Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Flavonoids as Pyruvate Kinase M2 Inhibitor: An In silico Analysis

Author(s): Raghav Mishra*, Sparsh Kaushal and Isha Mishra

Volume 21, Issue 13, 2024

Published on: 12 December, 2023

Page: [2661 - 2673] Pages: 13

DOI: 10.2174/1570180820666230816090541

Price: $65

Abstract

Background: The prevalence of cancer in developing nations is a significant issue of concern. As a result of diverse global influences, this condition has surpassed coronary ailments to become the foremost cause of mortality. The role of PKM2 (Muscle Pyruvate Kinase 2) has garnered significant interest in the quest for agents in cancer progression. Flavonoids exhibit promise as a framework for the advancement of chemotherapeutic agents targeting cancer.

Objective: The principal aim of the present in silico investigation was to ascertain flavonoids as potential anticancer agents capable of inhibiting the PKM2 enzyme.

Methods: The preferred ligand molecules were docked to the human PKM2 enzyme using a computational molecular docking simulation technique to determine their affinity for the same enzyme. The molecular docking simulation was carried out using the AutoDock Vina software.

Results: The chosen flavonoid docked well with the PKM2 enzyme, suggesting it may stimulate autophagy, hence acting as an anticancer agent.

Conclusion: In in silico studies, the chosen flavonoids showed a strong binding affinity, indicating that all of them impede the human PKM2 enzyme and have the potential to be used as cancer treatment alternatives.

[1]
Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents. Eur. J. Med. Chem. Reports, 2022, 5(100042), 100042.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100042]
[2]
Sarkar, R.; Banerjee, S.; Amin, S.A.; Adhikari, N.; Jha, T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur. J. Med. Chem., 2020, 192(112171), 112171.
[http://dx.doi.org/10.1016/j.ejmech.2020.112171] [PMID: 32163814]
[3]
Harwansh, R.K.; Deshmukh, R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit. Rev. Oncol. Hematol., 2020, 154(103070), 103070.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103070] [PMID: 32871325]
[4]
Shah, K.; Chhabra, S.; Singh Chauhan, N. Chemistry and anticancer activity of cardiac glycosides: A review. Chem. Biol. Drug Des., 2022, 100(3), 364-375.
[http://dx.doi.org/10.1111/cbdd.14096] [PMID: 35638893]
[5]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives. Lett. Drug Des. Discov., 2022, 19(6), 530-540.
[http://dx.doi.org/10.2174/1570180819666220117123958]
[6]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, pharmacological evaluation, and in-silico studies of thiophene derivatives. Oncologie, 2021, 23(4), 493-514.
[http://dx.doi.org/10.32604/oncologie.2021.018532]
[7]
Mishra, R.; Kumar, N.; Mishra, I.; Sachan, N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem., 2020, 20(19), 1944-1965.
[http://dx.doi.org/10.2174/1389557520666200715104555] [PMID: 32669077]
[8]
Karati, D.; Kumar, D. Exploring the structural and functional requirements of Phyto-compounds and their synthetic scaffolds as anticancer agents: Medicinal chemistry perspective. Pharmacol. Res. - Modern Chinese Med., 2022, 4(100123), 100123.
[http://dx.doi.org/10.1016/j.prmcm.2022.100123]
[9]
Godman, C.A.; Joshi, R.; Tierney, B.R.; Greenspan, E.; Rasmussen, T.P.; Wang, H.; Shin, D.G.; Rosenberg, D.W.; Giardina, C. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol. Ther., 2008, 7(10), 1570-1580.
[http://dx.doi.org/10.4161/cbt.7.10.6561] [PMID: 18769117]
[10]
Smeltzer, S. C.; Bare, B. G.; Hinkle, J. L.; Cheever, K. H.; Pandey, G.; Madhuri, S. Brunner and Suddarth’s Textbook of Medical Surgical Nursing; Lippincott Williams & WIlkins, 2010.
[11]
Mousavi, S.M.; Gouya, M.M.; Ramazani, R.; Davanlou, M.; Hajsadeghi, N.; Seddighi, Z. Cancer incidence and mortality in Iran. Ann. Oncol., 2009, 20(3), 556-563.
[http://dx.doi.org/10.1093/annonc/mdn642] [PMID: 19073863]
[12]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[13]
Ferlay, J.; Colombet, M.; Soerjomataram, I. Global and regional estimates of the incidence and mortality for 38 cancers: GLOBOCAN. International Agency for Research on Cancer/ World., 2018.
[14]
Almouhanna, F.; Blagojevic, B.; Can, S.; Ghanem, A.; Wölfl, S. Pharmacological activation of pyruvate kinase M2 reprograms glycolysis leading to TXNIP depletion and AMPK activation in breast cancer cells. Cancer Metab., 2021, 9(1), 5.
[http://dx.doi.org/10.1186/s40170-021-00239-8] [PMID: 33482908]
[15]
Hsu, P.P.; Sabatini, D.M. Cancer cell metabolism: Warburg and beyond. Cell, 2008, 134(5), 703-707.
[http://dx.doi.org/10.1016/j.cell.2008.08.021] [PMID: 18775299]
[16]
Locasale, J.W.; Cantley, L.C. Altered metabolism in cancer. BMC Biol., 2010, 8(1), 88.
[http://dx.doi.org/10.1186/1741-7007-8-88] [PMID: 20598111]
[17]
Liu, C.; Jin, Y.; Fan, Z. The mechanism of warburg effect-induced chemoresistance in cancer. Front. Oncol., 2021, 11, 698023.
[http://dx.doi.org/10.3389/fonc.2021.698023] [PMID: 34540667]
[18]
Gu, Z.; Xia, J.; Xu, H.; Frech, I.; Tricot, G.; Zhan, F. NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase. J. Hematol. Oncol., 2017, 10(1), 17.
[http://dx.doi.org/10.1186/s13045-017-0392-4] [PMID: 28086949]
[19]
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[20]
Wong, N.; De Melo, J.; Tang, D. PKM2, a central point of regulation in cancer metabolism. Int. J. Cell Biol., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/242513] [PMID: 23476652]
[21]
DeBerardinis, R.J.; Chandel, N.S. We need to talk about the Warburg effect. Nat. Metab., 2020, 2(2), 127-129.
[http://dx.doi.org/10.1038/s42255-020-0172-2] [PMID: 32694689]
[22]
Zhang, C.; Liu, N. Noncoding RNAs in the glycolysis of ovarian cancer. Front. Pharmacol., 2022, 13, 855488.
[http://dx.doi.org/10.3389/fphar.2022.855488] [PMID: 35431949]
[23]
Zahra, K.; Dey, T. Ashish; Mishra, S.P.; Pandey, U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front. Oncol., 2020, 10, 159.
[http://dx.doi.org/10.3389/fonc.2020.00159] [PMID: 32195169]
[24]
Zhu, S.; Guo, Y.; Zhang, X.; Liu, H.; Yin, M.; Chen, X.; Peng, C. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett., 2021, 503, 240-248.
[http://dx.doi.org/10.1016/j.canlet.2020.11.018] [PMID: 33246091]
[25]
Dayton, T.L.; Gocheva, V.; Miller, K.M.; Israelsen, W.J.; Bhutkar, A.; Clish, C.B.; Davidson, S.M.; Luengo, A.; Bronson, R.T.; Jacks, T.; Vander Heiden, M.G. Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev., 2016, 30(9), 1020-1033.
[http://dx.doi.org/10.1101/gad.278549.116] [PMID: 27125672]
[26]
Uyeda, K. Pyruvate kinase. In: Encyclopedia of Biological Chemistry; Elsevier, 2013; pp. 719-721.
[http://dx.doi.org/10.1016/B978-0-12-378630-2.00053-0]
[27]
Noguchi, T.; Yamada, K.; Inoue, H.; Matsuda, T.; Tanaka, T. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J. Biol. Chem., 1987, 262(29), 14366-14371.
[http://dx.doi.org/10.1016/S0021-9258(18)47947-1] [PMID: 3654663]
[28]
Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Function, regulation and role in cancer. Semin. Cell Dev. Biol., 2015, 43, 43-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.004] [PMID: 26277545]
[29]
Iqbal, M.A.; Gupta, V.; Gopinath, P.; Mazurek, S.; Bamezai, R.N.K. Pyruvate kinase M2 and cancer: An updated assessment. FEBS Lett., 2014, 588(16), 2685-2692.
[http://dx.doi.org/10.1016/j.febslet.2014.04.011] [PMID: 24747424]
[30]
Mazurek, S. Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol., 2011, 43(7), 969-980.
[http://dx.doi.org/10.1016/j.biocel.2010.02.005] [PMID: 20156581]
[31]
Gupta, V.; Bamezai, R.N.K. Human pyruvate kinase M2: A multifunctional protein. Protein Sci., 2010, 19(11), 2031-2044.
[http://dx.doi.org/10.1002/pro.505] [PMID: 20857498]
[32]
Schroeder, P.; Fulzele, K.; Forsyth, S.; Ribadeneira, M.D.; Guichard, S.; Wilker, E.; Marshall, C.G.; Drake, A.; Fessler, R.; Konstantinidis, D.G.; Seu, K.G.; Kalfa, T.A. Etavopivat, a pyruvate kinase activator in red blood cells, for the treatment of sickle cell disease. J. Pharmacol. Exp. Ther., 2022, 380(3), 210-219.
[http://dx.doi.org/10.1124/jpet.121.000743] [PMID: 35031585]
[33]
Zanella, A.; Fermo, E.; Bianchi, P.; Valentini, G. Red cell pyruvate kinase deficiency: Molecular and clinical aspects. Br. J. Haematol., 2005, 130(1), 11-25.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05527.x] [PMID: 15982340]
[34]
Grace, R.F.; Mark Layton, D.; Barcellini, W. How we manage patients with pyruvate kinase deficiency. Br. J. Haematol., 2019, 184(5), 721-734.
[http://dx.doi.org/10.1111/bjh.15758] [PMID: 30681718]
[35]
Koralkova, P.; van Solinge, W.W.; van Wijk, R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia - pathophysiology, clinical aspects, and laboratory diagnosis. Int. J. Lab. Hematol., 2014, 36(3), 388-397.
[http://dx.doi.org/10.1111/ijlh.12223] [PMID: 24750686]
[36]
Bianchi, P.; Fermo, E.; Glader, B.; Kanno, H.; Agarwal, A.; Barcellini, W.; Eber, S.; Hoyer, J.D.; Kuter, D.J.; Maia, T.M.; Mañu-Pereira, M.M.; Kalfa, T.A.; Pissard, S.; Segovia, J.C.; van Beers, E.; Gallagher, P.G.; Rees, D.C.; van Wijk, R. Addressing the diagnostic gaps in pyruvate kinase deficiency: Consensus recommendations on the diagnosis of pyruvate kinase deficiency. Am. J. Hematol., 2019, 94(1), 149-161.
[http://dx.doi.org/10.1002/ajh.25325] [PMID: 30358897]
[37]
Imamura, K.; Tanaka, T. Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J. Biochem., 1972, 71(6), 1043-1051.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a129852] [PMID: 4342282]
[38]
Netzker, R.; Greiner, E.; Eigenbrodt, E.; Noguchi, T.; Tanaka, T.; Brand, K. Cell cycle-associated expression of M2-type isozyme of pyruvate kinase in proliferating rat thymocytes. J. Biol. Chem., 1992, 267(9), 6421-6424.
[http://dx.doi.org/10.1016/S0021-9258(18)42712-3] [PMID: 1556146]
[39]
Hitosugi, T.; Kang, S.; Vander Heiden, M.G.; Chung, T.W.; Elf, S.; Lythgoe, K.; Dong, S.; Lonial, S.; Wang, X.; Chen, G.Z.; Xie, J.; Gu, T.L.; Polakiewicz, R.D.; Roesel, J.L.; Boggon, T.J.; Khuri, F.R.; Gilliland, D.G.; Cantley, L.C.; Kaufman, J.; Chen, J. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal., 2009, 2(97), ra73.
[http://dx.doi.org/10.1126/scisignal.2000431] [PMID: 19920251]
[40]
Noguchi, T.; Inoue, H.; Tanaka, T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem., 1986, 261(29), 13807-13812.
[http://dx.doi.org/10.1016/S0021-9258(18)67091-7] [PMID: 3020052]
[41]
David, C.J.; Chen, M.; Assanah, M.; Canoll, P.; Manley, J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2010, 463(7279), 364-368.
[http://dx.doi.org/10.1038/nature08697] [PMID: 20010808]
[42]
Christofk, H.R.; Vander Heiden, M.G.; Harris, M.H.; Ramanathan, A.; Gerszten, R.E.; Wei, R.; Fleming, M.D.; Schreiber, S.L.; Cantley, L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008, 452(7184), 230-233.
[http://dx.doi.org/10.1038/nature06734] [PMID: 18337823]
[43]
Zhang, Z.; Deng, X.; Liu, Y.; Liu, Y.; Sun, L.; Chen, F. PKM2, function and expression and regulation. Cell Biosci., 2019, 9(1), 52.
[http://dx.doi.org/10.1186/s13578-019-0317-8] [PMID: 31391918]
[44]
Muñoz-Colmenero, A.; Fernández-Suárez, A.; Fatela-Cantillo, D.; Ocaña-Pérez, E.; Domínguez-Jiménez, J.L.; Díaz-Iglesias, J.M. Plasma tumor M2-Pyruvate kinase levels in different cancer types. Anticancer Res., 2015, 35(7), 4271-4276.
[PMID: 26124389]
[45]
Dombrauckas, J.D.; Santarsiero, B.D.; Mesecar, A.D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 2005, 44(27), 9417-9429.
[http://dx.doi.org/10.1021/bi0474923] [PMID: 15996096]
[46]
Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008, 452(7184), 181-186.
[http://dx.doi.org/10.1038/nature06667] [PMID: 18337815]
[47]
Wang, C.; Jiang, J.; Ji, J.; Cai, Q.; Chen, X.; Yu, Y.; Zhu, Z.; Zhang, J. PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci. Rep., 2017, 7(1), 2886.
[http://dx.doi.org/10.1038/s41598-017-03031-1] [PMID: 28588255]
[48]
Qin, X.; Du, Y.; Chen, X.; Li, W.; Zhang, J.; Yang, J. Activation of Akt protects cancer cells from growth inhibition induced by PKM2 knockdown. Cell Biosci., 2014, 4(1), 20.
[http://dx.doi.org/10.1186/2045-3701-4-20] [PMID: 24735734]
[49]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[50]
Moulishankar, A.; Lakshmanan, K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief, 2020, 29(105243), 105243.
[http://dx.doi.org/10.1016/j.dib.2020.105243] [PMID: 32072001]
[51]
Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 45.
[http://dx.doi.org/10.1186/s43088-020-00065-9]
[52]
Murti, Y.; Pathak, D.; Pathak, K. Green chemistry approaches to the synthesis of flavonoids. Curr. Org. Chem., 2021, 25(17), 2005-2027.
[http://dx.doi.org/10.2174/1385272825666210728095624]
[53]
Murti, Y.; Semwal, B.C.; Goyal, A.; Mishra, P. Naringenin scaffold as a template for drug designing. Curr. Tradit. Med., 2021, 7(1), 28-44.
[http://dx.doi.org/10.2174/2215083805666190617144652]
[54]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[55]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5(e47), e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[56]
Herrmann, K.; Nagel, C.W. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr., 1989, 28(4), 315-347.
[http://dx.doi.org/10.1080/10408398909527504] [PMID: 2690858]
[57]
Burak, M.; Imen, Y. Flavonoids and Their Antioxidant Properties; Turkiye Klin Tip Bil Derg, 1999.
[58]
Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res., 2009, 1250, 164-174.
[http://dx.doi.org/10.1016/j.brainres.2008.10.012] [PMID: 18992719]
[59]
Rathod, B.; Chak, S.; Patel, S.; Shard, A. Tumor pyruvate kinase M2 modulators: A comprehensive account of activators and inhibitors as anticancer agents. RSC Med. Chem., 2021, 12(7), 1121-1141.
[http://dx.doi.org/10.1039/D1MD00045D] [PMID: 34355179]
[60]
Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Buhrmann, C.; Varghese, E.; Abotaleb, M.; Qaradakhi, T.; Zulli, A.; Kello, M.; Mojzis, J.; Zubor, P.; Kwon, T.K.; Shakibaei, M.; Büsselberg, D.; Sarria, G.R.; Golubnitschaja, O.; Kubatka, P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J., 2020, 11(3), 377-398.
[http://dx.doi.org/10.1007/s13167-020-00217-y] [PMID: 32843908]
[61]
Rahman, M.A.; Hannan, M.A.; Dash, R.; Rahman, M.D.H.; Islam, R.; Uddin, M.J.; Sohag, A.A.M.; Rahman, M.H.; Rhim, H. Phytochemicals as a complement to cancer chemotherapy: Pharmacological modulation of the autophagy-apoptosis pathway. Front. Pharmacol., 2021, 12, 639628.
[http://dx.doi.org/10.3389/fphar.2021.639628] [PMID: 34025409]
[62]
Suvarna, V.; Murahari, M.; Khan, T.; Chaubey, P.; Sangave, P. Phytochemicals and PI3K inhibitors in cancer-An insight. Front. Pharmacol., 2017, 8, 916.
[http://dx.doi.org/10.3389/fphar.2017.00916] [PMID: 29311925]
[63]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[64]
Kelemen, K.; Kiesecker, C.; Zitron, E.; Bauer, A.; Scholz, E.; Bloehs, R.; Thomas, D.; Greten, J.; Remppis, A.; Schoels, W.; Katus, H.A.; Karle, C.A. Green tea flavonoid epigallocatechin-3-gallate (EGCG) inhibits cardiac hERG potassium channels. Biochem. Biophys. Res. Commun., 2007, 364(3), 429-435.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.001] [PMID: 17961513]
[65]
Alharbi, K.S.; Shaikh, M.A.J.; Almalki, W.H.; Kazmi, I.; Al-Abbasi, F.A.; Alzarea, S.I.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Singh, S.K.; Chellappan, D.K.; Oliver, B.G.; Dua, K.; Gupta, G. PI3K/Akt/mTOR pathways inhibitors with potential prospects in non-small-cell lung cancer. J. Environ. Pathol. Toxicol. Oncol., 2022, 41(4), 85-102.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2022042281] [PMID: 36374963]
[66]
Singh, N.K.; Mujwar, S.; Garabadu, D. In silico anti-cholinestarase activity of flavonoids: A computational approach. Asian J. Chem., 2019, 31(12), 2859-2864.
[http://dx.doi.org/10.14233/ajchem.2019.22153]
[67]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[68]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]

© 2025 Bentham Science Publishers | Privacy Policy