelectron 2019; 131: 156-62.
[http://dx.doi.org/10.1016/j.bios.2019.02.015] [PMID: 30831417]
[27]
Kouser R, Vashist A, Zafaryab M, Rizvi MA, Ahmad S. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater Sci Eng C 2018; 84: 168-79.
[http://dx.doi.org/10.1016/j.msec.2017.11.018]
[28]
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Mohandas A, Hwang NS, Jayakumar R. Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. Int J Biol Macromol 2019; 122: 320-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.182] [PMID: 30401650]
[29]
Mahmoud NN, Hikmat S, Abu Ghith D, et al. Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. Int J Pharm 2019; 565: 174-86.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.079] [PMID: 31075436]
[30]
Carrow JK, Thakur T, Xavier JR, Parani M, Bayless KJ. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater 2018; 70: 35-47.
[http://dx.doi.org/10.1016/j.actbio.2018.01.045] [PMID: 29425720]
[31]
Wahid F, Zhong C, Wang HS, Hu XH, Chu LQ. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 2017; 9(12): 636-63.
[http://dx.doi.org/10.3390/polym9120636] [PMID: 30965938]
[32]
Liu M, Ishida Y, Ebina Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015; 517(7532): 68-72.
[http://dx.doi.org/10.1038/nature14060] [PMID: 25557713]
[33]
Brom CRV, Anac I, Roskamp RF, et al. The swelling behaviour of thermoresponsive hydrogel/silicananoparticle composites. J Mater Chem 2010; 20: 4827-39.
[http://dx.doi.org/10.1039/b927314j]
[34]
Ng VWL, Chan JMW, Sardon H, et al. Antimicrobial hydrogels: A new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 2014; 78: 46-62.
[http://dx.doi.org/10.1016/j.addr.2014.10.028] [PMID: 25450263]
[35]
Kumar A, Jangir LK, Kumari Y, Kumar M, Kumar V, Awasthi K. Electrical behavior of dual-morphology polyaniline. J Appl Polym Sci 2016; 133(41): 43260-74.
[http://dx.doi.org/10.1002/app.44091]
[36]
García-Astrain C, Chen C, Burón M, et al. Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 2015; 16(4): 1301-10.
[http://dx.doi.org/10.1021/acs.biomac.5b00101] [PMID: 25785360]
[37]
Wang W, Zhang Y, Liu W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 2017; 71: 1-25.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.04.001]
[38]
Pan C, Liu L, Gai G. Recent progress of graphene-containing polymer hydrogels: Preparations, properties, and applications. Macromol Mater Eng 2017; 302(10): 1700184-98.
[http://dx.doi.org/10.1002/mame.201700184]
[39]
Adewunmi AA, Ismail S, Sultan AS. Carbon nanotubes (cnts) nanocomposite hydrogels developed for various applications: A critical review. J Inorg Organomet Polym Mater 2016; 26(4): 717-37.
[http://dx.doi.org/10.1007/s10904-016-0379-6]
[40]
Zhang D, Tang Y, Yang J, et al. De novo design of allochroic zwitterions. Mater Today 2022; 60: 17-30.
[http://dx.doi.org/10.1016/j.mattod.2022.09.001]
[41]
Moughton AO, Hillmyer MA, Lodge TP. Multicompartment block polymer micelles. Macromolecules 2012; 45(1): 2-19.
[http://dx.doi.org/10.1021/ma201865s]
[42]
Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 2012; 64(9): 836-51.
[http://dx.doi.org/10.1016/j.addr.2012.02.002] [PMID: 22342438]
[43]
Schlüter AD, Halperin A, Kröger M, Vlassopoulos D, Wegner G, Zhang B. Dendronized polymers: Molecular objects between conventional linear polymers and colloidal particles. ACS Macro Lett 2014; 3(10): 991-8.
[http://dx.doi.org/10.1021/mz500376e] [PMID: 35610802]
[44]
Zhang K, Feng Q, Xu J, et al. Self-assembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (mg 2+) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking. Adv Funct Mater 2017; 27(34): 1701642-53.
[http://dx.doi.org/10.1002/adfm.201701642]
[45]
Jaiswal MK, Xavier JR, Carrow JK, Desai P, Alge D, Gaharwar AK. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 2016; 10(1): 246-56.
[http://dx.doi.org/10.1021/acsnano.5b03918] [PMID: 26670176]
[46]
Le Ferrand H, Bolisetty S, Demirörs AF, Libanori R, Studart AR, Mezzenga R. Magnetic assembly of transparent and conducting graphene-based functional composites. Nat Commun 2016; 7(1): 12078-87.
[http://dx.doi.org/10.1038/ncomms12078] [PMID: 27354243]
[47]
Souza RD, Zahedi P, Allen CJ, Miller MP. Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials 2009; 30: 3818-24.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.003] [PMID: 19394688]
[48]
Muzzarelli RAA. Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydr Polym 1993; 20(1): 7-16.
[http://dx.doi.org/10.1016/0144-8617(93)90027-2]
[49]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[50]
Zhang D, Zhou W, Wei B, et al. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydr Polym 2015; 125: 189-99.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.034] [PMID: 25857974]
[51]
Paul W, Sharma CP. Chitosan and alginate wound dressings: A short review. Trends Biomater Artif Organs 2004; 18: 18-23.
[52]
Altiok D, Altiok E, Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med 2010; 21(7): 2227-36.
[http://dx.doi.org/10.1007/s10856-010-4065-x] [PMID: 20372985]
[53]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36(8): 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[54]
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan-based nanoparticles in skin wound healing. Asian Journal of Pharmaceutical Sciences 2022; 17(3): 299-332.
[http://dx.doi.org/10.1016/j.ajps.2022.04.001]
[55]
Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: A review. Int J Biol Macromol 2019; 127: 460-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.072] [PMID: 30660567]
[56]
Duceac IA, Verestiuc L, Dimitriu CD, Maier V, Coseri S. Design and preparation of new multifunctional hydrogels based on chitosan/acrylic polymers for drug delivery and wound dressing applications. Polymers 2020; 12(7): 1473-93.
[http://dx.doi.org/10.3390/polym12071473] [PMID: 32630040]
[57]
Chung YC, Chen CY. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 2008; 99(8): 2806-14.
[http://dx.doi.org/10.1016/j.biortech.2007.06.044] [PMID: 17697776]
[58]
Robson ME, Boyd J, Borgen PI, Cody HS III. Hereditary breast cancer. Curr Probl Surg 2001; 38(6): 387-480.
[http://dx.doi.org/10.1016/S0011-3840(01)70035-4]
[59]
Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S. Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 2003; 53(3): 337-42.
[http://dx.doi.org/10.1016/S0144-8617(03)00076-6]
[60]
Muzzarelli RAA, Morganti P, Morganti G, et al. Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 2007; 70(3): 274-84.
[http://dx.doi.org/10.1016/j.carbpol.2007.04.008]
[61]
Sabab A, Vreugde S, Jukes A, Wormald PJ. The potential of chitosan-based haemostats for use in neurosurgical setting: Literature review. J Clin Neurosci 2021; 94: 128-34.
[http://dx.doi.org/10.1016/j.jocn.2021.10.018] [PMID: 34863426]
[62]
Feng P, Luo Y, Ke C, et al. Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Front Bioeng Biotechnol 2021; 9: 650598.
[http://dx.doi.org/10.3389/fbioe.2021.650598] [PMID: 33681176]
[63]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[64]
Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 2009; 76(2): 167-82.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.002]
[65]
Milosavljević NB, Kljajević LM, Popović IG, Filipović JM, Kalagasidis Krušić MT. Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength. Polym Int 2010; 59(5): 686-94.
[http://dx.doi.org/10.1002/pi.2756]
[66]
Singh A, Narvi SS, Dutta PK, Pandey ND. External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull Mater Sci 2006; 29(3): 233-8.
[http://dx.doi.org/10.1007/BF02706490]
[67]
Goy RC. Britto Dd, Assis OBG. Polímeros. Ciência e Tecnologia 2009; 19: 241-7.
[68]
Liu R, Xu X, Zhuang X, Cheng B. Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 2014; 101: 1116-21.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.056] [PMID: 24299882]
[69]
Muzzarelli R, El Mehtedi M, Bottegoni C, Aquili A, Gigante A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 2015; 13(12): 7314-38.
[http://dx.doi.org/10.3390/md13127068] [PMID: 26690453]
[70]
Liu H, Wang C, Li C, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances 2018; 8(14): 7533-49.
[http://dx.doi.org/10.1039/C7RA13510F] [PMID: 35539132]
[71]
Choi JS, Yoo HS. Chitin-based materials have been widely used in the biomedical field. J Biomed Mater Res 2010; 95A: 564-73.
[72]
Giri TK, Thakur A, Alexander A, Ajazuddin H. Modified chitosan hydrogels as drug delivery and tissue engineering systems: Present status and applications. Acta Pharm Sin B 2012; 2: 439-49.
[http://dx.doi.org/10.1016/j.apsb.2012.07.004]
[73]
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[74]
Tiena C, Lacroix M, Ispas-Szabo P, Mateescu MA. N-acylated chitosan: Hydrophobic matrices for controlled drug release. J Control Release 2003; 93: 1-13.
[http://dx.doi.org/10.1016/S0168-3659(03)00327-4] [PMID: 14602417]
[75]
Ruel-Gariépya E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002; 82: 373-83.
[http://dx.doi.org/10.1016/S0168-3659(02)00146-3] [PMID: 12175750]
[76]
Brunel F, El Gueddari NE, Moerschbacher BM. Complexation of copper(II) with chitosan nanogels: Toward control of microbial growth. Carbohydr Polym 2013; 92(2): 1348-56.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.025] [PMID: 23399164]
[77]
Pérez-Álvarez L, Ruiz-Rubio L, Artetxe B, Vivanco M, Gutiérrez-Zorrilla JM, Vilas-Vilela JL. Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Carbohydr Polym 2019; 213: 159-67.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.091] [PMID: 30879655]
[78]
Long DD, Luyen DV. Chitosan-carboxymethylcellulose hydrogels as supports for cell immobilization. J Macromol Sci Part A Pure Appl Chem 1996; 33(12): 1875-84.
[http://dx.doi.org/10.1080/10601329608011013]
[79]
Polnok A, Verhoef JC, Borchard G, Sarisuta N, Junginger HE. In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on superporous hydrogels. Int J Pharm 2004; 269(2): 303-10.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.022] [PMID: 14706242]
[80]
Richardson S, Gorton L. Characterisation of the substituent distribution in starch and cellulose derivatives. Anal Chim Acta 2003; 497(1-2): 27-65.
[http://dx.doi.org/10.1016/j.aca.2003.08.005]
[81]
Wongpanit P, Sanchavanakit N, Pavasant P, Supaphol P, Tokura S, Rujiravanit R. Preparation and characterization of microwave-treated carboxymethyl chitin and carboxymethyl chitosan films for potential use in wound care application. Macromol Biosci 2005; 5(10): 1001-12.
[http://dx.doi.org/10.1002/mabi.200500081] [PMID: 16208633]
[82]
Bashir S, Teo YY, Ramesh S, Ramesh K, Khan AA. N-succinyl chitosan preparation, characterization, properties and biomedical applications: A state of the art review. Rev Chem Eng 2015; 31(6): 563-97.
[http://dx.doi.org/10.1515/revce-2015-0016]
[83]
Li X, Chen S, Zhang B, et al. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int J Pharm 2012; 437(1-2): 110-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.001] [PMID: 22903048]
[84]
Sun G, Feng C, Kong M, et al. Development of part-dissolvable chitosan fibers with surface N-succinylation for wound care dressing. Front Mater Sci 2015; 9(3): 272-81.
[http://dx.doi.org/10.1007/s11706-015-0303-y]
[85]
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 2015; 13(3): 1133-74.
[http://dx.doi.org/10.3390/md13031133] [PMID: 25738328]
[86]
Ramos VM, Rodríguez NM, Díaz MF, Rodríguez MS, Heras A, Agulló E. N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydr Polym 2003; 52(1): 39-46.
[http://dx.doi.org/10.1016/S0144-8617(02)00264-3]
[87]
Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013; 6(4): 1285-309.
[http://dx.doi.org/10.3390/ma6041285] [PMID: 28809210]
[88]
Giri TK, Thakur D, Alexander A, Ajazuddin H. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: Present status and applications. Curr Drug Deliv 2012; 9: 539-55.
[PMID: 22998675]
[89]
Yao R, Zhang R, Luan J, Lin F. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication 2012; 4(2): 025007-18.
[http://dx.doi.org/10.1088/1758-5082/4/2/025007] [PMID: 22556122]
[90]
Alven S, Aderibigbe BA. Int J Biol Macromol 2020; 21: 9656-86.
[91]
Florczyk SJ, Kim DJ, Wood DL, Zhang M. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds. J Biomed Mater Res A 2011; 98A(4): 614-20.
[http://dx.doi.org/10.1002/jbm.a.33153] [PMID: 21721118]
[92]
Sukumar N, Ramachandran T, Kalaiarasi H, Sengottuvelu S. Characterization and in vivo evaluation of silk hydrogel with enhancement of dextrin, rhEGF, and alginate beads for diabetic Wistar Albino wounded rats. J Textil Inst 2015; 106(2): 133-40.
[http://dx.doi.org/10.1080/00405000.2014.906100]
[93]
Momin M, Kurhade S, Khanekar P, Mhatre S. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing. J Wound Care 2016; 25(6): 364-72.
[http://dx.doi.org/10.12968/jowc.2016.25.6.364] [PMID: 27286671]
[94]
Phuc DH, Hiep NT, Chau DNP, et al. Fabrication of hyaluronan-poly(vinylphosphonic acid)-chitosan hydrogel for wound healing application. Int J Polym Sci 2016; 2016: 6723716.
[95]
Zhang P, Chen L, Zhang Q, Hong FF. Using In situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front Microbiol 2016; 7: 260-4.
[http://dx.doi.org/10.3389/fmicb.2016.00260] [PMID: 26973634]
[96]
Fan L, Tan C, Wang L, et al. Preparation, characterization and the effect of carboxymethylated chitosan-cellulose derivatives hydrogels on wound healing. J Appl Polym Sci 2013; 128(5): 2789-96.
[http://dx.doi.org/10.1002/app.38456]
[97]
Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJW. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater 2009; 5(6): 1926-36.
[http://dx.doi.org/10.1016/j.actbio.2009.03.002] [PMID: 19342320]
[98]
Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C 2013; 33(8): 4816-24.
[http://dx.doi.org/10.1016/j.msec.2013.07.044]
[99]
Lin YH, Lin JH, Li TS, et al. Dressing with epigallocatechin gallate nanoparticles for wound regeneration. Wound Repair Regen 2016; 24(2): 287-301.
[http://dx.doi.org/10.1111/wrr.12372] [PMID: 26472668]
[100]
Yang Y, Yuan J, Ni Y, et al. Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Compos, Part B Eng 2022; 243: 110119.
[http://dx.doi.org/10.1016/j.compositesb.2022.110119]
[101]
Andritoiu CV, Cadinoiu AN, Prisacaru AI, Mihaila D, Popa M, Popa IM. New natural biocompatible materials obtained by an environmentally friendly technology, with applications in wound-healing. Environ Eng Manag J 2015; 14: 2185-99.
[http://dx.doi.org/10.30638/eemj.2015.233]
[102]
Yar M, Shahzad S, Siddiqi SA, et al. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: Characterization and in vitro cytocompatibility analysis. Mater Sci Eng C 2015; 56: 154-64.
[http://dx.doi.org/10.1016/j.msec.2015.06.021]
[103]
NacerKhodja A, Mahlous M, Tahtat D, et al. Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: Pharmacological and toxicological tests. Burns 2013; 39: 98-104.
[104]
Lahooti B, Khorram M, Karimi G, Mohammadi A, Emami A. Modeling and optimization of antibacterial activity of the chitosan-based hydrogel films using central composite design. J Biomed Mater Res A 2016; 104(10): 2544-53.
[http://dx.doi.org/10.1002/jbm.a.35799] [PMID: 27241899]
[105]
Amin MA, Abdel-Raheem IT. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol–chitosan hydrogel containing honey bee venom in diabetic rats. Arch Pharm Res 2014; 37(8): 1016-31.
[http://dx.doi.org/10.1007/s12272-013-0308-y] [PMID: 24293065]
[106]
Afshari MJ, Sheikh N, Afarideh H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiat Phys Chem 2015; 113: 28-35.
[http://dx.doi.org/10.1016/j.radphyschem.2015.04.023]
[107]
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 2009; 21(32-33): 3307-29.
[http://dx.doi.org/10.1002/adma.200802106] [PMID: 20882499]
[108]
Chen SH, Tsao CT, Chang CH, et al. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model. Mater Sci Eng C 2013; 33(5): 2584-94.
[http://dx.doi.org/10.1016/j.msec.2013.02.031]
[109]
Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol 2019; 121: 633-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.056] [PMID: 30326224]
[110]
Anjum S, Arora A, Alam MS, Gupta B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 2016; 508(1-2): 92-101.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.013] [PMID: 27163526]
[111]
Xu X, Zhou G, Li X, et al. Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers Polym 2016; 17(2): 205-11.
[http://dx.doi.org/10.1007/s12221-016-5800-9]
[112]
Tsao CT, Chang CH, Lin YY, et al. Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 2011; 84(2): 812-9.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.034]
[113]
Mirani B, Pagan E, Currie B, et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv Healthc Mater 2017; 6(19): 1700718-44.
[http://dx.doi.org/10.1002/adhm.201700718]
[114]
Broeck VL, Piluso S, Soultan AH, Volder MD, Patterson J. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Mater Sci Eng C 2019; 98: 1133-44.
[http://dx.doi.org/10.1016/j.msec.2019.01.020]
[115]
Souto EB, Ribeiro AF, Ferreira MI, et al. New nanotechnologies for the treatment and repair of skin burns infections. Int J Mol Sci 2020; 21(2): 393-411.
[http://dx.doi.org/10.3390/ijms21020393] [PMID: 31936277]
[116]
Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ. Nanomaterials in wound healing and infection control. Antibiotics 2021; 10(5): 473-92.
[http://dx.doi.org/10.3390/antibiotics10050473] [PMID: 33919072]
[117]
Ravanbakhsh H, Bao G, Latifi N, Mongeau LG. Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity. Mater Sci Eng C 2019; 103: 109861-9.
[http://dx.doi.org/10.1016/j.msec.2019.109861]
[118]
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 2014; 44: 278-84.
[http://dx.doi.org/10.1016/j.msec.2014.08.031]
[119]
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 2018; 44: 421-30.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[120]
Adibnia V, Hill RJ. Viscoelasticity of near-critical silica-polyacrylamide hydrogel nanocomposites. Polymer 2017; 112: 457-65.
[http://dx.doi.org/10.1016/j.polymer.2017.01.013]
[121]
Cui HF, Zhang TT, Lv QY, Song X, Zhai XJ, Wang GG. An acetylcholinesterase biosensor based on doping Au nanorod@SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens Bioelectron 2019; 141: 111452-2.
[http://dx.doi.org/10.1016/j.bios.2019.111452] [PMID: 31252259]
[122]
Gaharwar AK, Patel A, Dolatshahi-Pirouz A, et al. Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomater Sci 2015; 3(1): 46-58.
[http://dx.doi.org/10.1039/C4BM00222A] [PMID: 26214188]
[123]
Jing X, Mi HY, Napiwocki BN, Peng XF, Turng LS. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 2017; 125: 557-70.
[http://dx.doi.org/10.1016/j.carbon.2017.09.071]
[124]
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534-43.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[125]
Kar AK, Singh A, Dhiman N, et al. Polymer-Assisted In Situ synthesis of silver nanoparticles with epigallocatechin gallate (egcg) impregnated wound patch potentiate controlled inflammatory responses for brisk wound healing. Int J Nanomedicine 2019; 14: 9837-54.
[http://dx.doi.org/10.2147/IJN.S228462] [PMID: 31849472]
[126]
Kar AK, Singh A, Singh D, et al. Biopolymeric composite hydrogel loaded with silver NPs and epigallocatechin gallate (EGCG) effectively manages ROS for rapid wound healing in type II diabetic wounds. International Journal of Biological Macromolecules 2022; 218(1): 506-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.196]
[127]
Alhokbany N, Ahama T, Ruksana M. AgNPs embedded N- doped highly porous carbon derived from chitosan based hydrogel as catalysts for the reduction of 4-nitrophenol. Compos, Part B Eng 2019; 173: 106950-9.
[http://dx.doi.org/10.1016/j.compositesb.2019.106950]
[128]
Lansdown ABG. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010; 2010: 1-16.
[http://dx.doi.org/10.1155/2010/910686] [PMID: 21188244]
[129]
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 2019; 559: 23-36.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.019] [PMID: 30668991]
[130]
Jaiswal M, Koul V, Dinda AK. In vitro and in vivo investigational studies of a nanocomposite-hydrogel-based dressing with a silvercoated chitosan wafer for full-thickness skin wounds. J Appl Polym Sci 2016; 133(21): n/a.
[http://dx.doi.org/10.1002/app.43472]
[131]
Martins AF, Monteiro JP, Bonafé EG, et al. Bactericidal activity of hydrogel beads based on N,N,N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chin Chem Lett 2015; 26(9): 1129-32.
[http://dx.doi.org/10.1016/j.cclet.2015.04.032]
[132]
Sacco P, Travan A, Borgogna M, Paoletti S, Marsich E. Silver-containing antimicrobial membrane based on chitosan-TPP hydrogel for the treatment of wounds. J Mater Sci Mater Med 2015; 26(3): 128-40.
[http://dx.doi.org/10.1007/s10856-015-5474-7] [PMID: 25693676]
[133]
Khampieng T, Wongkittithavorn S, Chaiarwut S, Ekabutr P, Pavasant P, Supaphol P. Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. J Drug Deliv Sci Technol 2018; 44: 91-100.
[http://dx.doi.org/10.1016/j.jddst.2017.12.005]
[134]
Leu JG, Chen SA, Chen HM, et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine 2012; 8(5): 767-75.
[http://dx.doi.org/10.1016/j.nano.2011.08.013] [PMID: 21906577]
[135]
Ovais M, Ahmad I, Khalil AT, et al. Wound healing applications of biogenic colloidal silver and gold nanoparticles: Recent trends and future prospects. Appl Microbiol Biotechnol 2018; 102: 4305-18.
[http://dx.doi.org/10.1007/s00253-018-8939-z] [PMID: 29589095]
[136]
Mokhtari PN, Kohal MAH, Ghorbani M. An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. Int J Biol Macromol 2020; 154: 198-205.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.112] [PMID: 32184143]
[137]
Tommalieh MJ, Ibrahium HA, Awwad NS, Menazea AA. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 2020; 1221: 128814.
[http://dx.doi.org/10.1016/j.molstruc.2020.128814]
[138]
Lansdown ABG, Mirastschijski U, Stubbs N, Scanlon E, Ågren MS. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen 2007; 15(1): 2-16.
[http://dx.doi.org/10.1111/j.1524-475X.2006.00179.x] [PMID: 17244314]
[139]
Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym 2020; 227: 115349-55.
[http://dx.doi.org/10.1016/j.carbpol.2019.115349] [PMID: 31590840]
[140]
Zhang M, Qiao X, Han W, Jiang T, Liu F, Zhao X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr Polym 2021; 266: 118100-10.
[http://dx.doi.org/10.1016/j.carbpol.2021.118100] [PMID: 34044919]
[141]
Zhai M, Xu Y, Zhou B, Jing W. Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: Characterization and biomedical application. J Photochem Photobiol B 2018; 180: 253-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.018] [PMID: 29476966]
[142]
Yuvaraja G, Pathak JL, Zhang W, Zhang Y, Xu J. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 2017; 103: 234-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.020] [PMID: 28499948]
[143]
Deepachitra R, Lakshmi RP, Sivaranjani K, Chandra JH, Sastry TP. Nanoparticles embedded biomaterials in wound treatment: A review. J Chem Pharm Sci 2015; 8: 324-9.
[144]
Bui V, Park D, Lee YC. Chitosan combined with ZnO, TiO2 and Ag Nanoparticles for antimicrobial wound healing applications: A mini review of the research trends. Polymers 2017; 9(12): 21-46.
[http://dx.doi.org/10.3390/polym9010021] [PMID: 30970696]
[145]
Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 2009; 30(7): 1268-72.
[http://dx.doi.org/10.1016/j.biomaterials.2008.11.012] [PMID: 19081625]
[146]
Zazakowny K. Lewandowska-Łańcucka J, Mastalska-Popławska J, et al.. Biopolymeric hydrogels: Nanostructured TiO2 hybrid materials as potential injectable scaffolds for bone regeneration. Colloids Surf B Biointerfaces 2016; 148: 607-14.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.031] [PMID: 27694050]
[147]
Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med 1997; 23(6): 851-8.
[http://dx.doi.org/10.1016/S0891-5849(97)00068-3] [PMID: 9378364]
[148]
Wahid F, Wang HS, Lu YS, Zhong C, Chu LQ. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol 2017; 101: 690-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.132] [PMID: 28356237]
[149]
Venkataprasanna KS, Prakash J, Vignesh S, et al. Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int J Biol Macromol 2020; 143: 744-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.029] [PMID: 31622704]
[150]
Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295(5557): 1014-7.
[http://dx.doi.org/10.1126/science.1067404] [PMID: 11834817]
[151]
Sowjanya JA, Singh J, Mohita T, et al. Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 2013; 109: 294-300.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.006] [PMID: 23668983]
[152]
Zhang Y, Ye L. Structure and property of polyvinyl alcohol/precipitated silica composite hydrogels for microorganism immobilization. Compos, Part B Eng 2014; 56: 749-55.
[http://dx.doi.org/10.1016/j.compositesb.2013.09.015]
[153]
Archana D, Singh BK, Dutta J, Dutta PK. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 2013; 95(1): 530-9.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.034] [PMID: 23618304]
[154]
Lin YJ, Hsu FC, Chou CW, Wu TH, Lin HR. Poly(acrylic acid)–chitosan–silica hydrogels carrying platelet gels for bone defect repair. J Mater Chem B Mater Biol Med 2014; 2(47): 8329-37.
[http://dx.doi.org/10.1039/C4TB01356E] [PMID: 32262003]
[155]
Alam A, Zhang Y, Kuan HC, Lee SH, Ma J. Polymer composite hydrogels containing carbon nanomaterials—Morphology and mechanical and functional performance. Prog Polym Sci 2018; 77: 1-18.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.09.001]
[156]
Kumar R, Kumar VB, Gedanken A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason Sonochem 2020; 64: 105009-25.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105009] [PMID: 32106066]
[157]
Nelson VJ, Dinnunhan M F K, Turner PR, Faed JM, Cabral JD. A chitosan/dextran-based hydrogel as a delivery vehicle of human bone-marrow derived mesenchymal stem cells. Biomed Mater 2017; 12(3): 035012.
[http://dx.doi.org/10.1088/1748-605X/aa70f2] [PMID: 28471352]
[158]
Chen G, Wu Y, Yu D, et al. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J Biomater Appl 2019; 33(7): 989-96.
[http://dx.doi.org/10.1177/0885328218814988] [PMID: 30509120]
[159]
Kittana N, Assali M, Abu-Rass H, et al. Enhancement of wound healing by single-wall/multi-wall carbon nanotubes complexed with chitosan. Int J Nanomedicine 2018; 13: 7195-206.
[http://dx.doi.org/10.2147/IJN.S183342] [PMID: 30510412]
[160]
Tang P, Han L, Li P, et al. Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl Mater Interfaces 2019; 11(8): 7703-14.
[http://dx.doi.org/10.1021/acsami.8b18931] [PMID: 30714361]
[161]
Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 2007; 150(1): 5-22.
[http://dx.doi.org/10.1016/j.envpol.2007.06.006] [PMID: 17658673]
[162]
Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 2017; 18: 12-20.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy