Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Molecular Docking Studies and Biological Evaluation of N-(α-Benzamido Cinnamoyl) Piperonal Hydrazones

Author(s): Karnati Saritha, Tangirala Sarala Devi, Murthi Vidya Rani, Katari Sudheer Kumar, Amineni Umamaheswari and Galla Rajitha*

Volume 21, Issue 13, 2024

Published on: 21 September, 2023

Page: [2711 - 2727] Pages: 17

DOI: 10.2174/1570180820666230816091339

Price: $65

Abstract

Background: Nowadays, inflammation is recognized as the underlying cause of a number of diseases, but NSAIDs are the first drug of choice, having several side effects. Additionally, excessive cellular oxidative stress is often considered a major contributor to pathophysiological conditions, the development of cancer, and other diseases. Antimicrobial resistance is a global concern, hence, there is a critical need for the development of novel therapeutic agents to fight the emergence and increasing prevalence of resistant pathogens. This creates an initiation to introduce new molecules which act as efficient therapeutic agents with diminished side effects.

Objective: As a part of our search for newer agents with enhanced activity profiles, it was planned to synthesize novel 2- (benzamido)-N-((benzo[d][1,3]dioxol-4-yl)methylene)-3-(substituted phenyl) acrylohydrazides and to investigate them for antiinflammatory, antioxidant, cytotoxic, antimicrobial activities. Furthermore, in silico studies were performed for title compounds to predict molecular properties, bioavailability, drug-likeness, and bioactivity scores, molecular docking studies were also performed against biological targets.

Methods: The title compounds 1-14 were synthesized by nucleophilic addition of piperonal in ethanol, few drops of acetic acid to the intermediate 2-(benzamido)-3-(aryl)acrylohydrazides. The title compounds were tested for their antiinflammatory activity by in vivo carrageenan-induced rat paw edema method, in vitro COX-2 inhibition assay; in vitro cytotoxic activity evaluation by MTT assay; antioxidant activity by Lipid peroxidation, DPPH assay, Nitric Oxide scavenging assay and Hydrogen peroxide scavenging assay; and antimicrobial activity by cup plate method. Physicochemical properties and bioactive scores of title compounds were evaluated by in silico studies. Molecular docking studies were carried out for the title compounds against COX-2 (PDB: 5F19) and EGFR (PDB:1XKK).

Results: Among the series, 4-Hydroxy-3,5-dimethoxy derivative (5) displayed good anti-inflammatory and antioxidant activities; Vanillinyl derivative (4) displayed good cytotoxicity and antimicrobial activity when compared to that of the respective standards. Compounds 5 & 4 also exhibited good docking scores with COX-2 and EGFR, respectively. All title compounds obeyed Lipinski’s rule of five and also exhibited acceptable molecular properties, drug-likeness properties, and moderate to good bioactivity scores in in silico studies.

Conclusion: The study suggested that the title compounds showed notable pharmacological properties, could emerge as lead compounds, and be further explored as promising therapeutic agents.

[1]
Nathan, C. Points of control in inflammation. Nature, 2002, 420(6917), 846-852.
[http://dx.doi.org/10.1038/nature01320] [PMID: 12490957]
[2]
Bagchi, K.; Puri, S. Free radicals and antioxidants in health and disease: A review. 1998. Available From: https://apps.who.int/iris/handle/10665/118217
[3]
Grivennikov, S.I.; Karin, M. Inflammation and oncogenesis: A vicious connection. Curr. Opin. Genet. Dev., 2010, 20(1), 65-71.
[http://dx.doi.org/10.1016/j.gde.2009.11.004] [PMID: 20036794]
[4]
Bjarnason, I.; Hayllar, J.; Macpherson, A.N.J.; Russell, A.N.S. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology, 1993, 104(6), 1832-1847.
[http://dx.doi.org/10.1016/0016-5085(93)90667-2] [PMID: 8500743]
[5]
Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis., 2018, 9(1), 143-150.
[http://dx.doi.org/10.14336/AD.2017.0306] [PMID: 29392089]
[6]
Turini, M.E.; DuBois, R.N. Cyclooxygenase-2: A therapeutic target. Annu. Rev. Med., 2002, 53(1), 35-57.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103952] [PMID: 11818462]
[7]
Vane, J.R.; Botting, R.M. Therapeutic roles of selective COX-2 inhibitors; William Harvey Press: London, UK, 2001.
[8]
Laine, L. Gastrointestinal effects of NSAIDs and coxibs. J. Pain Symptom Manage., 2003, 25(2)(Suppl.), 32-40.
[http://dx.doi.org/10.1016/S0885-3924(02)00629-2] [PMID: 12604155]
[9]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[10]
Soonthornthum, T.; Arias-Pulido, H.; Joste, N.; Lomo, L.; Muller, C.; Rutledge, T.; Verschraegen, C. Epidermal growth factor receptor as a biomarker for cervical cancer. Ann. Oncol., 2011, 22(10), 2166-2178.
[http://dx.doi.org/10.1093/annonc/mdq723] [PMID: 21325449]
[11]
Gullick, W.J. Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br. Med. Bull., 1991, 47(1), 87-98.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072464] [PMID: 1863851]
[12]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[13]
Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer, 2007, 121(11), 2381-2386.
[http://dx.doi.org/10.1002/ijc.23192] [PMID: 17893868]
[14]
Visconti, R.; Grieco, D. New insights on oxidative stress in cancer. Curr. Opin. Drug Discov. Devel., 2009, 12(2), 240-245.
[PMID: 19333869]
[15]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[16]
Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med., 2010, 14(4), 840-860.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00897.x] [PMID: 19754673]
[17]
Bhandari, K.; Srinivas, N.; Shiva Keshava, G.B.; Shukla, P.K. Tetrahydronaphthyl azole oxime ethers: The conformationally rigid analogues of oxiconazole as antibacterials. Eur. J. Med. Chem., 2009, 44(1), 437-447.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.006] [PMID: 18313805]
[18]
Goldstein, F.W. Combating resistance in a challenging, changing environment. Clin. Microbiol. Infect., 2007, 13(Suppl. 2), 2-6.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01721.x] [PMID: 17488370]
[19]
Macchiarulo, A.; Costantino, G.; Fringuelli, D.; Vecchiarelli, A.; Schiaffella, F.; Fringuelli, R. 1,4-Benzothiazine and 1,4-Benzoxazine imidazole derivatives with antifungal activity: A docking study. Bioorg. Med. Chem., 2002, 10(11), 3415-3423.
[http://dx.doi.org/10.1016/S0968-0896(02)00263-8] [PMID: 12213454]
[20]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[21]
Luo, Y.; Zhu, Y.; Ran, K.; Liu, Z.; Wang, N.; Feng, Q.; Zeng, J.; Zhang, L.; He, B.; Ye, T.; Zhu, S.; Qiu, X.; Yu, L. Synthesis and biological evaluation of N-(4-phenylthiazol-2-yl)cinnamamide derivatives as novel potential anti-tumor agents. MedChemComm, 2015, 6(6), 1036-1042.
[http://dx.doi.org/10.1039/C4MD00573B]
[22]
Yoya, G.K.; Bedos-Belval, F.; Constant, P.; Duran, H.; Daffé, M.; Baltas, M. Synthesis and evaluation of a novel series of pseudo-cinnamic derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett., 2009, 19(2), 341-343.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.082] [PMID: 19084396]
[23]
Bairwa, R.; Kakwani, M.; Tawari, N.R.; Lalchandani, J.; Ray, M.K.; Rajan, M.G.R.; Degani, M.S. Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2010, 20(5), 1623-1625.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.031]
[24]
Deng, X-Q.; Wu, D.; Wei, C-X.; Quan, Z-S. Synthesis and antidepressant-like action of N-(2-hydroxyethyl) cinnamamide derivatives in mice. Med. Chem. Res., 2011, 20(8), 1273-1279.
[http://dx.doi.org/10.1007/s00044-010-9470-7]
[25]
Lee, S.; Lee, C.H.; Oh, J.H.; Kim, E.E.; Choi, Y.K.; Kim, E.H.; Lee, W.S.; Bok, S.H.; Jeong, T.S. Anti-atherogenic effects of 3,4-Dihydroxy hydrocinnamides. Bioorg. Med. Chem. Lett., 2003, 13(16), 2681-2682.
[http://dx.doi.org/10.1016/S0960-894X(03)00549-3] [PMID: 12873493]
[26]
Derrick, I.; Lewis, J.W.; Moynihan, H.A.; Broadbear, J.; Woods, J.H. Potential irreversible ligands for opiod receptors, cinnamoyl derivatives of β-naltrexamine. J. Pharm. Pharmacol., 2011, 48(2), 192-196.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb07121.x]
[27]
Tamiz, A.P.; Whittemore, E.R.; Schelkun, R.M.; Yuen, P.W.; Woodward, R.M.; Cai, S.X.; Weber, E.; Keana, J.F.W.N. -(2-(4-hydroxyphenyl)ethyl)-4-chlorocinnamide: A novel antagonist at the 1a/2B NMDA receptor subtype. Bioorg. Med. Chem. Lett., 1998, 8(2), 199-200.
[http://dx.doi.org/10.1016/S0960-894X(97)10215-3] [PMID: 9871654]
[28]
Guan, L.P.; Wei, C.X.; Deng, X.Q.; Sui, X.; Piao, H.R.; Quan, Z.S. Synthesis and anticonvulsant activity of N-(2-hydroxyethyl) cinnamamide derivatives. Eur. J. Med. Chem., 2009, 44(9), 3654-3657.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.015] [PMID: 19272675]
[29]
Greger, H.; Hofer, O.; Kählig, H.; Wurz, G. Sulfur containing cinnamides with antifungal activity from glycosmis cyanocarpa. Tetrahedron, 1992, 48(7), 1209-1218.
[http://dx.doi.org/10.1016/S0040-4020(01)90784-7]
[30]
Probodh, C.S.; Sunil, V.S. Microwave-assisted efficient synthesis and antifungal evaluation of some N-phenyl-3(substitutedphenyl) propenamides. Indian J. Pharm. Edu. Res., 2007, 41, 140-145.
[31]
Wolszleger, M.; Stan, C.D.; Apotrosoaei, M.; Vasincu, I.; Pânzariu, A.; Profire, L. New hydrazones of ferulic acid: Synthesis, characterization and biological activity. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2014, 118(4), 1150-1156.
[PMID: 25581982]
[32]
Seelolla, G.; Prasad, C.; Venkateswarlu, P. Synthesis, antimicrobial and antioxidant activities of novel series of cinnamamide derivatives having morpholine moiety. Med. Chem. (Los Angeles), 2014, 4(12), 778-783.
[http://dx.doi.org/10.4172/2161-0444.1000229]
[33]
Tanaka, K.; Matsuo, K.; Nakanishi, A.; Hatano, T.; Izeki, H.; Ishida, Y.; Mori, W. Syntheses and anti-inflammatory and analgesic activities of hydroxamic acids and acid hydrazides. Chem. Pharm. Bull. (Tokyo), 1983, 31(8), 2810-2819.
[http://dx.doi.org/10.1248/cpb.31.2810] [PMID: 6418398]
[34]
Greenspan, P.D.; Fujimoto, R.A.; Marshall, P.J.; Raychaudhuri, A.; Lipson, K.E.; Zhou, H.; Doti, R.A.; Coppa, D.E.; Zhu, L.; Pelletier, R.; Uziel-Fusi, S.; Jackson, R.H.; Chin, M.H.; Kotyuk, B.L.; Fitt, J.J. Carboxy-Substituted Cinnamides: A Novel Series of Potent, Orally Active LTB 4 Receptor Antagonists. J. Med. Chem., 1999, 42(1), 164-172.
[http://dx.doi.org/10.1021/jm980540v]
[35]
Musso, D.L.; Cochran, F.R.; Kelley, J.L.; McLean, E.W.; Selph, J.L.; Rigdon, G.C.; Orr, G.F.; Davis, R.G.; Cooper, B.R.; Styles, V.L.; Thompson, J.B.; Hall, W.R. Indanylidenes. 1. Design and synthesis of (E)-2-(4,6-difluoro-1-indanylidene)acetamide, a potent, centrally acting muscle relaxant with antiinflammatory and analgesic activity. J. Med. Chem., 2003, 46(3), 399-408.
[http://dx.doi.org/10.1021/jm020067s] [PMID: 12540239]
[36]
Rajitha, G. Synthesis, Biological evaluation and molecular docking studies of N-(α-acetamidocinnamoyl)arylhydrazone derivatives as antiinflammatory and analgesic agents. Med. Chem. Res., 2014, 23, 5204-5214.
[http://dx.doi.org/10.1007/s00044-014-1091-0]
[37]
Gaikwad, N.; Nanduri, S.; Madhavi, Y.V. Cinnamamide: An insight into the pharmacological advances and structure–activity relationships. Eur. J. Med. Chem., 2019, 181, 111561.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.064] [PMID: 31376564]
[38]
Arshad, M. Design, Drug-Likeness, Synthesis, Characterization, Antimicrobial Activity, Molecular Docking, and MTT Assessment of 1,3-Thiazolidin-4-one Bearing Piperonal and Pyrimidine Moieties. Russ. J. Bioorganic Chem., 2020, 46(4), 599-611.
[http://dx.doi.org/10.1134/S1068162020040056]
[39]
de Oliveira, C. Brum, J.; Neto, D.C.F.; de Almeida, J.S.F.D.; Lima, J.A.; Kuca, K.; França, T.C.C.; Figueroa-Villar, J.D. Synthesis of New Quinoline-Piperonal Hybrids as Potential Drugs against Alzheimer’s Disease. Int. J. Mol. Sci., 2019, 20(16), 3944.
[http://dx.doi.org/10.3390/ijms20163944] [PMID: 31416113]
[40]
Lopes, N.D.; Chaves, O.A.; de Oliveira, M.C.C.; Sant’Anna, C.M.R.; Sousa-Pereira, D.; Netto-Ferreira, J.C.; Echevarria, A. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: Synthesis, tyrosinase inhibition evaluation and HSA binding study. Int. J. Biol. Macromol., 2018, 112, 1062-1072.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.050] [PMID: 29447969]
[41]
Anny, M.; Mary, S.T.L.; Arun, K.T.; Radha, K. Design, Synthesis and Biological evaluation of Pyrazole analogues of Natural Piperine. Hygeia. J. D. Med., 2011, 3(2), 48-56.
[42]
Patricia, C.L.; Lidia, M.L. Synthesis and analgesic activity of novel N-acyl aryl hydrazones and isosters derived from natural safrole. Eur. J. Med. Chem., 2000, 35(2), 187-203.
[http://dx.doi.org/10.1016/S0223-5234(00)00120-3] [PMID: 10758281]
[43]
Ochiana, S.O.; Gustafson, A.; Bland, N.D.; Wang, C.; Russo, M.J.; Campbell, R.K.; Pollastri, M.P. Synthesis and evaluation of human phosphodiesterases (PDE) 5 inhibitor analogs as trypanosomal PDE inhibitors. Part 2. Tadalafil analogs. Bioorg. Med. Chem. Lett., 2012, 22(7), 2582-2584.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.118] [PMID: 22377518]
[44]
Shivdas, S.B. Synthesis and biological screening of some heterocycles derived from Piperonal. Acta. Chim. Pharm. Indica., 2013, 3, 261-267.
[45]
Mouayed, Y.K.; Mohammed, A.A. Synthesis, characterization and biological studies of Schiff bases 215 derived from piperonal and their complexes with cobalt (II). Pharma Chem., 2014, 6, 88-100.
[46]
Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti, A.K.; Arigari, N.K. K v N S, S.; Alam, S.; Jonnala, K.K.; Khan, F.; Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur. J. Med. Chem., 2015, 93, 564-573.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.027] [PMID: 25743216]
[47]
Chen, T-C.; Guh, J-H.; Hsu, H-W.; Chen, C-L.; Lee, C-C.; Wu, C-L.; Lee, Y-R.; Lin, J-J.; Yu, D-S.; Huang, H-S. Synthesis and biological evaluation of anthra[1,9-cd]pyrazol-6(2H)-one scaffold derivatives as potential anticancer agents. Arab. J. Chem., 2019, 12(8), 2864-2881.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.017]
[48]
Khoshneviszadeh, M.; Ghahremani, M.H.; Foroumadi, A.; Miri, R.; Firuzi, O.; Madadkar-Sobhani, A.; Edraki, N.; Parsa, M.; Shafiee, A. Design, synthesis and biological evaluation of novel anti-cytokine 1,2,4-triazine derivatives. Bioorg. Med. Chem., 2013, 21(21), 6708-6717.
[http://dx.doi.org/10.1016/j.bmc.2013.08.009] [PMID: 23993677]
[49]
Abdullah, A.A.; Sihabudden, M.; Meera, H.M. Synthesis and evaluation of piperonal chalcone and its derivatives as anti-diabetic agents. Eur. J. Biomed. Pharm. Sci., 2018, 5(2), 514-518.
[50]
Dong, C.; Wang, Y.; Zhu, Y.Z. Asymmetric synthesis and biological evaluation of Danshensu derivatives as anti-myocardial ischemia drug candidates. Bioorg. Med. Chem., 2009, 17(9), 3499-3507.
[http://dx.doi.org/10.1016/j.bmc.2009.02.065] [PMID: 19359186]
[51]
Fraga, A.G.M.; da Silva, L.L.; Fraga, C.A.M.; Barreiro, E.J. CYP1A2-mediated biotransformation of cardioactive 2-thienylidene-3,4-methylenedioxybenzoylhydrazine (LASSBio-294) by rat liver microsomes and human recombinant CYP enzymes. Eur. J. Med. Chem., 2011, 46(1), 349-355.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.024] [PMID: 21144625]
[52]
Vogel, A.I. Text book of practical organic chemistry, person education Pvt. Ltd., Singapore, second Indian reprint, , 2004, edn. 5, p. 1158.
[53]
Maruthi, K.T.V. A novel synthesis of 1-(1-aza-2-arylvinyl)-2-[(1E)-2-arylvinyl]-4-(phenyl methylene)-2-imidazolin-5-ones. Indian J. Chem., 2005, 44, 1497-1499.
[54]
Dixon, W.J. Staircase bioassay: The up-and-down method. Neurosci. Biobehav. Rev., 1991, 15(1), 47-50.
[http://dx.doi.org/10.1016/S0149-7634(05)80090-9] [PMID: 2052197]
[55]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med. (Maywood), 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[56]
Rajitha, G.; Vidya Rani, M.; Naik Vankadoth, U.; Umamaheswari, A. Design of Novel Selective Estrogen Receptor Inhibitors using Molecular Docking and Protein-Ligand Interaction Fingerprint Studies. J. Pharm. Res. Int., 2021, 33(46A), 470-483.
[http://dx.doi.org/10.9734/jpri/2021/v33i46A32890]
[57]
van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes, 2015, 8(1), 47.
[http://dx.doi.org/10.1186/s13104-015-1000-8] [PMID: 25884200]
[58]
Braughler, J.M.; Pregenzer, J.F.; Chase, R.L.; Duncan, L.A.; Jacobsen, E.J.; McCall, J.M. Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J. Biol. Chem., 1987, 262(22), 10438-10440.
[http://dx.doi.org/10.1016/S0021-9258(18)60979-2] [PMID: 3611075]
[59]
Blois, M.S. Antioxidant determinations by the use of stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[60]
Sarala Devi, T.; Rajitha, G.; Bharathi, K. Synthesis and evaluation of substituted imidazolones for antiinflammatory and antioxidant activities. Asian J. Chem., 2010, 22, 5271-5276.
[61]
Rajitha, G.; Prasad, K.V.S.R.G.; Bharathi, K. Synthesis and biological evaluation of 3-amino pyrazolones. Asian J. Chem., 2011, 23(2), 684-686.
[62]
Rajitha, G.; Prasad, K.V.S.R.G.; Bharathi, K. Synthesis and evaluation of substituted cinnamoyl alanines for antiinflammatory, analgesic and antioxidant activities. Asian J. Chem., 2010, 22, 1197-1204.
[63]
Jayaprakasha, G.K.; Jaganmohan Rao, L.; Sakariah, K.K. Antioxidant activities of flavidin in different in vitro model systems. Bioorg. Med. Chem., 2004, 12(19), 5141-5146.
[http://dx.doi.org/10.1016/j.bmc.2004.07.028] [PMID: 15351397]
[64]
Cruickshank, J.P.; Dugid, D.P.; Marminon, R.H.A. Medicinal microbiology; Churchill London, 1975, p. 2.
[65]
SriMounika, B.; Mounika, T. Design and in silico studies of molecular properties, bioactivity and toxicity of n-(α-cyano substituted cinnamoyl)-2-biphenyl hydrazone derivatives. J. Cardiovasc. Dis. Res., 2021, 12(6), 584.
[66]
Lalitha, P.; Sivakamasundari, S. Calculation of molecular lipophilicity and drug likeness for few heterocycles. Orient. J. Chem., 2010, 26, 135-141.
[67]
Vishwanathan, B.; Gurupadayya, B.M.; Sairam, K.V. <i>In silico</i> and antithrombotic studies of 1,3,4-oxadiazoles derived from benzimidazole. Bangladesh J. Pharmacol., 2015, 11(1), 67-74.
[http://dx.doi.org/10.3329/bjp.v11i1.23981]
[68]
Katsumi, I.; Kondo, H.; Fuse, Y.; Yamashita, K.; Hidaka, T.; Hosoe, K.; Takeo, K.; Yamashita, T.; Watanabe, K. Synthesis and antiinflammatory activity of 3, 5-Ditert-butyl-4-hydroxystyrenes. Chem. Pharm. Bull. (Tokyo), 1986, 34(4), 1619-1625.
[PMID: 3719863]
[69]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[70]
Soujanya, M.; Rajitha, G.; Umamaheswari, A.; Kumar, K.S. Synthesis, Biological Evaluation and Docking Studies of N-(2-benzamido feruloyl). Aryl Hydrazone Analogues. Lett. Drug Des. Discov., 2018, 15(8), 875-886.
[http://dx.doi.org/10.2174/1570180814666171026161041]
[71]
Rajitha, G.N.; Saideepa, N.; Praneetha, P. Synthesis and evaluation of N-(α-benzamido cinnamoyl) aryl hydrazone derivatives for anti-inflammatory and antioxidant activities. Indian J. Chem., 2011, 50(5), 729-733.
[72]
Wang, X.L.; Zhang, Y.B.; Tang, J.F.; Yang, Y.S.; Chen, R.Q.; Zhang, F.; Zhu, H.L. Design, synthesis and antibacterial activities of vanillic acylhydrazone derivatives as potential β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Eur. J. Med. Chem., 2012, 57, 373-382.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.009] [PMID: 23124163]

© 2024 Bentham Science Publishers | Privacy Policy