Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Diagnosis and treatment planning play a very vital role in improving the survival of oncological patients. However, there is high variability in the shape, size, and structure of the tumor, making automatic segmentation difficult. The automatic and accurate detection and segmentation methods for brain tumors are proposed in this paper.
Methods: A modified ResNet50 model was used for tumor detection, and a ResUNetmodel-based convolutional neural network for segmentation is proposed in this paper. The detection and segmentation were performed on the same dataset consisting of pre-contrast, FLAIR, and postcontrast MRI images of 110 patients collected from the cancer imaging archive. Due to the use of residual networks, the authors observed improvement in evaluation parameters, such as accuracy for tumor detection and dice similarity coefficient for tumor segmentation. Results: The accuracy of tumor detection and dice similarity coefficient achieved by the segmentation model were 96.77% and 0.893, respectively, for the TCIA dataset. The results were compared based on manual segmentation and existing segmentation techniques. The tumor mask was also individually compared to the ground truth using the SSIM value. The proposed detection and segmentation models were validated on BraTS2015 and BraTS2017 datasets, and the results were consensus. Conclusion: The use of residual networks in both the detection and the segmentation model resulted in improved accuracy and DSC score. DSC score was increased by 5.9% compared to the UNet model, and the accuracy of the model was increased from 92% to 96.77% for the test set.[1]
Dogra, J.; Jain, S.; Sood, M. Gradient‐based kernel selection technique for tumour detection and extraction of medical images using graph cut. IET Image Process., 2020, 14(1), 84-93.
[http://dx.doi.org/10.1049/iet-ipr.2018.6615]
[http://dx.doi.org/10.1049/iet-ipr.2018.6615]
[2]
Rouse, C.; Gittleman, H.; Ostrom, Q.T.; Kruchko, C.; Barnholtz-Sloan, J.S. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-oncol., 2016, 18(1), 70-77.
[http://dx.doi.org/10.1093/neuonc/nov249] [PMID: 26459813]
[http://dx.doi.org/10.1093/neuonc/nov249] [PMID: 26459813]
[3]
Brain tumor facts. 2022. Available from: https://braintumor.org/brain-tumors/about-brain-tumors/brain-tumo r-facts/
[4]
Dogra, J.; Jain, S.; Sharma, A.; Kumar, R.; Sood, M. Brain tumor detection from MR images employing fuzzy graph cut technique. Recent Advances in Computer Science and Communications, 2020, 13(3), 362-369.
[http://dx.doi.org/10.2174/2213275912666181207152633]
[http://dx.doi.org/10.2174/2213275912666181207152633]
[5]
Vijan, A.; Dubey, P.; Jain, S. Comparative analysis of various image fusion techniques for Brain Magnetic Resonance Images. Procedia Computer Science, 2020, 167, 413-422.
[http://dx.doi.org/10.1016/j.procs.2020.03.250]
[http://dx.doi.org/10.1016/j.procs.2020.03.250]
[6]
Jin Liu; Min Li; Jianxin Wang; Fangxiang Wu; Tianming Liu; Yi Pan, A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol., 2014, 19(6), 578-595.
[http://dx.doi.org/10.1109/TST.2014.6961028]
[http://dx.doi.org/10.1109/TST.2014.6961028]
[7]
Liang, Z-P.; Lauterbur, P.C. Principles of magnetic resonance imaging: A signal processing perspective; The institute of electrical and electronics engineers press, 2000.
[8]
Drevelegas, A.; Papanikolaou, N. Imaging modalities in brain tumors.Imaging of Brain Tumors with Histological Correlations; Springer, 2011, pp. 13-33.
[http://dx.doi.org/10.1007/978-3-540-87650-2_2]
[http://dx.doi.org/10.1007/978-3-540-87650-2_2]
[9]
Dogra, J.; Jain, S.; Sood, M. Glioma classification of MRI brain tumor employing machine learning. Int. J. Innov. Technol. Explor. Eng., 2019, 8(8), 2676-2682. [IJITEE].
[10]
Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 2015, 34(10), 1993-2024.
[http://dx.doi.org/10.1109/tmi.2014.2377694]
[http://dx.doi.org/10.1109/tmi.2014.2377694]
[11]
Bauer, S.; Wiest, R.; Nolte, L.P.; Reyes, M. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13), R97-R129.
[http://dx.doi.org/10.1088/0031-9155/58/13/R97] [PMID: 23743802]
[http://dx.doi.org/10.1088/0031-9155/58/13/R97] [PMID: 23743802]
[12]
Angelini, E.; Clatz, O.; Mandonnet, E.; Konukoglu, E.; Capelle, L.; Duffau, H. Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev., 2007, 3(4), 262-276.
[http://dx.doi.org/10.2174/157340507782446241]
[http://dx.doi.org/10.2174/157340507782446241]
[13]
Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G. Robust estimation for brain tumor segmentation. Lect. Notes Comput. Sci., 2003, 2879, 530-537.
[http://dx.doi.org/10.1007/978-3-540-39903-2_65]
[http://dx.doi.org/10.1007/978-3-540-39903-2_65]
[14]
Bauer, S.; Nolte, L-P.; Reyes, M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Lecture Notes in Computer Science, 2011, 354-361.
[http://dx.doi.org/10.1007/978-3-642-23626-6_44]
[http://dx.doi.org/10.1007/978-3-642-23626-6_44]
[15]
Zikic, D.; Glocker, B.; Konukoglu, E.; Criminisi, A.; Demiralp, C.; Shotton, J.; Thomas, O.M.; Das, T.; Jena, R.; Price, S.J. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, 2012, 369-376.
[http://dx.doi.org/10.1007/978-3-642-33454-2_46]
[http://dx.doi.org/10.1007/978-3-642-33454-2_46]
[16]
McBee, M.P.; Awan, O.A.; Colucci, A.T.; Ghobadi, C.W.; Kadom, N.; Kansagra, A.P.; Tridandapani, S.; Auffermann, W.F. deep learning in radiology. Acad. Radiol., 2018, 25(11), 1472-1480.
[http://dx.doi.org/10.1016/j.acra.2018.02.018] [PMID: 29606338]
[http://dx.doi.org/10.1016/j.acra.2018.02.018] [PMID: 29606338]
[17]
Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging, 2019, 49(4), 939-954.
[http://dx.doi.org/10.1002/jmri.26534] [PMID: 30575178]
[http://dx.doi.org/10.1002/jmri.26534] [PMID: 30575178]
[18]
Buda, M.; Saha, A.; Mazurowski, M.A. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med., 2019, 109, 218-225.
[http://dx.doi.org/10.1016/j.compbiomed.2019.05.002] [PMID: 31078126]
[http://dx.doi.org/10.1016/j.compbiomed.2019.05.002] [PMID: 31078126]
[19]
Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal., 2017, 35, 18-31.
[http://dx.doi.org/10.1016/j.media.2016.05.004] [PMID: 27310171]
[http://dx.doi.org/10.1016/j.media.2016.05.004] [PMID: 27310171]
[20]
Havaei, M.; Guizard, N.; Larochelle, H.; Jodoin, P-M. Deep learning trends for focal brain pathology segmentation in MRI. Lecture Notes in Computer Science, 2016, 125-148.
[http://dx.doi.org/10.1007/978-3-319-50478-0_6]
[http://dx.doi.org/10.1007/978-3-319-50478-0_6]
[21]
Naser, M.A.; Deen, M.J. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput. Biol. Med., 2020, 121, 103758.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103758] [PMID: 32568668]
[http://dx.doi.org/10.1016/j.compbiomed.2020.103758] [PMID: 32568668]
[22]
Dogra, J.; Shruti, J.M.S. Glioma extraction from MRI images employing GBKS graph cut technique. Visual Computer, Springer, 2020, 36, 875-891.
[http://dx.doi.org/10.1007/s00371-019-01698-3]
[http://dx.doi.org/10.1007/s00371-019-01698-3]
[23]
Ranjith, G.; Parvathy, R.; Vikas, V.; Chandrasekharan, K.; Nair, S. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy. Neuroradiol. J., 2015, 28(2), 106-111.
[http://dx.doi.org/10.1177/1971400915576637] [PMID: 25923676]
[http://dx.doi.org/10.1177/1971400915576637] [PMID: 25923676]
[24]
Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Transactions on Medical Imaging., 2016, 35(5), 1240-1251.
[http://dx.doi.org/10.1109/TMI.2016.2538465]
[http://dx.doi.org/10.1109/TMI.2016.2538465]
[25]
Ding, Y.; Li, C.; Yang, Q.; Qin, Z.; Qin, Z. How to improve the deep residual network to segment multi-modal brain tumor images. IEEE Access, 2019, 7, 152821-152831.
[http://dx.doi.org/10.1109/ACCESS.2019.2948120]
[http://dx.doi.org/10.1109/ACCESS.2019.2948120]
[26]
Razzak, M.I.; Imran, M.; Xu, G. Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J. Biomed. Health Inform., 2019, 23(5), 1911-1919.
[http://dx.doi.org/10.1109/JBHI.2018.2874033] [PMID: 30295634]
[http://dx.doi.org/10.1109/JBHI.2018.2874033] [PMID: 30295634]
[27]
Ye, F.; Zheng, Y.; Ye, H.; Han, X.; Li, Y.; Wang, J.; Pu, J. Parallel pathway dense neural network with weighted fusion structure for brain tumor segmentation. Neurocomputing, 2021, 425, 1-11.
[http://dx.doi.org/10.1016/j.neucom.2020.11.005]
[http://dx.doi.org/10.1016/j.neucom.2020.11.005]
[28]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[29]
Dogra, J.; Jain, S.; Sood, M. Novel seed selection techniques for MR brain image segmentation using graph cut. Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 2020, 8(4), 389-399.
[http://dx.doi.org/10.1080/21681163.2019.1697966]
[http://dx.doi.org/10.1080/21681163.2019.1697966]
[30]
Wang, Z.; Zou, Y.; Peter, X. Hybrid dilation and attention residual U-Net for medical image segmentation. Comput. Biol. Med., 2021, 134, 104449.
[31]
Jin, Q.; Meng, Z.; Sun, C.; Cui, H.; Su, R. Ra-unet, A hybrid deep attention-awarenetwork to extract liver and tumor in ct scans. Front. Bioeng. Biotechnol., 2020, 8, 605132.
[http://dx.doi.org/10.3389/fbioe.2020.605132]
[http://dx.doi.org/10.3389/fbioe.2020.605132]
[32]
Ronneberger, O.; Fischer, P.; Brox, T. U-net, Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, 2015; pp. 234-241.
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[http://dx.doi.org/10.1007/978-3-319-24574-4_28]
[33]
Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786), 504-507.
[http://dx.doi.org/10.1126/science.1127647] [PMID: 16873662]
[http://dx.doi.org/10.1126/science.1127647] [PMID: 16873662]
[34]
Li, D.; Dharmawan, D.A.; Ng, B.P.; Rahardja, S. Residual u-net for retinal vesselsegmentation 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sept 22-25, 2019, pp. 1425-1429.
[http://dx.doi.org/10.1109/ICIP.2019.8803101]
[http://dx.doi.org/10.1109/ICIP.2019.8803101]
[35]
Kermi, A.; Mahmoudi, I.; Khadir, M.T. Deep convolutional neural networks using unet for automatic brain tumor segmentation in multi-modal mri volumes.International MICCAI Brainlesion Workshop; Springer, 2018, pp. 37-48.
[36]
Devalla, S.K.; Renukanand, P.K.; Sreedhar, B.K.; Subramanian, G.; Zhang, L.; Perera, S.; Mari, J.M.; Chin, K.S.; Tun, T.A.; Strouthidis, N.G.; Aung, T.; Thiéry, A.H.; Girard, M.J.A. DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Express, 2018, 9(7), 3244-3265.
[http://dx.doi.org/10.1364/BOE.9.003244] [PMID: 29984096]
[http://dx.doi.org/10.1364/BOE.9.003244] [PMID: 29984096]
[37]
Aghalari, M.; Aghagolzadeh, A.; Ezoji, M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomed Sig Process Cont., 2021, 69, 102841.
[38]
Shen, H.; Zhang, J.; Zheng, W. Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, Feb 17-20, 2017, pp. 3864-3868.
[http://dx.doi.org/10.1109/ICIP.2017.8297006]
[http://dx.doi.org/10.1109/ICIP.2017.8297006]
[39]
Dice, L.R. Measures of the amount of ecologic association between species. Ecology, 1945, 26(3), 297-302.
[http://dx.doi.org/10.2307/1932409]
[http://dx.doi.org/10.2307/1932409]
[40]
Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 2004, 13(4), 600-612.
[http://dx.doi.org/10.1109/TIP.2003.819861] [PMID: 15376593]
[http://dx.doi.org/10.1109/TIP.2003.819861] [PMID: 15376593]
[41]
Batista, J.; Vikić-Topić, D.; Lučić, B. The difference between the accuracy of real and the corresponding random model is a useful parameter for validation of two-state classification model quality. Croat. Chem. Acta, 2016, 89(4), 527-534.
[http://dx.doi.org/10.5562/cca3117]
[http://dx.doi.org/10.5562/cca3117]