Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Fundamentals and Simulation of Electrowetting: Focus on Electrowetting Lens

Author(s): Masoud Safari*, Ali Moshfegh Haghighi and Mohammad Torkian

Volume 16, Issue 3, 2023

Published on: 04 September, 2023

Page: [209 - 219] Pages: 11

DOI: 10.2174/2405520416666230815124126

Price: $65

Abstract

Introduction: Electrowetting has become one of the most widely used phenomena for utilizing miniature contents of liquids on surfaces.

Method: Electrowetting is an effective way to modify the droplet’s form with an electrical field. In this work, we will review some basics of electrowetting fundamentals and details of electrowetting on dielectric (EWOD) structures and materials. The principle of electrowetting liquid lenses and their particular configurations have been demonstrated.

Result: It should be noted that electrowetting lenses are better for commercial use because they use an electrical drive instead of a mechanical approach.

Conclusion: After a brief look at the simulation methods, the electrowetting lens and the COMSOL simulation of a model are focused for this sort of electrowetting application. Some crucial criteria are compared to distinguish the appropriate situation and materials.

Graphical Abstract

[1]
Daub CD, Bratko D, Leung K, Luzar A. Electrowetting at the Nanoscale. J Phys Chem C 2007; 111(2): 505-9.
[http://dx.doi.org/10.1021/jp067395e]
[2]
Mugele F, Klingner A, Buehrle J, Steinhauser D, Herminghaus S. Electrowetting: A convenient way to switchable wettability patterns. J Phys Condens Matter 2005; 17(9): S559-76.
[http://dx.doi.org/10.1088/0953-8984/17/9/016]
[3]
Yeo L, Friend J. Microfluidic Components for Lab-on-a-Chip Devices
[4]
Berge B. Electrocapillarity and wetting of insulating films by water. Proceedings of the Academy of Sciences Series 2, Mechanics, Physics, Chemistry, Sciences of the universe. Earth Sciences 1993; 317(2): 157-63.
[5]
Vallet M, Berge B, Vovelle L. Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 1996; 37(12): 2465-70.
[http://dx.doi.org/10.1016/0032-3861(96)85360-2]
[6]
Mugele F, Baret JC. Electrowetting: From basics to applications. J Phys Condens Matter 2005; 17(28): R705-74.
[http://dx.doi.org/10.1088/0953-8984/17/28/R01]
[7]
Mugele F, Duits M, van den Ende D. Electrowetting: A versatile tool for drop manipulation, generation, and characterization. Adv Colloid Interface Sci 2010; 161(1-2): 115-23.
[http://dx.doi.org/10.1016/j.cis.2009.11.002] [PMID: 20004880]
[8]
Jones TB. On the relationship of dielectrophoresis and electrowetting. Langmuir 2002; 18(11): 4437-43.
[http://dx.doi.org/10.1021/la025616b]
[9]
Cooney CG, Chen CY, Emerling MR, Nadim A, Sterling JD. Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluidics 2006; 2(5): 435-46.
[http://dx.doi.org/10.1007/s10404-006-0085-8]
[10]
Kang KH. How electrostatic fields change contact angle in electrowetting. Langmuir 2002; 18(26): 10318-22.
[http://dx.doi.org/10.1021/la0263615]
[11]
Kuo JS, Spicar-Mihalic P, Rodriguez I, Chiu DT. Electrowetting-induced droplet movement in an immiscible medium. Langmuir 2003; 19(2): 250-5.
[http://dx.doi.org/10.1021/la020698p]
[12]
Ren H, Fair RB, Pollack MG, Shaughnessy EJ. Dynamics of electro-wetting droplet transport. Sens Actuators B Chem 2002; 87(1): 201-6.
[http://dx.doi.org/10.1016/S0925-4005(02)00223-X]
[13]
de Gennes PG. Wetting: Statics and dynamics. Rev Mod Phys 1985; 57(3): 827-63.
[http://dx.doi.org/10.1103/RevModPhys.57.827]
[14]
Ruths M, Israelachvili JN. Surface forces and nanorheology of molecularly thin films. Nanotribology and nanomechanics. Springer 2008; pp. 417-515.
[http://dx.doi.org/10.1007/978-3-540-77608-6_9]
[15]
Ni Q, Crane NB. Electrowetting effect: Theory, modeling, and applications. Wiley Encyclopedia of Electrical and Electronics Engineering 1999; pp. 1-14.
[16]
Lippmann G. Relations between electrical and capillary phenomena. Ann Chim Phys 1875; 5(11): 494-549.
[17]
Verheijen HJJ, Prins MWJ. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir 1999; 15(20): 6616-20.
[http://dx.doi.org/10.1021/la990548n]
[18]
Xie P, Shi Z, Feng M, et al. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 2022; 5(2): 679-95.
[http://dx.doi.org/10.1007/s42114-022-00479-2]
[19]
Liu H, Dharmatilleke S, Maurya DK, Tay AAO. Dielectric materials for electrowetting-on-dielectric actuation. Microsyst Technol 2010; 16(3): 449-60.
[http://dx.doi.org/10.1007/s00542-009-0933-z]
[20]
Zhang Z, Liu M, Ibrahim MM, et al. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 2022; 5(2): 1054-66.
[http://dx.doi.org/10.1007/s42114-022-00486-3] [PMID: 35539508]
[21]
Mibus M, Zangari G. Performance and reliability of electrowetting-on-dielectric (EWOD) systems based on tantalum oxide. ACS Appl Mater Interfaces 2017; 9(48): 42278-86.
[http://dx.doi.org/10.1021/acsami.7b07366] [PMID: 29112362]
[22]
Zhang Q, Zhu Z, Shen D, Yang H. Enhanced dielectric and hydrophobic properties of PDMS/P(VDF-TrFE) blend films by embedding PS microspheres. Colloids Surf A Physicochem Eng Asp 2019; 569: 171-8.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.006]
[23]
Shen D, Zhang Q, Zhang Z, Yang H, Sheng J. Enhanced dielectric and hydrophobic properties of Poly(vinylidene fluoride-trifluoroethylene)/TiO2 nanowire arrays composite film surface modified by electrospinning. Polymers 2020; 13(1): 105.
[http://dx.doi.org/10.3390/polym13010105] [PMID: 33383843]
[24]
Liu M, Wu H, Wu Y, et al. The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 2022; 5(3): 2021-30.
[http://dx.doi.org/10.1007/s42114-022-00541-z]
[25]
Fan G, Wang Z, Sun K, Liu Y, Fan R. Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol 2021; 61: 125-31.
[http://dx.doi.org/10.1016/j.jmst.2020.06.013]
[26]
Berge B. Liquid lens technology: Principle of electrowetting based lenses and applications to imaging. 18th IEEE International Conference on Micro Electro Mechanical Systems. 30 January- 03 February 2005; Miami Beach, FL, USA. 2005; pp. 227-30.
[http://dx.doi.org/10.1109/MEMSYS.2005.1453908]
[27]
Cheng CC, Andrew Yeh J. Dielectrically actuated liquid lens. Opt Express 2007; 15(12): 7140-5.
[http://dx.doi.org/10.1364/OE.15.007140] [PMID: 19547032]
[28]
Wu S-T, Ren H. Introduction to adaptive lenses. John Wiley & Sons 2012.
[29]
Kuiper S, Hendriks BHW. Variable-focus liquid lens for miniature cameras. Appl Phys Lett 2004; 85(7): 1128-30.
[http://dx.doi.org/10.1063/1.1779954]
[30]
Song X, Zhang H, Li D, Jia D, Liu T. Electrowetting lens with large aperture and focal length tunability. Sci Rep 2020; 10(1): 16318.
[http://dx.doi.org/10.1038/s41598-020-73260-4] [PMID: 33004850]
[31]
Aminfar H, Mohammadpourfard M. Lattice Boltzmann method for electrowetting modeling and simulation. Comput Methods Appl Mech Eng 2009; 198(47-48): 3852-68.
[http://dx.doi.org/10.1016/j.cma.2009.08.021]
[32]
Schebarchov D, Hendy SC. Capillary absorption of metal nanodroplets by single-wall carbon nanotubes. Nano Lett 2008; 8(8): 2253-7.
[http://dx.doi.org/10.1021/nl080875s] [PMID: 18597537]
[33]
Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 1998; 30(1): 329-64.
[http://dx.doi.org/10.1146/annurev.fluid.30.1.329]
[34]
Zhao YP, Wang Y. Fundamentals and applications of electrowetting. Rev Adhes Adhes 2013; 1(1): 114-74.
[http://dx.doi.org/10.7569/RAA.2013.097304]
[35]
Zeng J, Korsmeyer T. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 2004; 4(4): 265-77.
[http://dx.doi.org/10.1039/b403082f] [PMID: 15269791]
[36]
Cristini V, Tan YC. Theory and numerical simulation of droplet dynamics in complex flows—a review. Lab Chip 2004; 4(4): 257-64.
[http://dx.doi.org/10.1039/B403226H] [PMID: 15269790]
[37]
Quinn A, Sedev R, Ralston J. Influence of the electrical double layer in electrowetting. J Phys Chem B 2003; 107(5): 1163-9.
[http://dx.doi.org/10.1021/jp0216326]
[38]
Valluru SPRS. Simulation and analysis of liquid lens behaviour for machine vision applications-CA13 (AFT). 2019 30th Irish Signals and Systems Conference (ISSC). 17-18 June 2019; Maynooth, Ireland. 2019;
[http://dx.doi.org/10.1109/ISSC.2019.8904944]
[39]
Zhuang A, Liao R, Dixon SC, et al. Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition. RSC Advances 2017; 7(47): 29275-83.
[http://dx.doi.org/10.1039/C7RA04116K]
[40]
Wimby JM, Berntsson TS. Viscosity and density of aqueous solutions of lithium bromide, lithium chloride, zinc bromide, calcium chloride and lithium nitrate. 1. Single salt solutions. J Chem Eng Data 1994; 39(1): 68-72.
[http://dx.doi.org/10.1021/je00013a019]
[41]
Kestin J, Khalifa HE, Correia RJ. Tables of the dynamic and kinematic viscosity of aqueous KCl solutions in the temperature range 25–150 °C and the pressure range 0.1–35 MPa. J Phys Chem Ref Data 1981; 10(1): 57-70.
[http://dx.doi.org/10.1063/1.555640]
[42]
Kecskes LJ. Assessment of two electro-rheological fluids for use in recoil abatement applications. Army Research Lab Aberdeen Proving Ground Md 2001.
[43]
Ren H, Wu ST. Variable-focus liquid lens. Opt Express 2007; 15(10): 5931-6.
[http://dx.doi.org/10.1364/OE.15.005931] [PMID: 19546896]
[44]
Dubey MC, Mohanta D. Adaptive liquid lens based on electrowetting of two immiscible liquids: A study with numerical simulation and analysis. J Opt 2022; 52: 877-84.
[45]
Park Y, Seo S, Gruenberg P, Lee JH. Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens. IEEE Photonics Technol Lett 2013; 25(6): 623-5.
[http://dx.doi.org/10.1109/LPT.2013.2247392]
[46]
Chae JB, Kwon JO, Yang JS, Kim D, Rhee K, Chung SK. Optimum thickness of hydrophobic layer for operating voltage reduction in EWOD systems. Sens Actuators A Phys 2014; 215: 8-16.
[http://dx.doi.org/10.1016/j.sna.2013.11.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy