Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring Mechanisms of Houshiheisan in Treating Ischemic Stroke with Network Pharmacology and Independent Cascade Model

Author(s): Bo Cao, Jiao Jin, Zhiyu Tang, Qiong Luo, Jinbing An* and Wei Pang*

Volume 27, Issue 7, 2024

Published on: 31 August, 2023

Page: [959 - 968] Pages: 10

DOI: 10.2174/1386207326666230810094557

Price: $65

Abstract

Background: Houshiheisan (HSHS) has been effective in the treatment of ischemic stroke (IS) for centuries. However, its mechanisms are still underexplored.

Objective: The objective of this study is to identify the active ingredients and mechanisms of HSHS in treating IS.

Methods: We searched the main active compounds in HSHS and their potential targets, and key targets related to IS. Based on the common targets of HSHS and IS, we further expanded genes by KEGG database to obtain target genes and related genes, as well as gene interactions in the form of A→B, and then constructed a directed network including traditional Chinese medicines (TCMs), active compounds and genes. Finally, based on enrichment analysis, independent cascade (IC) model, and molecular docking, we explored the mechanisms of HSHS in treating IS.

Results: A directed network with 6,348 nodes and 64,996 edges was constructed. The enrichment analysis suggested that the AGE pathway, glucose metabolic pathway, lipid metabolic pathway, and inflammation pathway played critical roles in the treatment of IS by HSHS. Furthermore, the gene ontologies (GOs) of three monarch drugs in HSHS mainly involved cellular response to chemical stress, blood coagulation, hemostasis, positive regulation of MAPK cascade, and regulation of inflammatory response. Several candidate drug molecules were identified by molecular docking.

Conclusion: This study advocated potential drug development with targets in the AGE signaling pathway, with emphasis on neuroprotective, anti-inflammatory, and anti-apoptotic functions. The molecular docking simulation indicated that the ligand-target combination selection method based on the IC model was effective and reliable.

Graphical Abstract

[1]
Hossmann, K.A. Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol., 2006, 26(7-8), 1055-1081.
[http://dx.doi.org/10.1007/s10571-006-9008-1] [PMID: 16710759]
[2]
Pandya, R.S.; Mao, L.; Zhou, H.; Zhou, S.; Zeng, J.; Popp, A.J.; Wang, X. Central nervous system agents for ischemic stroke: Neuroprotection mechanisms. Cent. Nerv. Syst. Agents Med. Chem., 2011, 11(2), 81-97.
[http://dx.doi.org/10.2174/187152411796011321] [PMID: 21521165]
[3]
Wang, W.; Jiang, B.; Sun, H.; Ru, X.; Sun, D.; Wang, L.; Wang, L.; Jiang, Y.; Li, Y.; Wang, Y.; Chen, Z.; Wu, S.; Zhang, Y.; Wang, D.; Wang, Y.; Feigin, V.L. Prevalence, incidence, and mortality of stroke in China. Circulation, 2017, 135(8), 759-771.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025250] [PMID: 28052979]
[4]
Beal, C.C. Gender and stroke symptoms: A review of the current literature. Part II: Mechanisms of damage and treatment. J. Neurosci. Nurs., 2010, 42(2), 80-87.
[http://dx.doi.org/10.1097/JNN.0b013e3181ce5c70] [PMID: 20422793]
[5]
Siesjö, B.K. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg., 1992, 77(3), 337-354.
[http://dx.doi.org/10.3171/jns.1992.77.3.0337] [PMID: 1506880]
[6]
Titomanlio, L.; Fernández-López, D.; Manganozzi, L.; Moretti, R.; Vexler, Z.S.; Gressens, P. Pathophysiology and neuroprotection of global and focal perinatal brain injury: Lessons from animal models. Pediatr. Neurol., 2015, 52(6), 566-584.
[http://dx.doi.org/10.1016/j.pediatrneurol.2015.01.016] [PMID: 26002050]
[7]
Zhang, Q.-X.; Lu, Y.; Hsiang, F.; Chang, J.-H.; Yao, X.-Q.; Zhao, H.; Zou, H.-Y.; Wang, L. Houshiheisan and its components promote axon regeneration after ischemic brain injury. Neural Regen. Res., 2018, 13(7), 1195-1203.
[http://dx.doi.org/10.4103/1673-5374.235031] [PMID: 30028327]
[8]
Kitano, H. Systems biology: A brief overview. Science, 2002, 295(5560), 1662-1664.
[http://dx.doi.org/10.1126/science.1069492] [PMID: 11872829]
[9]
Capobianco, E. Dynamic networks in systems medicine. Front. Genet., 2012, 3(1), 185-186.
[PMID: 23049537]
[10]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[11]
Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res., 2019, 47(D1), D1038-D1043.
[http://dx.doi.org/10.1093/nar/gky1151] [PMID: 30445645]
[12]
Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 2002, 65(5), 056109.
[http://dx.doi.org/10.1103/PhysRevE.65.056109] [PMID: 12059649]
[13]
Lu, F.; Zhang, W.; Shao, L.; Jiang, X.; Xu, P.; Jin, H. Scalable influence maximization under independent cascade model. J. Netw. Comput. Appl., 2017, 86(1), 15-23.
[http://dx.doi.org/10.1016/j.jnca.2016.10.020]
[14]
Kempe, D.; Kleinberg, J.; Tardos, E. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2003, pp. 137-146.
[15]
Pinzi, L.; Rastelli, G. Molecular Docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[16]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[17]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[18]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.; Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res., 2011, 39(Database), D1035-D1041.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[19]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From Gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics., 2016, 54(1), 31-35.
[20]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[21]
Qingxu, G.; Yan, Z.; Jiannan, X.; Yunlong, L. Association between the gene polymorphisms of HDAC9 and the risk of Atherosclerosis and Ischemic Stroke. Pathol. Oncol. Res., 2016, 22(1), 103-107.
[http://dx.doi.org/10.1007/s12253-015-9978-8] [PMID: 26347468]
[22]
Guzik, A.; Bushnell, C. Stroke epidemiology and risk factor management. Continuum, 2017, 23(1), 15-39.
[http://dx.doi.org/10.1212/CON.0000000000000416] [PMID: 28157742]
[23]
Deb, P.; Sharma, S.; Hassan, K.M. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology, 2010, 17(3), 197-218.
[http://dx.doi.org/10.1016/j.pathophys.2009.12.001] [PMID: 20074922]
[24]
Kamide, T.; Kitao, Y.; Takeichi, T.; Okada, A.; Mohri, H.; Schmidt, A.M.; Kawano, T.; Munesue, S.; Yamamoto, Y.; Yamamoto, H.; Hamada, J.; Hori, O. RAGE mediates vascular injury and inflammation after global cerebral ischemia. Neurochem. Int., 2012, 60(3), 220-228.
[http://dx.doi.org/10.1016/j.neuint.2011.12.008] [PMID: 22202666]
[25]
Selvin, E.; Halushka, M.K.; Rawlings, A.M.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. sRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes, 2013, 62(6), 2116-2121.
[http://dx.doi.org/10.2337/db12-1528] [PMID: 23396398]
[26]
Hsieh, C.F.; Liu, C.K.; Lee, C.T.; Yu, L.E.; Wang, J.Y. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci. Rep., 2019, 9(1), 840.
[http://dx.doi.org/10.1038/s41598-018-37215-0] [PMID: 30696869]
[27]
Shi, C.S.; Shi, G.Y.; Hsiao, H.M.; Kao, Y.C.; Kuo, K.L.; Ma, C.Y.; Kuo, C.H.; Chang, B.I.; Chang, C.F.; Lin, C.H.; Wong, C.H.; Wu, H.L. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood, 2008, 112(9), 3661-3670.
[http://dx.doi.org/10.1182/blood-2008-03-142760] [PMID: 18711002]
[28]
Liew, P.X.; Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev., 2019, 99(2), 1223-1248.
[http://dx.doi.org/10.1152/physrev.00012.2018] [PMID: 30758246]
[29]
Laridan, E.; Martinod, K.; De Meyer, S. Neutrophil extracellular traps in arterial and venous thrombosis. Semin. Thromb. Hemost., 2019, 45(1), 086-093.
[http://dx.doi.org/10.1055/s-0038-1677040] [PMID: 30634198]
[30]
Chen, P.J.; Wang, Y.L.; Kuo, L.M.; Lin, C.F.; Chen, C.Y.; Tsai, Y.F.; Shen, J.J.; Hwang, T.L. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα. Sci. Rep., 2016, 6(1), 26554-26566.
[http://dx.doi.org/10.1038/srep26554] [PMID: 27212040]
[31]
Hankey, G.J. Stroke. Lancet, 2017, 389(10069), 641-654.
[http://dx.doi.org/10.1016/S0140-6736(16)30962-X] [PMID: 27637676]
[32]
Wang, Q.C.; Lu, L.; Zhou, H.J. Relationship between the MAPK/ERK pathway and neurocyte apoptosis after cerebral infarction in rats. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5374-5381.
[PMID: 31298390]
[33]
Siesjö, B.K. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J. Neurosurg., 1992, 77 (2), 169-184.
[http://dx.doi.org/10.3171/jns.1992.77.2.0169] [PMID: 1625004]
[34]
Johnston, S.C.; Easton, J.D.; Farrant, M.; Barsan, W.; Conwit, R.A.; Elm, J.J.; Kim, A.S.; Lindblad, A.S.; Palesch, Y.Y. Clopidogrel and Aspirin in Acute Ischemic Stroke and High-Risk TIA. N. Engl. J. Med., 2018, 379(3), 215-225.
[http://dx.doi.org/10.1056/NEJMoa1800410] [PMID: 29766750]
[35]
Wang, P.; Miao, C.Y. NAMPT as a Therapeutic target against stroke. Trends Pharmacol. Sci., 2015, 36(12), 891-905.
[http://dx.doi.org/10.1016/j.tips.2015.08.012] [PMID: 26538317]
[36]
Lakhan, S.E.; Kirchgessner, A.; Hofer, M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med., 2009, 7(1), 97-108.
[http://dx.doi.org/10.1186/1479-5876-7-97] [PMID: 19919699]
[37]
Zhang, S.R.; Phan, T.G.; Sobey, C.G. Targeting the Immune System for Ischemic Stroke. Trends Pharmacol. Sci., 2021, 42(2), 96-105.
[http://dx.doi.org/10.1016/j.tips.2020.11.010] [PMID: 33341247]
[38]
Wang, Q.; van Hoecke, M.; Tang, X.N.; Lee, H.; Zheng, Z.; Swanson, R.A.; Yenari, M.A. Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiol. Dis., 2009, 36(1), 223-231.
[http://dx.doi.org/10.1016/j.nbd.2009.07.018] [PMID: 19635562]
[39]
Zhao, M.; Hou, S.; Feng, L.; Shen, P.; Nan, D.; Zhang, Y.; Wang, F.; Ma, D.; Feng, J. Vinpocetine protects against cerebral ischemia-reperfusion injury by targeting astrocytic connexin43 via the PI3K/AKT signaling pathway. Front. Neurosci., 2020, 14(1), 223-237.
[http://dx.doi.org/10.3389/fnins.2020.00223] [PMID: 32300287]
[40]
Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115(1), 157-188.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[41]
Inzitari, D.; Poggesi, A. Calcium channel blockers and stroke. Aging Clin. Exp. Res., 2005, 17(4)(Suppl.), 16-30.
[PMID: 16640170]
[42]
Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. J. Alzheimers Dis. Parkinsonism, 2018, 8(1), 1000421-1000435.
[http://dx.doi.org/10.4172/2161-0460.1000421] [PMID: 30560011]
[43]
Liu, N.; Liu, C.; Yang, Y.; Ma, G.; Wei, G.; Liu, S.; Kong, L.; Du, G. Xiao-Xu-Ming decoction prevented hemorrhagic transformation induced by acute hyperglycemia through inhibiting AGE-RAGE-mediated neuroinflammation. Pharmacol. Res., 2021, 169(1), 105650-105663.
[http://dx.doi.org/10.1016/j.phrs.2021.105650] [PMID: 33964468]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy