Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Green Synthetic Methods of Oxazine and Thiazine Scaffolds as Promising Medicinal Compounds: A Mini-review

Author(s): Abdulelah Aljuaid, Mamdouh Allahyani, Ahad Amer Alsaiari, Mazen Almehmadi, Abdulaziz Alsharif and Mohammad Asif*

Volume 21, Issue 7, 2024

Published on: 27 September, 2023

Page: [837 - 857] Pages: 21

DOI: 10.2174/1570179420666230811092847

Price: $65

Abstract

Medical researchers have paid close attention to the green synthesis of oxazine and thiazine derivatives since they provided a lead molecule for the creation of numerous possible bioactive compounds. This review provides more information on green synthesis, which will be very helpful to researchers in creating the most effective, affordable, and clinically significant thiazine and oxazine derivatives that are anticipated to have strong pharmacological effects. This has resulted in the identification of several substances with a wide range of intriguing biological functions. This article's goal is to examine the numerous green chemical processes used to create oxazine and thiazine derivatives and their biological activity. We anticipate that researchers interested in oxazine and thiazine chemicals will find this material to be useful. We anticipate that medicinal chemists looking for new active medicinal components for drug discovery and advance progress will find this review of considerable interest.

Graphical Abstract

[1]
Sharma, A.; Khaturia, S.; Singh, H.L. Synthesis of new schiff base of 1,3-Oxazine and 1,3-Thiazine derivatives derived from 4-Phenyl substituted chalcones and evaluation of their antibacterial activity. Asian J. Chem., 2021, 33(3), 531-536.
[http://dx.doi.org/10.14233/ajchem.2021.23050]
[2]
Chaviara, A.T.; Cox, P.J.; Repana, K.H.; Papi, R.M.; Papazisis, K.T.; Zambouli, D.; Kortsaris, A.H.; Kyriakidis, D.A.; Bolos, C.A. Copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: Synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl2. J. Inorg. Biochem., 2004, 98(8), 1271-1283.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.05.010] [PMID: 15271502]
[3]
Asif, M.; Imran, M. Abida, Antimicrobial activities of various thiazine based heterocyclic compounds: A mini-review. Mini Rev. Org. Chem., 2022, 19(2), 166-172.
[http://dx.doi.org/10.2174/1570193X18666210629102447]
[4]
Didwagh, S.S.; Piste, P.B. Green synthesis of thiazine and oxazine derivatives-a short review. Int. J. Pharm. Sci. Res., 2013, 4(6), 2045-2061.
[5]
Badshah, S.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 2016, 21(8), 1054.
[http://dx.doi.org/10.3390/molecules21081054] [PMID: 27537865]
[6]
Al-Khamees, H.A.; Bayomi, S.M.; Kandil, H.A.; El-Tahir, K.E.H. Synthesis and pharmacological screening of a new series of 3-(4-antipyryl)-2-arylthiazolidin-4-ones. Eur. J. Med. Chem., 1990, 25, 103-106.
[http://dx.doi.org/10.1016/0223-5234(90)90016-V]
[7]
Bano, M.; Barot, K.P.; Jain, S.V.; Ghate, M.D. Identification of 3-hydroxy-4(3,4-dihydro-3-oxo-2H-1,4-benzoxazin-4-yl)-2,2-dimethyldihydro-2H-benzopyran derivatives as potassium channel activators and anti-inflammatory agents. Med. Chem. Res., 2015, 24, 3008-3020.
[http://dx.doi.org/10.1007/s00044-015-1344-6]
[8]
Vincent, G.; Mathew, B.V.; Joseph, J.; Chandran, M.; Bhat, A.R.; Kumar, K.K. A review on biological activities of thiazine derivatives. Inter. J. Pharm. Chem. Sci., 2014, 3, 341-348.
[9]
Preet, S.; Damanjit, C.S. Synthesis and biological evaluation of 1,3-thiazines-A review. Pharmacophore, 2013, 4, 70-88.
[10]
Asif, M. Chemical and pharmacological potential of various substituted thiazine derivatives. J. Pharm. Appl. Chem., 2015, 1, 49-64.
[11]
Edayadulla, N.; Ramesh, P. Synthesis of 2,6-dicarbethoxy-3,5-diaryltetrahydro-1,4-thiazine-1,1-dioxide derivatives as potent anticonvulsant agents. Eur. J. Med. Chem., 2015, 106, 44-49.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.010] [PMID: 26519928]
[12]
Sabre, H.M. Synthesis and characterization of some novel oxazine and thiazine from acetophenone derivatives. J. Global Sci. Res., 2022, 7(4), 2240-2246.
[13]
Elarfi, M.J.; Al-Difar, H. A Synthesis of some heterocyclic compounds derived from chalcones. Elix. Online J., 2012, 2, 6243-6245.
[14]
Banda, G.; Hipparagi, S.M.; Ramjith, U.S. Microwave assisted synthesis of fluoro, Chloro 2-Substituted benzimidazole thiazine derivatives for antimicrobial activities. Inter. J. Res. Pharm. Sci., 2012, 2, 146-158.
[15]
Zia-ur-Rehman, M.; Choudary, J.A.; Elsegood, M.R.J.; Siddiqui, H.L.; Khan, K.M. A facile synthesis of novel biologically active 4-hydroxy-N′-(benzylidene)-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxides. Eur. J. Med. Chem., 2009, 44(3), 1311-1316.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.002] [PMID: 18804313]
[16]
Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H.L.; Ullah, M.F.; Parvez, M. Microwave assisted synthesis and structure–activity relationship of 4-hydroxy-N′-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. Eur. J. Med. Chem., 2011, 46(6), 2368-2377.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.020] [PMID: 21470723]
[17]
Arshad, M.N.; Şahin, O. Zia-ur-Rehman, M.; Shafiq, M.; Khan, I.U.; Asiri, A.M.; Khan, S.B.; Alamry, K.A. Crystallographic Studies of Dehydration Phenomenon in Methyl 3-hydroxy-2-methyl-1,1,4-trioxo-1,2,3,4-tetrahydro-1λ 6-benzo[e][1,2]thiazine-3-carboxylate. J. Chem. Crystallogr., 2013, 43(12), 671-676.
[http://dx.doi.org/10.1007/s10870-013-0471-5]
[18]
Dighade, A.S.; Dighade, S.R. Synthesis of substituted-4,6-diaryl-2-imino-6H-2,3-dihydro-1,3-thiazine. Int. J. Chem. Sci., 2012, 10, 291-296.
[19]
Bunker, A.M.; Cheng, X-M.; Doherty, A.M.; Lee, C.; Repine, J.T.; Skeean, R.; Edmunds, J.J.; Kanter, G.D. Certain benzothiazine dioxide endothelin antagonists and processes for their preparation. Patent US6545150, 2003.
[20]
Yadav, L.D.S.; Yadav, S.; Rai, V.K. Mercaptoacetic acid based expeditious synthesis of polyfunctionalised 1,3-thiazines. Tetrahedron, 2005, 61(42), 10013-10017.
[http://dx.doi.org/10.1016/j.tet.2005.08.021]
[21]
Yadav, L.D.S.; Rai, V.K.; Yadav, B.S. The first ionic liquid-promoted one-pot diastereoselective synthesis of 2,5-diamino-/2-amino-5-mercapto-1,3-thiazin-4-ones using masked amino/mercapto acids. Tetrahedron, 2009, 65(7), 1306-1315.
[http://dx.doi.org/10.1016/j.tet.2008.12.050]
[22]
Torres-García, P.; Viñuelas-Zahínos, E.; Luna-Giles, F.; Espino, J.; Barros-García, F.J. Zinc(II) complexes with novel 1,3-thiazine/pyrazole derivative ligands: Synthesis, structural characterization and effect of coordination on the phagocytic activity of human neutrophils. Polyhedron, 2011, 30(15), 2627-2636.
[http://dx.doi.org/10.1016/j.poly.2011.07.014]
[23]
Viñuelas-Zahínos, E.; Luna-Giles, F.; Torres-García, P.; Rodríguez, A.B.; Bernalte-García, A. Effects of a derivative thiazoline/thiazolidine azine ligand and its cadmium complexes on phagocytic activity by human neutrophils. Inorg. Chim. Acta, 2011, 366(1), 373-379.
[http://dx.doi.org/10.1016/j.ica.2010.11.037]
[24]
Tozkoparan, B.; Aktay, G.; Yeşilada, E. Synthesis of some 1,2,4-triazolo[3,2-b]-1,3-thiazine-7-ones with potential analgesic and antiinflammatory activities. Farmaco, 2002, 57(2), 145-152.
[http://dx.doi.org/10.1016/S0014-827X(01)01195-8] [PMID: 11902657]
[25]
Singh, U.P.; Bhat, H.R.; Singh, R.K. Ceric ammonium nitrate (CAN) catalysed expeditious one-pot synthesis of 1,3-thiazine as IspE kinase inhibitor of Gram-negative bacteria using polyethylene glycol (PEG-400) as an efficient recyclable reaction medium. C. R. Chim., 2013, 16(5), 462-468.
[http://dx.doi.org/10.1016/j.crci.2012.11.019]
[26]
Il’inykh, E.S.; Kim, D.G.; Kodess, M.I. Matochkina, E.G.; Slepukhin, P.A. Synthesis of novel fluorineand iodine-containing (1,2,4)triazolo(3,4-b)(1,3)thiazines based 3-(alkenylthio)-5-(trifluoromethyl)-4H-1,2,4-triazole-3-thiols. J. Fluor. Chem., 2013, 149, 24-29.
[http://dx.doi.org/10.1016/j.jfluchem.2013.01.025]
[27]
Baharfar, R.; Baghbanian, S.M.; Vahdat, S.M. An efficient one-pot synthesis of pyrimido[2,1-b][1,3]thiazine derivatives by reaction of activated acetylenes, thiouracils, and isocyanides. Tetrahedron Lett., 2011, 52(45), 6018-6020.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.008]
[28]
Wang, W.; Zhao, B.; Xu, C.; Wu, W. Synthesis and antitumor activity of the thiazoline and thiazine multithioether. Int. J. Org. Chem. (Irvine), 2012, 2(2), 117-120.
[http://dx.doi.org/10.4236/ijoc.2012.22018]
[29]
El Shehry, M.F.; Swellem, R.H.; Abu-Bakr, S.M.; El-Telbani, E.M. Synthesis and molluscicidal evaluation of some new pyrazole, isoxazole, pyridine, pyrimidine, 1,4-thiazine and 1,3,4-thiadiazine derivatives incorporating benzofuran moiety. Eur. J. Med. Chem., 2010, 45(11), 4783-4787.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.043] [PMID: 20801555]
[30]
Zhao, Y.; Bai, Y.; Zhang, Q.; Chen, Z.; Dai, Q.; Ma, C. A facile method for the synthesis of pyridazino[4,5-b][1,4]thiazine-diones via Smiles rearrangement. Tetrahedron Lett., 2013, 54(25), 3253-3255.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.026]
[31]
Liu, Y.; Ma, Y.; Zhan, C.; Huang, A.; Ma, C. One-Pot Synthesis of fused Pyridazino(4,5-b)(1,4)oxazepinediones via smiles rearrangement. Synlett, 2012, 12, 255-258.
[32]
Konstantinova, L.S.; Berezin, A.A.; Lysov, K.A.; Rakitin, O.A. Selective synthesis of bis[1,2]dithiolo[1,4]thiazines from 4-isopropylamino-5-chloro-1,2-dithiole-3-ones. Tetrahedron Lett., 2007, 48(33), 5851-5854.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.071]
[33]
Amelichev, S.A.; Barriga, S.; Konstantinova, L.S.; Markova, T.B.; Rakitin, O.A.; Rees, C.W.; Torroba, T. Synthesis of bis[1,2]dithiolo[1,4]thiazine imines from Hünig’s base. J. Chem. Soc., Perkin Trans. 1, 2001, 1(19), 2409-2412.
[http://dx.doi.org/10.1039/b105243h]
[34]
Asquith, C.R.M.; Meli, M.L.; Konstantinova, L.S.; Laitinen, T.; Poso, A.; Rakitin, O.A.; Hofmann-Lehmann, R.; Allenspach, K.; Hilton, S.T. Novel fused tetrathiocines as antivirals that target the nucleocapsid zinc finger containing protein of the feline immunodeficiency virus (FIV) as a model of HIV infection. Bioorg. Med. Chem. Lett., 2015, 25(6), 1352-1355.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.047] [PMID: 25702849]
[35]
Asquith, C.R.M.; Meli, M.L.; Konstantinova, L.S.; Laitinen, T.; Peräkylä, M.; Poso, A.; Rakitin, O.A.; Allenspach, K.; Hofmann-Lehmann, R.; Hilton, S.T. Evaluation of the antiviral efficacy of bis[1,2]dithiolo[1,4]thiazines and bis[1,2]dithiolopyrrole derivatives against the nucelocapsid protein of the Feline Immunodeficiency Virus (FIV) as a model for HIV infection. Bioorg. Med. Chem. Lett., 2014, 24(12), 2640-2644.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.073] [PMID: 24813732]
[36]
Haider, F.; Haider, Z. The Synthesis and antimicrobial screening with spectral analysis of some 1, 3-thiazines. J. Chem. Pharm. Res., 2012, 4(4), 2263-2267.
[37]
Sundari, V.; Nagarajan, G.; Gurumurhy, S.; Valliappan, R. Synthesis of 3,5-diaryltetrahydro-N-[(4′-nitroanilino)methyl-thiazine-1,1-dioxide and N-[(4′-methylanilin) methyl-]-1,4-thiazine-1,1-dioxides and The preliminary screening of the compounds for their biological activities gives significant results. E-J. Chem., 2009, 6(1), 177-182.
[http://dx.doi.org/10.1155/2009/254747]
[38]
Wei, W.; Bing, Z.; Xu, C.; Wu, W. A series of novel multithioether derivatives were synthesized by the combination of thiazoline and thiazine with dibro-mides and the synthesized derivatives were tested for antitumor activity. Int. J. Org. Chem., 2012, 2, 117-120.
[39]
Dighade, A.S.; Dighade, S.R. Synthesis of substituted-4, 6-diaryl-2- imino-diphenyl-6H-1, 3-thiazines. Pharma Chem., 2012, 4(5), 1863-1867.
[40]
Yavari, I.; Nematpour, M.; Hossaini, Z. A one-pot synthesis of alkyl 3,4-dihydro-4- oxo-2H-1,3-thiazine-6-carboxylates from dialkyl acetylenedicarboxylates and N,NO-dialky lthioureas. Monatsh. Chem., 2010, 141, 229-232.
[http://dx.doi.org/10.1007/s00706-009-0247-y]
[41]
Kadhim, M.A. Synthesis and chemical characterization of some novel azachalcones compounds and evaluation of their biological activity. J Univ Anbar Pure Sci., 2010, 4(3), 40-43.
[42]
Yadav, L.D.S.; Yadav, S.; Rai, V.K. A novel three-component expeditious. Synthesis of 3,6-diaryl-5mercaptoperhydro-2-thioxo-1,3-thiazin-5-ones from 2-methyl-2- phenyl-1,3-oxathiolan-5-one, an aromatic aldehyde and an N-aryldithiocarbamic acid is reported. Tetrahedron, 2005, 61, 10013-10017.
[http://dx.doi.org/10.1016/j.tet.2005.08.021]
[43]
Banda, G.; Hipparagi, S.M.; Ramjith, U.S.; Jacob, C.M. The synthesis of thiazine derivatives of fluoro, chloro benzimidazole by the microwave induced reaction and screened for their antibacterial and analgesic activity. Inter J Res Pharm Sci., 2012, 2(3), 146-158.
[44]
Aly, A.A.; Hassan, A.A.; Ibrahim, Y.R. Synthesis of N′-[(2E)-6-benzoyl-4-phenyl-2H-1,3-thiazin-2-ylidene]-substituted hydrazides. J. Chem. Res., 2008, 699
[http://dx.doi.org/10.3184/030823408X384575]
[45]
Shaker, R.M.; Ibrahim, Y.R.; Abdel-Latif, F.F.; Hamoda, A.Z. Synthesis of 2,2′-(1,4-Phenyl-ene) bis(3,4-dihydro-2H-1,3-thiazine) derivatives. Naturforsch., 2010, 65b, 1148.
[http://dx.doi.org/10.1515/znb-2010-0915]
[46]
Gupta, R.; Shrivastava, V.; Gupta, A.; Verma, P.S.; Gupta, R.R. One pot synthesis of hetrocycles containing 1,4 thiazine nucles. Indian J. Chem., 2004, 43B, 413-416.
[47]
Kudryavtsev, A.A.; Lozinskii, M.O. The condensation of 5-substituted-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-diylbisacryloyl,chloride gave 5,5′-(1,4-phenyl ene)bis(5H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7(6H)-one). Russ. J. Org. Chem., 2004, 40, 232.
[48]
Bassin, J.P.; Frearson, M.J.; Al-Nawwar, K. Synthesis of 4-chloro-2-cyclohexyl-6,7- dimethoxy-2H-1, 2- benzothiazine-1,1-dioxide from 3,4-dimethoxy chalcone. Synth. Commun., 2000, 30, 3693-3701.
[http://dx.doi.org/10.1080/00397910008086996]
[49]
Harmata, M.; Ghosh, S. New synthetic method for the preparation of benzothiazines and benzisothiazoles containing a sulfoximine functional group. Org. Lett., 2001, 3, 3321-3323.
[http://dx.doi.org/10.1021/ol016546n] [PMID: 11594824]
[50]
Bunker, A.M.; Cheng, X.M.; Doherty, A.M.; Edmonds, J.J.; David, G.; Lee, K.C.; Repine, J.T.; Skeean, R.W. Prepared a series of 1,2- benzothiazine derivatives they claimed that these compounds were useful in treating the elevated blood pressure and hypertension as endothelin antagonists. 2001.
[51]
Kacem, Y.; Bouraoui, A.; Ratovelomanana, V.; Genet, J.P.; Hassine, B. The synthesis of 3- substituted-2H- 1,2-naphthothiazin-4(3H)-one 1,1-dioxides. Comp. Rend. Chim., 2002, 5, 611-621.
[http://dx.doi.org/10.1016/S1631-0748(02)01418-2]
[52]
Zia-ur-Rehman.; Choudhary, M.; Ahmad, J.S.; Genet, J.P.; Hassine, B. Synthesis of 1, 2 benzothiazine 1, 1-dioxide derivatives. Bull. Korean Chem. Soc., 2005, 26(11), 1771-1775.
[53]
Harmata, M.; Rayanil, K.; Gomes, M.G.; Pinguan, Z.; Nathan, L.; Calkins, S.K.; Yimin, F.; Valentina, B.; Dong, R.L.; Sumrit, W.; Xuechuan, H. Reported palladium catalyzed synthesis of 1,2-benzothiazine 1,1-dioxides using alkynes. Org. Lett., 2005, 7(1), 143-145.
[http://dx.doi.org/10.1021/ol047781j] [PMID: 15624998]
[54]
Nagaraj, A.; Reddy, C.S. Synthesis of bis–thiazines or bis–pyrimidines in good yields. The antibacterial, antifungal and anti-inflammatory activities of the compounds have been evaluated. J. Iran. Chem. Soc., 2008, 5(2), 262-267.
[http://dx.doi.org/10.1007/BF03246116]
[55]
Kategaonkar, A.H.; Sonar, S.S.; Shelke, S.K.; Shingate, B.B.; Shingare, M.S. Ionic liquid catalyzed multicomponent synthesis of 3,4-dihydro-3-substituted-2H-naphtho[2,1- e][1,3]oxazine derivatives. Org. Commun., 2010, 3, 1-7.
[56]
Sawant, R.L.; Mhaske, M.S.; Wadekar, J.B. A series of Schiff bases of 1, 3-oxazines were synthesized via reaction of 1, 3-oxazine-2-amine with substituted benzaldehyde and they exhibited significant anticoagulant activity. Int. J. Pharm. Pharm. Sci., 2012, 4(4), 320-323.
[57]
Sharma, R.L.; Gupta, S.; Gupta, P.; Sachar, A.; Kour, D.; Singh, J.; Kour, B.; Gupta, S. Facile synthesis of differently substituted 5-benzylidene-2-aryl-5,6-dihydro-4H-[1,3] oxazin-6-ones. ARKIVOC, 2009, (X), 233-246.
[http://dx.doi.org/10.3998/ark.5550190.0010.a21]
[58]
Taati, M.R.; Mamaghani, M.; Mahmoodi, N.O.; Loghmanifar, A. Synthesis of 5,6- dihydro-4H-1,3-oxazines under Solvent fre conditions and Microwave Irradiation Transactions C. Chem Chem Enginer, 2009, 16(1), 17-21.
[59]
Chaskar, A.; Vyavhare, V.; Padalkar, V.; Phatangare, K.; Deokar, H. A phosphomolybdic acid catalysed novel method for the synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one derivatives. J. Serb. Chem. Soc., 2011, 76(1), 21-26.
[http://dx.doi.org/10.2298/JSC100410016C]
[60]
Ghomi, J.S.; Zahedi, S.; Ghasemzadeh, M.A. An efficient green route for the preparation of naphthoxazinones, applying a three-component one-pot condensation reaction under solvent-free conditions. Iran J Cataly., 2012, 2(1), 27-30.
[61]
Kumar, A.; Saxeno, A.; Dewan, M.; Arnab, D.; Mozumdar, S. An efficient methodology employing copper nanoparticles for the preparation of 2-naphthol condensed 1,3-oxazin derivatives employing one-pot condensation reaction in the presence of K2CO3 and Copper nanoparticles in PEG -400 is described which offers several advantage. Tetra Letts., 2011, 52, 4835-4839.
[http://dx.doi.org/10.1016/j.tetlet.2011.07.016]
[62]
Sekhar, K.C.; Rasheed, S.; Ramana, L.V.; Chamarthi, N.R. A green alternative approach for synthesis of 2-substituted -5,6- dihydro-4H-1,3-oxazines catalyzed by NBS: Ultra Sonication. Pharma Chem., 2012, 4(1), 242-247.
[63]
Ahangar, H.A.; Mahdavini, G.H.; Marjani, K.; Hafezian, A. 1,2-Dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives were synthesized in high yields using a facile and one-pot condensation of 2-naphthol, aromatic aldehydes and urea catalyzed by perchloric acid supported on silica under thermal solvent free conditions. J. Iran. Chem. Soc., 2010, 7(3), 770-774.
[http://dx.doi.org/10.1007/BF03246067]
[64]
Zuo, H.; Kam, K.H.; Kwon, H.J.; Meng, L.; Ahn, C.; Won, T.J.; Kim, T.H.; Reddy, C.R.; Chandrasekhar, S.; Shin, D.S. Highly efficient synthesis of substituted benzo[1,4]oxazin-3-ones and pyrido[1,4]oxazin-2-ones under microwave irradiation via Smiles rearrangement is reported. Bull. Korean Chem. Soc., 2008, 29(7), 1379-1385.
[65]
Mohammadpoor-Baltorka, I.; Moghadama, M.; Tangestaninejad, S.; Mirkhani, V.; Eskandari, Z.; Salavati, H. Nano-SiO2 solid acid efficiently and selectively catalyzed the synthesis of 2-substituted oxazines and tetrahydro pyrimidines in high yields under thermal conditions and microwave irradiation. J. Iran. Chem. Soc., 2011, 8, S17-S27.
[http://dx.doi.org/10.1007/BF03254278]
[66]
Bolongnese, A.; Correale, G.; Manfa, M.; Lavecchia, A.; Novellino, E.; Pepe, S. Antitumor Agents. 5-Synthesis, structure activity relationships, biological evaluation of dimethyl-5-pyridophenoxazin-5-ones tetrahydro-5H-benzopyrido phenoxazin-5-ones, and 5H-Benzopyrido-phenoxazin-5-ones with potent antiproliferative activity. J. Med. Chem., 2006, 49, 5110-5118.
[http://dx.doi.org/10.1021/jm050745l] [PMID: 16913700]
[67]
El-Sharief, Sh.A.M.; Ammar, Y.A.; Zahran, M.A.; Sabet, H.K. Refluxing 1,4- phenylenedicarbamothioyl cyanide with two moles of salicylic acid or methyl salicylate in DMF containing a catalytic amount of triethylamine, 3,3′-(1,4-phenylene)bis(2-thioxo-2,3-dihydro-benzo[e][1,3]oxazine-4-one). J. Chem. Res., 2003, 3, 162-167.
[http://dx.doi.org/10.3184/030823403103173354]
[68]
Zanatta, N.; Borchhardt, D.M.; Alves, S.H.; Coelho, H.S.; Squizani, M.C.; Marchi, T.M.; Bonacorso, H.G.; Martins, M.P. Synthesis of oxazines and they exhibited significant activity against tested microorganism strains. Bioorg. Med. Chem., 2006, 14, 3174.
[http://dx.doi.org/10.1016/j.bmc.2005.12.031] [PMID: 16412654]
[69]
Kategaonkar, A.H.; Sonar, S.S.; Pokalwar, R.U.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. An efficient and novel one-pot synthesis of new 3,4-dihydro-3-substituted-2H-naphtho[2,1-e][1,3]oxazine derivatives and reported their antimicrobial activities. Bull. Korean Chem. Soc., 2010, 31(6), 1657-1660.
[http://dx.doi.org/10.5012/bkcs.2010.31.6.1657]
[70]
Elarfi, M.J. AL-Difar, H.A. Synthesis of oxazine, thiazine and isoxazole. These compounds were also screened for their antibacterial activities. Sci. Revs. Chem. Commun., 2012, 2(2), 103-107.
[71]
Yadav, L.D.S.; Singh, A. Microwave activated solvent-free cascade reactions yielding highly functionalised 1,3-thiazines. Tetrahedron Lett., 2003, 44(30), 5637-5640.
[http://dx.doi.org/10.1016/S0040-4039(03)01353-4]
[72]
Suyambulingam, A.; Nair, S.; Chellapandian, K. Synthesis, spectral characterization of novel chalcones based oxazines derivatives and screening of their antimicrobial and antioxidant activity. J. Mol. Struct., 2022, 1268, 133708.
[http://dx.doi.org/10.1016/j.molstruc.2022.133708]
[73]
Harith, A.M. Synthesis and pharmaceutical applications of Oxazine compounds derived from Pyronic, Salicylic, Antharanilic acids and Phenols. Int. J. Sci. & Res. Arch., 2021, 2(2), 074-086.
[74]
Kumar, P.S.; Kaur, G. A review on antimicrobial activities of important thiazines-based heterocycles. Drug Invent. Today, 2017, 10(2), 47-49.
[75]
Journal, B.S. Synthesis and characterization of new Oxazine, Thiazine and Pyrazol derived from chalcones. Baghdad Science Journal, 2014, 11(2), 477-485.
[http://dx.doi.org/10.21123/bsj.11.2.477-485]
[76]
Pravina, P.B. Novel synthesis and antimicrobial activities of thiazino-oxazine derivatives. Int. J. Pharm. Sci. Drug Res., 2018, 10(4), 206-212.
[77]
Ameen, D.S.M.; Synthesis, A. Synthesis A new bis oxazine and thiazine derivatives and study their biological activities. Al Mustansiriyah Journal of Pharmaceutical Sciences, 2023, 22(4), 56-79.
[http://dx.doi.org/10.32947/ajps.v22i4.962]
[78]
Maniewska, J.; Wiatrak, B.; Czyżnikowska, Ż.; Szczęśniak-Sięga, B.M. Synthesis of new tricyclic 1,2-Thiazine derivatives with anti-inflammatory activity. Int. J. Mol. Sci., 2021, 22(15), 7818.
[http://dx.doi.org/10.3390/ijms22157818] [PMID: 34360585]
[79]
Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Blaser, A.; Yardley, V.; Maes, L.; Gupta, S.; Launay, D.; Braillard, S.; Chatelain, E.; Wan, B.; Franzblau, S.G.; Ma, Z.; Cooper, C.B.; Denny, W.A. Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H -imidazo[2,1- b ][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis. J. Med. Chem., 2018, 61(6), 2329-2352.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01581] [PMID: 29461823]
[80]
Bamou, F.Z.; Le, T.M.; Tayeb, B.A.; Tahaei, S.A.S.; Minorics, R.; Zupkó, I.; Szakonyi, Z. Antiproliferative activity of (−)‐Isopulegol‐based 1,3‐Oxazine, 1,3‐Thiazine and 2,4‐Diaminopyrimidine derivatives. ChemistryOpen, 2022, 11(10), e202200169.
[http://dx.doi.org/10.1002/open.202200169]
[81]
Khabnadideh, S. solhjoo, A.; Heidari, R.; Amiri Zirtol, L.; Sakhteman, A.; Rezaei, Z.; Babaei, E.; Rahimi, S.; Emami, L. Efficient synthesis of 1,3-naphtoxazine derivatives using reusable magnetic catalyst (GO-Fe3O4–Ti(IV)): anticonvulsant evaluation and computational studies. BMC Chem., 2022, 16(1), 44.
[http://dx.doi.org/10.1186/s13065-022-00836-8] [PMID: 35689296]
[82]
Rajagopal, K.; Varakumar, P.; Aparna, B.; Byran, G.; Jupudi, S. Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies. J. Biomol. Struct. Dyn., 2020, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1798285] [PMID: 32720578]
[83]
Firpo, G.; Ramírez, M.L.; Faillace, M.S.; de Brito, M.R.M.; e Silva, A.P.S.C.L.; Costa, J.P.; Rodríguez, M.C.; Argüello, G.A.; Szakonyi, Z.; Fülöp, F.; Peláez, W.J. Evaluation of the Antioxidant Activity of Cis/Trans-N-Phenyl-1,4,4a,5,8,8a-Hexahydro-3,1-Benzoxazin-2-Imines. Antioxidants, 2019, 8(6), 197.
[http://dx.doi.org/10.3390/antiox8060197] [PMID: 31242617]
[84]
Wiatrak, B.; Krzyżak, E.; Szczęśniak-Sięga, B.; Szandruk-Bender, M.; Szeląg, A.; Nowak, B. Effect of tricyclic 1,2-thiazine derivatives in neuroinflammation induced by preincubation with lipopolysaccharide or coculturing with microglia-like cells. Pharmacol. Rep., 2022, 74(5), 890-908.
[http://dx.doi.org/10.1007/s43440-022-00414-8] [PMID: 36129673]
[85]
Sadhu, C.; Mitra, A.K. Synthetic, biological and optoelectronic properties of phenoxazine and its derivatives: A state of the art review. Mol. Divers., 2023, 9, 1-43.
[http://dx.doi.org/10.1007/s11030-023-10619-5] [PMID: 36757655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy