Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Molecular Insights into the Mechanism of Modulatory Effects of Proton Pump Inhibitors on P-glycoprotein Mediated Drug Transport of Palbociclib and Ribociclib

Author(s): Mrunal Pradeep Desai, Prajakta Harish Patil, Sai Krishna Anand Vullendula, Sumit Birangal, G. Gautham Shenoy, Mahadev Rao, Swapnil Jayant Dengale, Krishnamurthy Bhat and Jagadish Puralae Channabasavaiah*

Volume 24, Issue 6, 2023

Published on: 31 August, 2023

Page: [458 - 465] Pages: 8

DOI: 10.2174/1389200224666230815122312

Price: $65

Abstract

Background: Palbociclib and ribociclib are substrates of efflux transporter P-glycoprotein which plays a key role in absorption and transport of these drugs. Proton pump inhibitors, when co-administered with them are known to show inhibitory effect on P-glycoprotein.

Objective: Therefore, this study aims to investigate the role of proton pump inhibitors in inhibition of P-glycoprotein mediated efflux of palbociclib and ribociclib.

Method: A combined approach of molecular docking and ex vivo everted gut sac model was implemented to predict the potential of proton pump inhibitors i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole to inhibit the P-glycoprotein mediated intestinal transport of palbociclib and ribociclib and study the molecular basis of interaction taking place.

Results: Molecular docking studies revealed that omeprazole, rabeprazole and pantoprazole bound to the ATP site of nucleotide binding domain with binding energies of -27.53, -29.56 and -38.44 Kcal/mol respectively. In ex vivo studies, rabeprazole and omeprazole, affected the absorptive permeability of palbociclib by 3.04 and 1.26 and ribociclib by 1.76 and 2.54 folds, respectively. Results of molecular docking studies and ex vivo studies highlighted that proton pump inhibitors bound to the ATP binding site to block its hydrolysis thereby inhibiting the P-glycoprotein mediated efflux of palbociclib and ribociclib.

Conclusion: The experimental evidence presented highlights the fact that proton pump inhibitors have potential to inhibit P-glycoprotein, giving rise to drug interactions with palbociclib and ribociclib. Hence, monitoring is required while proton pump inhibitors and cyclin-dependent kinase inhibitors are being co-administered to avoid adverse events.

Graphical Abstract

[1]
García-Trevijano Cabetas, M.; Lucena Martínez, P.; Jiménez Nácher, I.; Díaz Almirón, M.; Zamora Auñón, P.; Herrero Ambrosio, A. Real-world experience of palbociclib and ribociclib: Novel oral therapy in metastatic breast cancer. Int. J. Clin. Pharm., 2021, 43(4), 893-899.
[http://dx.doi.org/10.1007/s11096-020-01193-z] [PMID: 33170404]
[2]
Braal, C.L.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.; Koolen, S.L.W.; Jager, A. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: Similarities and differences. Drugs, 2021, 81(3), 317-331.
[http://dx.doi.org/10.1007/s40265-020-01461-2] [PMID: 33369721]
[3]
Sorf, A.; Hofman, J.; Kučera, R.; Staud, F.; Ceckova, M. Ribociclib shows potential for pharmacokinetic drug-drug interactions being a sub-strate of ABCB1 and potent inhibitor of ABCB1, ABCG2 and CYP450 isoforms In vitro. Biochem. Pharmacol., 2018, 154, 10-17.
[http://dx.doi.org/10.1016/j.bcp.2018.04.013] [PMID: 29673999]
[4]
Desai, M.; Patil, P.H.; Rao, R.R.; Shenoy, G.G.; Rao, M.; Mutalik, S.; Jagadish, P.C. Should the use of acid reducing agents in conjunction with ribociclib be avoided? An integrated QbD approach for assessment of pH-mediated interaction. J. Chromatogr. Sci., 2022, bmac084.
[http://dx.doi.org/10.1093/chromsci/bmac084] [PMID: 36241222]
[5]
Numico, G.; Fusco, V.; Franco, P.; Roila, F. Proton Pump Inhibitors in cancer patients: How useful they are? A review of the most common indications for their use. Crit. Rev. Oncol. Hematol., 2017, 111, 144-151.
[http://dx.doi.org/10.1016/j.critrevonc.2017.01.014] [PMID: 28259289]
[6]
van Leeuwen, R.W.F.; Jansman, F.G.A.; Hunfeld, N.G.; Peric, R.; Reyners, A.K.L.; Imholz, A.L.T.; Brouwers, J.R.B.J.; Aerts, J.G.; van Geld-er, T.; Mathijssen, R.H.J. Tyrosine kinase inhibitors and proton pump inhibitors: An evaluation of treatment options. Clin. Pharmacokinet., 2017, 56(7), 683-688.
[http://dx.doi.org/10.1007/s40262-016-0503-3] [PMID: 28101705]
[7]
Bellet, M.; Ahmad, F.; Villanueva, R.; Valdivia, C.; Palomino-Doza, J.; Ruiz, A.; Gonzàlez, X.; Adrover, E.; Azaro, A.; Valls-Margarit, M.; Parra, J.L.; Aguilar, J.; Vidal, M.; Martín, A.; Gavilá, J.; Escrivá-de-Romaní, S.; Perelló, A.; Hernando, C.; Lahuerta, A.; Zamora, P.; Reyes, V.; Alcalde, M.; Masanas, H.; Céliz, P.; Ruíz, I.; Gil, M.; Seguí, M.À.; de la Peña, L. Palbociclib and ribociclib in breast cancer: Consensus workshop on the management of concomitant medication. Ther. Adv. Med. Oncol., 2019, 11, 1758835919833867.
[http://dx.doi.org/10.1177/1758835919833867] [PMID: 31205497]
[8]
Samant, T.S.; Dhuria, S.; Lu, Y.; Laisney, M.; Yang, S.; Grandeury, A.; Mueller-Zsigmondy, M.; Umehara, K.; Huth, F.; Miller, M.; Germa, C.; Elmeliegy, M. Ribociclib bioavailability is not affected by gastric pH changes or food intake: In Silico and clinical evaluations. Clin. Pharmacol. Ther., 2018, 104(2), 374-383.
[http://dx.doi.org/10.1002/cpt.940] [PMID: 29134635]
[9]
Kuminek, G.; Salehi, N.; Waltz, N.M.; Sperry, D.C.; Greenwood, D.E.; Hate, S.S.; Amidon, G.E. Use of gastrointestinal simulator, mass transport analysis, and absorption simulation to investigate the impact of ph modifiers in mitigating weakly basic drugs’ performance issues related to gastric pH: Palbociclib case study. Mol. Pharm., 2022, 20(1), 147-158.
[PMID: 36367432]
[10]
Jagadish, P.C.; Patil, P.H.; Fatima, F.; Birangal, S.; Shenoy, G.G.; Rao, M.; Farooqui, J.; Rastogi, H.; Sharma, T.; Pinjari, J. Inhibition of cyto-chrome P450 enzyme and drug-drug interaction potential of acid reducing agents used in management of CDK inhibitors for breast cancer chemotherapy. Curr. Drug Metab., 2022, 23(2), 137-149.
[http://dx.doi.org/10.2174/1389200223666220218090948] [PMID: 35184709]
[11]
Pauli-Magnus, C.; Rekersbrink, S.; Klotz, U.; Fromm, M.F. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol., 2001, 364(6), 551-557.
[http://dx.doi.org/10.1007/s00210-001-0489-7] [PMID: 11770010]
[12]
Ollier, E.; Hodin, S.; Basset, T.; Accassat, S.; Bertoletti, L.; Mismetti, P.; Delavenne, X. In vitro and In vivo evaluation of drug-drug interac-tion between dabigatran and proton pump inhibitors. Fundam. Clin. Pharmacol., 2015, 29(6), 604-614.
[http://dx.doi.org/10.1111/fcp.12154] [PMID: 26392328]
[13]
Sai Krishna Anand, V.; Sakhare, S.D.; Navya Sree, K.S.; Nair, A.R.; Raghava Varma, K.; Gourishetti, K.; Dengale, S.J. The relevance of co-amorphous formulations to develop supersaturated dosage forms: In-vitro, and ex vivo investigation of Ritonavir-Lopinavir co-amorphous materials. Eur. J. Pharm. Sci., 2018, 123(6), 124-134.
[http://dx.doi.org/10.1016/j.ejps.2018.07.046] [PMID: 30048798]
[14]
Patil, P.H.; Birangal, S.; Shenoy, G.G.; Rao, M.; Kadari, S.; Wankhede, A.; Rastogi, H.; Sharma, T.; Pinjari, J.; Puralae Channabasavaiah, J. Molecular dynamics simulation and In vitro evaluation of herb–drug interactions involving dietary polyphenols and CDK inhibitors in breast cancer chemotherapy. Phytother. Res., 2022, 36(10), 3988-4001.
[http://dx.doi.org/10.1002/ptr.7547] [PMID: 35778986]
[15]
Ruan, L.P.; Chen, S.; Yu, B.Y.; Zhu, D.N.; Cordell, G.A.; Qiu, S.X. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur. J. Med. Chem., 2006, 41(5), 605-610.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.013] [PMID: 16546303]
[16]
Bouër, R.; Barthe, L.; Philibert, C.; Tournaire, C.; Woodley, J.; Houin, G. The roles of P-glycoprotein and intracellular metabolism in the in-testinal absorption of methadone: In vitro studies using the rat everted intestinal sac. Fundam. Clin. Pharmacol., 1999, 13(4), 494-500.
[http://dx.doi.org/10.1111/j.1472-8206.1999.tb00009.x] [PMID: 10456292]
[17]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.; Urbatsch, I.L.; Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[http://dx.doi.org/10.1126/science.1168750] [PMID: 19325113]
[18]
Min, H.; Niu, M.; Zhang, W.; Yan, J.; Li, J.; Tan, X.; Li, B.; Su, M.; Di, B.; Yan, F. Emodin reverses leukemia multidrug resistance by com-petitive inhibition and downregulation of P-glycoprotein. PLoS One, 2017, 12(11), e0187971.
[http://dx.doi.org/10.1371/journal.pone.0187971] [PMID: 29121121]
[19]
Palestro, PH; Gavernet, L; Estiu, GL Bruno Blanch,LE Dockingapplied to the prediction of the affinity of compounds to pglycoprotein. Biomed. Res. Int., 2014, 3, 021-28.
[http://dx.doi.org/10.1155/2014/358425]
[20]
Jin, H.; Zhu, Y.; Wang, C.; Meng, Q.; Wu, J.; Sun, P.; Ma, X.; Sun, H.; Huo, X.; Liu, K.; Tan, A. Molecular pharmacokinetic mechanism of the drug-drug interaction between genistein and repaglinide mediated by P-gp. Biomed. Pharmacother., 2020, 125(9), 110032.
[http://dx.doi.org/10.1016/j.biopha.2020.110032] [PMID: 32187961]
[21]
Mora Lagares, L.; Minovski, N.; Caballero Alfonso, A.Y.; Benfenati, E.; Wellens, S.; Culot, M.; Gosselet, F.; Novič, M. Homology modeling of the human p-glycoprotein (Abcb1) and insights into ligand binding through molecular docking studies. Int. J. Mol. Sci., 2020, 21(11), 4058.
[http://dx.doi.org/10.3390/ijms21114058] [PMID: 32517082]
[22]
Dolghih, E; Bryant, C; Renslo, AR Jacobson, MP Predicting binding to P-glycoprotein by flexible receptor docking. PLoS Comput. Biol., 2011, 7(6), 071-78.
[http://dx.doi.org/10.1371/journal.pcbi.1002083]
[23]
Gameiro, M.; Silva, R.; Rocha-Pereira, C.; Carmo, H.; Carvalho, F.; Bastos, M.; Remião, F. Cellular models and In vitro assays for the screen-ing of modulators of P-gp, MRP1 and BCRP. Molecules, 2017, 22(4), 600.
[http://dx.doi.org/10.3390/molecules22040600] [PMID: 28397762]
[24]
Martínez-Chávez, A.; van Hoppe, S.; Rosing, H.; Lebre, M.C.; Tibben, M.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein limits ribociclib brain exposure and CYP3A4 restricts its oral bioavailability. Mol. Pharm., 2019, 16(9), 3842-3852.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00475] [PMID: 31329454]
[25]
Qian, J.; Xia, M.; Liu, W.; Li, L.; Yang, J.; Mei, Y.; Meng, Q.; Xie, Y. Glabridin resensitizes p-glycoprotein-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Eur. J. Pharmacol., 2019, 852(12), 231-243.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.002] [PMID: 30959046]
[26]
de Gooijer, M.C.; Zhang, P.; Thota, N.; Mayayo-Peralta, I.; Buil, L.C.M.; Beijnen, J.H.; van Tellingen, O. P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib. Invest. New Drugs, 2015, 33(5), 1012-1019.
[http://dx.doi.org/10.1007/s10637-015-0266-y] [PMID: 26123925]
[27]
Tan, W.; Mei, H.; Chao, L.; Liu, T.; Pan, X.; Shu, M.; Yang, L. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors. J. Comput. Aided Mol. Des., 2013, 27(12), 1067-1073.
[http://dx.doi.org/10.1007/s10822-013-9697-8] [PMID: 24322389]
[28]
Gowarty, J.L.; Herrington, J.D. Verapamil as a culprit of palbociclib toxicity. J. Oncol. Pharm. Pract., 2019, 25(3), 743-746.
[http://dx.doi.org/10.1177/1078155218761798] [PMID: 29523051]
[29]
Parylo, S.; Vennepureddy, A.; Dhar, V.; Patibandla, P.; Sokoloff, A. Role of cyclin-dependent kinase 4/6 inhibitors in the current and future eras of cancer treatment. J. Oncol. Pharm. Pract., 2019, 25(1), 110-129.
[http://dx.doi.org/10.1177/1078155218770904] [PMID: 29726787]
[30]
Ferreira, R.J.; Ferreira, M.J.U.; dos Santos, D.J.V.A. Molecular docking characterizes substrate-binding sites and efflux modulation mecha-nisms within P-glycoprotein. J. Chem. Inf. Model., 2013, 53(7), 1747-1760.
[http://dx.doi.org/10.1021/ci400195v] [PMID: 23802684]
[31]
ÖNDER,AH.; SEZER, E.; ÇİL, T.; İNAL, A.; ÖZTÜRK, B.; KESEN, O. Proton pump inhibitors may reduce the efficacy of ribociclib and palbociclib in metastatic breast cancer patients; Res. Square, 2021, pp. 1-16.
[32]
Neul, C.; Schaeffeler, E.; Sparreboom, A.; Laufer, S.; Schwab, M.; Nies, A.T. Impact of membrane drug transporters on resistance to small-molecule tyrosine kinase inhibitors. Trends Pharmacol. Sci., 2016, 37(11), 904-932.
[http://dx.doi.org/10.1016/j.tips.2016.08.003] [PMID: 27659854]
[33]
Patel, D.; Bertz, R.; Ren, S.; Boulton, D.W.; Någård, M. A systematic review of gastric acid-reducing agent-mediated drug–drug interactions with orally administered medications. Clin. Pharmacokinet., 2020, 59(4), 447-462.
[http://dx.doi.org/10.1007/s40262-019-00844-3] [PMID: 31788764]
[34]
Zhao, D.; Chen, J.; Chu, M.; Long, X.; Wang, J. Pharmacokinetic-based drug–drug interactions with anaplastic lymphoma kinase inhibitors: A review. Drug Des. Devel. Ther., 2020, 14, 1663-1681.
[http://dx.doi.org/10.2147/DDDT.S249098] [PMID: 32431491]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy