Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Molecular Dynamic, Hirshfeld Surface, Computational Quantum and Spectroscopic analysis of 4-Hydroxy-1-Naphthaldehyde

Author(s): M. Amin Mir*, MMS Jassal and Kim Andrews

Volume 11, Issue 1, 2024

Published on: 11 September, 2023

Page: [60 - 70] Pages: 11

DOI: 10.2174/2213337210666230816091246

Price: $65

Abstract

Aim: Computational Quantum and Spectroscopic analysis of 4-Hydroxy-1-Naphthaldehyde Background: Known also as 4-Hydroxynaphthalene-1-carbaldehyde, 4-hydroxy-1-naphthaldehyde (4H1NA) is a crucial precursor of many coordinating agents. A commercial compound called 4- hydroxy-1-naphthaldehyde (4H1NA) can be used to make a number of different sensors. In the development of many chemosensors, they operate effectively as a functionalized fluorescent backbone.

Objectives: Molecular Dynamic, Hirshfeld Surface, Computational Quantum analysis of Naphthaldehyde.

Methods: The methods employed in the analysis of the compound involve the DFT calculations, using the DFT method and B3LYP/6-311++G (d, p) basis set with respect to its FTIR, NMR, and UVVisible spectrum. The NMR chemical shifts of carbon and protons in CDCl3 were determined by the GIAO method. For the molecule of reference, HOMO-LUMO and Donor-Acceptor interactions were also taken into consideration. Investigations also looked into E.L.F., Fukui activity, and non-linear optical properties.

Results: The investigation of compounds at their atomic level was analyzed using computational methods so that chemical, medicinal, and environmental research make use of them to make the molecule more in an improved form with distinguished properties. Strong interaction has been produced as a result of electron transfer from the oxygen atoms lone pair LP (2) to the anti-bonding orbital *(C3- C5) with a significant stabilization energy of 42.61 kcal/mol. The attributes of the NLO molecule were calculated and found to be superior to those of the urea molecule, with linear and first-order hyperpolarizability situations. Our findings imply that the reference molecule can be a heavier contender for NLO as a surface material and could be considered a vital substance for medical purposes in the drug industry due to its maximum electrophilicity index.

Conclusion: A commercial compound called 4-hydroxy-1-naphthaldehyde (4H1NA) can be used to make several different sensors. The compound has good structural and optical properties. They can be employed for a variety of optical limiting applications because of their unusual optical characteristic, which exhibits third-order non-linear behavior.

Graphical Abstract

[1]
Russell, A.; Lockhart, L.B. 2-hydroxy-1-naphthaldehyde. Org. Synth., 1942, 22, 63.
[http://dx.doi.org/10.15227/orgsyn.022.0063]
[2]
Das, A.K.; Goswamia, S. 2-Hydroxy-1-Naphthaldehyde: A versatile building block for the development of sensors in supramolecular chemistry and molecular recognition; Sens. Actuat. B Chem, 2017, p. 245.
[3]
Sharma, D.; Bera, R.K.; Sahoo, S.K. Naphthalene based colorimetric sensor for bioactive anions: Experimental and DFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 105, 477-482.
[http://dx.doi.org/10.1016/j.saa.2012.12.067] [PMID: 23352919]
[4]
Liu, Y.W.; Chen, C.H.; Wu, A.T. A turn-on and reversible fluorescence sensor for Al3+ ion. Analyst (Lond.), 2012, 137(22), 5201-5203.
[http://dx.doi.org/10.1039/c2an35854a] [PMID: 23014158]
[5]
Shkir, M.; Riscob, B.; Hasmuddin, M.; Singh, P.; Ganesh, V.; Wahab, M.A.; Dieguez, E.; Bhagavannarayana, G. Optical spectroscopy, crystalline perfection, etching and mechanical studies on P-nitroaniline (PNA) single crystals. Opt. Mater., 2014, 36(3), 675-681.
[http://dx.doi.org/10.1016/j.optmat.2013.11.009]
[6]
Badan, J.; Hierle, R.; Perigaud, A.; Zuss, J. Eds. Nonlinear Optical Properties of Organic and Polymeric Materials; Am; Chem. Soc.: Washington, DC, 1993.
[7]
de Boer, R.W.I.; Gershenson, M.E.; Morpurgo, A.F.; Podzorov, V. Organic single-crystal field-effect transistors. Phys. Status Solidi, A Appl. Res., 2004, 201(6), 1302-1331.
[http://dx.doi.org/10.1002/pssa.200404336]
[8]
Rajesh, N.P.; Ananthi, V.J.; Vinitha, G. Investigations on single crystal growth and nonlinear optical studies of 2-Hydroxy-1-naphthaldehyde. J. Cryst. Growth, 2019, 511, 25-32.
[http://dx.doi.org/10.1016/j.jcrysgro.2019.01.017]
[9]
Hu, J.; Li, J.; Qi, J.; Sun, Y. Selective colorimetric and “turn-on” fluorimetric detection of cyanide using an acylhydrazone sensor in aqueous media. New J. Chem., 2015, 39(5), 4041-4046.
[http://dx.doi.org/10.1039/C5NJ00089K]
[10]
Kumar, A.; Kumar, V.; Upadhyay, K.K. An Al3+ and H2PO4−/HSO4−selective conformational arrest and bail to a pyrimidine-naphthalene anchored molecular switch. Analyst (Lond.), 2013, 138(6), 1891-1897.
[http://dx.doi.org/10.1039/c3an36697a] [PMID: 23389672]
[11]
Saini, A.K.; Saraf, M.; Kumari, P.; Mobin, S.M. A highly selective and sensitive chemosensor for L -tryptophan by employing a Schiff based Cu(II) complex. New J. Chem., 2018, 42(5), 3509-3518.
[http://dx.doi.org/10.1039/C7NJ04595F]
[12]
a) Zoubi, W.A. Biological activities of schiff bases and their complexes: a review of recent works. Int. J. Org. Chem. (Irvine), 2013, 3(3), 73-95.
[http://dx.doi.org/10.4236/ijoc.2013.33A008];
b) Mehta, B.H.; Desai, Y. Study on Copper (II) complexes of Schiff’s bases. Orient. J. Chem., 1999, 15, 139.;
c) Bell, T.W.; Hext, N.M. Supramolecular optical chemosensors for organic analytes. Chem. Soc. Rev., 2004, 33(9), 589-598.
[PMID: 15592624]
[13]
Schilf, W.; Kamieński, B.; Dziembowska, T. Intramolecular hydrogen bond investigations in Schiff bases derivatives of 2-hydroxy-1-naphthaldehyde and 2-hydroxy-1-acetonaphthone in CDCl3 solution and in the solid state by NMR methods. J. Mol. Struct., 2002, 602-603, 41-47.
[http://dx.doi.org/10.1016/S0022-2860(01)00742-6]
[14]
Maniukiewicz, W.; Strzyżewska, M.B. Structure of 2-hydroxy-l-naphthaldehyde, acta crystallographica section C crystal str. Comm., 1992, 48(7), 1324-1326.
[15]
Amin Mir, M. DFT, Hirshfeld surface, molecular docking and drug likeness studies of medicinally important coumarin molecule. Arabian J Sci Eng, 2023, 2023
[16]
Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta, 1977, 44(2), 129-138.
[http://dx.doi.org/10.1007/BF00549096]
[17]
Amin Mir, M.; Manzer Manhas, F.; Andrews, K.; Hasnain, S.M.; Iqbal, A.; Sehar, S.; Younis, A. Molecular dynamic, Hirshfeld surface, molecular docking and drug likeness studies of a potent anti-oxidant, anti-malaria and anti-Inflammatory medicine: Pyrogallol. Results in Chemistry, 2023, 5, 100763.
[http://dx.doi.org/10.1016/j.rechem.2023.100763]
[18]
Hermann, J.P.; Ricard, D.; Ducuing, J. Z-scan measurements of the nonlinear refraction in retinal derivatives. Appl. Phys. Lett., 1973, 23(4), 178-180.
[http://dx.doi.org/10.1063/1.1654850]
[19]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[20]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[21]
Petersson, G.A.; Al-Laham, M.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys., 1991, 94(9), 6081-6090.
[http://dx.doi.org/10.1063/1.460447]
[22]
Jomroz, M.H. Vibrational Energy Distribution Analysis, 4; VEDA: Warsaw, 2004.
[23]
Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5), 580-592.
[24]
Muniappan, P.; Meenakshi, R.; Rajavel, G.; Arivazhagan, M. Vibrational spectra and theoretical calculations (dimerization, UV–Vis, multinuclear NMR and pes analyses) of 3,4-dimethylbenzamide and 3,4,5-trihydroxybenzamide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 739-753.
[http://dx.doi.org/10.1016/j.saa.2013.08.049] [PMID: 24161844]
[25]
Chand, S.; Al-Omary, F.A.M.; El-Emam, A.A.; Shukla, V.K.; Prasad, O.; Sinha, L. Study on molecular structure, spectroscopic behavior, NBO, and NLO analysis of 3-methylbezothiazole-2-thione. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 146, 129-141.
[http://dx.doi.org/10.1016/j.saa.2015.03.068] [PMID: 25813170]
[26]
Roeges, N.P.G. A Guide to the Complete Interpretation of the Infrared Spectra of Organic Structures; Wiley: New York, 1994.
[27]
Varsanyi, G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives; Wiley: New York, 1973.
[28]
Gunasekaran, S. Vibrational spectra and normal coordinate analysis on structure of nitrazepam. Indian J. Pure Appl. Phy., 2008, 46, 162-168.
[29]
Smith, B. Infrared Spectral Interpretation, A Systematic Approach; CRC Press: Washington, DC, 1999.
[30]
Issaoui, N.; Rekik, N.; Oujia, B.; Wójcik, M.J. Anharmonic effects on theoretical IR line shapes of medium strong H(D) bonds. Int. J. Quantum Chem., 2009, 109(3), 483-499.
[http://dx.doi.org/10.1002/qua.21839]
[31]
Arivazhagan, M.; Jeyavijayan, S.; Geethapriya, J. Conformational stability, vibrational spectra, molecular structure, NBO and HOMO–LUMO analysis of 5-nitro-2-furaldehyde oxime based on DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 104, 14-25.
[http://dx.doi.org/10.1016/j.saa.2012.11.032] [PMID: 23274252]
[32]
Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 1990, 92(9), 5397-5403.
[http://dx.doi.org/10.1063/1.458517]
[33]
Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem. Rev., 2005, 105(10), 3911-3947.
[http://dx.doi.org/10.1021/cr030085x] [PMID: 16218571]
[34]
Mulliken, R.S. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys., 1934, 2(11), 782-793.
[http://dx.doi.org/10.1063/1.1749394]
[35]
Shahraki, S.; Heydari, A.; Saeidifar, M.; Gomroki, M. Assessment of the interaction procedure between Pt(IV) prodrug [Pt(5,5′-dmbpy)Cl4 and human serum albumin: Combination of spectroscopic and molecular modeling technique. J. Biomol. Struct. Dyn., 2014, 35, 3098-3106.
[36]
Fleming, I. Frontier Orbitals, Organic Chemical Reactions; Wiley: London, 1976.
[37]
Choi, C.H.; Kertesz, M. Conformational information from vibrational spectra of styrene, trans-stilbene, and cis-stilbene. J. Phys. Chem. A, 1997, 101(20), 3823-3831.
[http://dx.doi.org/10.1021/jp970620v]
[38]
Roy, D.R.; Parthasarathi, R.; Maiti, B.; Subramanian, V.; Chattaraj, P.K. Electrophilicity as a possible descriptor for toxicity prediction. Bioorg. Med. Chem., 2005, 13(10), 3405-3412.
[http://dx.doi.org/10.1016/j.bmc.2005.03.011] [PMID: 15848752]
[39]
Sharma, Arun; Khanum, Ghazala; Kumar, Anuj; Fatima, Aysha; Singh, Meenakshi; Abualnaja, Khamael M. Conformational stability, quantum computational, spectroscopic, molecular docking and molecular dynamic simulation study of 2-hydroxy-1-naphthaldehyde. J. Mol. Struct., 2022, 1258(5), 132755.
[40]
Dey, D.; Mondal, R.K.; Dhibar, S.; Lin, C-H.; Schollmeyer, D.; Chopra, D.; Dey, B. Insights into the supramolecular features in isopropylmalonic and n-butylmalonic acids: Inputs from PIXEL and Hirshfeld surface analysis. J. Mol. Struct., 2016, 1122(15), 29-36.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.076]
[41]
Shukla, R.; Mohan, T.P.; Vishalakshi, B.; Chopra, D. Experimental and theoretical analysis of lp⋯π intermolecular interactions in derivatives of 1,2,4-triazoles. CrystEngComm, 2014, 16(9), 1702-1713.
[http://dx.doi.org/10.1039/C3CE42286K]
[42]
Dhibar, Subhendu; Yadav, Priya; Paul, Tanima Sarkar, Keka A bio-relevant supramolecular Co(II)-complex for selective fluorescence sensing of μM range inorganic As(III) in aqueous medium and its intracellular tracking in bacterial systems. Dalton Transact, 2019, 48(7)
[http://dx.doi.org/10.1039/C8DT04127J]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy