Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: In the current research work, an attempt has been made to machine Ti6Al4V using Powder Mixed Electric Discharge Machining (PMEDM) technique.
Methods: The experiments were designed utilizing central composite response surface methodology by varying current, pulse on time, gap distance, and powder concentration at five different levels, whereas Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (Ra) were documented as responses. The MRR reduced with an increase in powder concentration until the concentration reached 7.5g/l because incorporated particles observed the major proportion of heat, and at 10g/l, MRR increased due to the bridging effect.
Results: The TWR and Ra reduced with an escalation in powder concentration due to expansion in the spark gap, facilitating the flushing of machined debris. The surface topography revealed cracks, pits, globules, and craters. Moreover, with the addition of particles, surface quality improved owing to the elimination of re-melted layers.
Conclusion: The parameters were optimized using the Grey Relational Analysis (GRA), and the combination of 2.5g/l powder concentration, 20A current, 50µs ton, and 4mm gap distance offers the best machining performance.