Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool

Author(s): Elmira Karami, Maryam Mesbahi Moghaddam and Fatemeh Kazemi-Lomedasht*

Volume 25, Issue 6, 2024

Published on: 10 August, 2023

Page: [676 - 693] Pages: 18

DOI: 10.2174/1389201024666230807161200

Price: $65

Abstract

Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.

Graphical Abstract

[1]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[2]
Kazemi, F.; Zaraghami, N.; Monfaredan, A. β-Cyclodextrin-curcumin complex inhibit telomerase gene expression in T47-D breast cancer cell line. Afr. J. Biotechnol., 2011, 10(83), 19481-19488.
[3]
Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym., 2020, 148, 104501.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104501]
[4]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[5]
Shojai, S.; Haeri Rohani, S.A.; Moosavi-Movahedi, A.A.; Habibi-Rezaei, M. Human serum albumin in neurodegeneration. Rev. Neurosci., 2022, 33(7), 803-817.
[http://dx.doi.org/10.1515/revneuro-2021-0165] [PMID: 35363449]
[6]
Toy, R.; Roy, K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng. Transl. Med., 2016, 1(1), 47-62.
[http://dx.doi.org/10.1002/btm2.10005] [PMID: 29313006]
[7]
Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm., 2021, 18(5), 1862-1894.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00046] [PMID: 33787270]
[8]
Karami, E.; Behdani, M.; Kazemi-Lomedasht, F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J. Drug Deliv. Sci. Technol., 2020, 55, 101471.
[http://dx.doi.org/10.1016/j.jddst.2019.101471]
[9]
Kratz, F. A clinical update of using albumin as a drug vehicle: A commentary. J. Control. Release, 2014, 190, 331-336.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.013] [PMID: 24637463]
[10]
Ferrer, R.; Mateu, X.; Maseda, E.; Yébenes, J.C.; Aldecoa, C.; De Haro, C.; Ruiz-Rodriguez, J.C.; Garnacho-Montero, J. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert Rev. Clin. Pharmacol., 2018, 11(2), 125-137.
[http://dx.doi.org/10.1080/17512433.2018.1412827] [PMID: 29219627]
[11]
Carvalho, J.R.; Machado, M.V. New insights about albumin and liver disease. Ann. Hepatol., 2018, 17(4), 547-560.
[http://dx.doi.org/10.5604/01.3001.0012.0916] [PMID: 29893696]
[12]
Sleep, D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv., 2015, 12(5), 793-812.
[http://dx.doi.org/10.1517/17425247.2015.993313] [PMID: 25518870]
[13]
Peters, T., Jr All about albumin: biochemistry, genetics, and medical applications. Academic press, 1995.
[14]
Peters, T., Jr Serum Albumin. Adv. Protein Chem., 1985, 37, 161-245.
[http://dx.doi.org/10.1016/S0065-3233(08)60065-0] [PMID: 3904348]
[15]
Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Jenkins, R.O.; Goncharov, N.V. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties. Int. J. Mol. Sci., 2021, 22(19), 10318.
[http://dx.doi.org/10.3390/ijms221910318] [PMID: 34638659]
[16]
Lee, E.S.; Youn, Y.S. Albumin-based potential drugs: Focus on half-life extension and nanoparticle preparation. J. Pharm. Investig., 2016, 46(4), 305-315.
[http://dx.doi.org/10.1007/s40005-016-0250-3]
[17]
Swiercz, R.; Mo, M.; Khare, P.; Schneider, Z.; Ober, R.J.; Ward, E.S. Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption. Oncotarget, 2017, 8(2), 3528-3541.
[http://dx.doi.org/10.18632/oncotarget.13869] [PMID: 27974681]
[18]
Zwain, T. Albumin nanoparticles—A versatile and a safe platform for drug delivery applications.Nanoparticle Therapeutics; Elsevier, 2022, pp. 327-358.
[http://dx.doi.org/10.1016/B978-0-12-820757-4.00008-9]
[19]
Adamczyk, Z.; Pomorska, A.; Nattich-Rak, M.; Wytrwal-Sarna, M.; Bernasik, A. Protein adsorption mechanisms at rough surfaces: Serum albumin at a gold substrate. J. Colloid Interface Sci., 2018, 530, 631-641.
[http://dx.doi.org/10.1016/j.jcis.2018.06.063] [PMID: 30005240]
[20]
Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials, 2018, 11(3), 394.
[http://dx.doi.org/10.3390/ma11030394] [PMID: 29518919]
[21]
Thalhammer-Thurner, G.C.; Debbage, P. Albumin-based nanoparticles: Small, uniform and reproducible. Nanoscale Adv., 2023, 5(2), 503-512.
[http://dx.doi.org/10.1039/D2NA00413E] [PMID: 36756267]
[22]
Al-Harthi, S.; Lachowicz, J.I.; Nowakowski, M.E.; Jaremko, M.; Jaremko, Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J. Inorg. Biochem., 2019, 198, 110716.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110716] [PMID: 31153112]
[23]
Tayyab, S.; Feroz, S.R. Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. Adv. Protein Chem. Struct. Biol., 2021, 123, 193-218.
[http://dx.doi.org/10.1016/bs.apcsb.2020.08.003] [PMID: 33485484]
[24]
Adamczyk, Z.; Nattich-Rak, M.; Dąbkowska, M.; Kujda-Kruk, M. Albumin adsorption at solid substrates: A quest for a unified approach. J. Colloid Interface Sci., 2018, 514, 769-790.
[http://dx.doi.org/10.1016/j.jcis.2017.11.083] [PMID: 29316533]
[25]
Abd Halim, A.A. Targeting the nalidixic acid binding site on human serum albumin through computational approach: A reinvestigation. Biointerface Res. Appl. Chem., 2022, 12, 1520-1525.
[26]
Musa, K.A.; Ridzwan, N.F.W.; Mohamad, S.B.; Tayyab, S. Combination mode of antimalarial drug mefloquine and human serum albumin: Insights from spectroscopic and docking approaches. Biopolymers, 2020, 111(2), e23337.
[http://dx.doi.org/10.1002/bip.23337] [PMID: 31691964]
[27]
Tao, H.; Wang, R.; Sheng, W.; Zhen, Y. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol., 2021, 187, 24-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.080] [PMID: 34284054]
[28]
Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, 12(6), 1052-1061.
[PMID: 1004490]
[29]
Tugaeva, K.V.; Faletrov, Y.V.; Allakhverdiev, E.S.; Shkumatov, V.M.; Maksimov, E.G.; Sluchanko, N.N. Effect of the NBD-group position on interaction of fluorescently-labeled cholesterol analogues with human steroidogenic acute regulatory protein STARD1. Biochem. Biophys. Res. Commun., 2018, 497(1), 58-64.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.014] [PMID: 29408456]
[30]
Bolaños, K.; Kogan, M.J.; Araya, E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J. Nanomedicine, 2019, 14, 6387-6406.
[http://dx.doi.org/10.2147/IJN.S210992] [PMID: 31496693]
[31]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[32]
Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[33]
Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 410-422.
[http://dx.doi.org/10.3109/21691401.2014.955107] [PMID: 25229833]
[34]
Siddique, S.; Chow, J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci., 2020, 10(11), 3824.
[http://dx.doi.org/10.3390/app10113824]
[35]
Mohseni, N.; Sarvestani, F.S.; Ardestani, M.S.; Kazemi-Lomedasht, F.; Ghorbani, M. Inhibitory effect of gold nanoparticles conjugated with interferon gamma and methionine on breast cancer cell line. Asian Pac. J. Trop. Biomed., 2016, 6(2), 173-178.
[http://dx.doi.org/10.1016/j.apjtb.2015.10.014]
[36]
Alfranca, G.; Artiga, Á.; Stepien, G.; Moros, M.; Mitchell, S.G.; de la Fuente, J.M. Gold nanoprism–nanorod face off: Comparing the heating efficiency, cellular internalization and thermoablation capacity. Nanomedicine, 2016, 11(22), 2903-2916.
[http://dx.doi.org/10.2217/nnm-2016-0257] [PMID: 27785974]
[37]
AL-Jawad, S.M.H.; Taha, A.A.; Al-Halbosiy, M.M.F.; AL-Barram, L.F.A. Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagn. Photodyn. Ther., 2018, 21, 201-210.
[http://dx.doi.org/10.1016/j.pdpdt.2017.12.004] [PMID: 29223737]
[38]
Uppal, A.; Bose, B. Synthesis, stability, and in vitro oral cancer cell toxicity of human serum albumin stabilised gold nanoflowers. IET Nanobiotechnol., 2018, 12(3), 292-297.
[http://dx.doi.org/10.1049/iet-nbt.2017.0002]
[39]
Khodashenas, B.; Ardjmand, M.; Sharifzadeh Baei, M.; Shokuhi Rad, A.; Akbarzadeh Khiyavi, A. Bovine serum albumin/gold nanoparticles as a drug delivery system for Curcumin: experimental and computational studies. J. Biomol. Struct. Dyn., 2020, 38(15), 4644-4654.
[http://dx.doi.org/10.1080/07391102.2019.1683073] [PMID: 31630635]
[40]
Mocan, L.; Matea, C.; Tabaran, F.A.; Mosteanu, O.; Pop, T.; Puia, C.; Agoston-Coldea, L.; Zaharie, G.; Mocan, T.; Buzoianu, A.D.; Iancu, C. Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles. Biomaterials, 2017, 119, 33-42.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.009] [PMID: 27992805]
[41]
García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale, 2018, 10(3), 1256-1264.
[http://dx.doi.org/10.1039/C7NR08322J] [PMID: 29292433]
[42]
Liu, J.; Abshire, C.; Carry, C.; Sholl, A.B.; Mandava, S.H.; Datta, A.; Ranjan, M.; Callaghan, C.; Peralta, D.V.; Williams, K.S.; Lai, W.R.; Abdel-Mageed, A.B.; Tarr, M.; Lee, B.R. Nanotechnology combined therapy: Tyrosine kinase-bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model. BJU Int., 2017, 119(2), 342-348.
[http://dx.doi.org/10.1111/bju.13590] [PMID: 27431021]
[43]
Wang, Z.; Chen, L.; Chu, Z.; Huang, C.; Huang, Y.; Jia, N. Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. Mater. Sci. Eng. C, 2018, 89, 106-118.
[http://dx.doi.org/10.1016/j.msec.2018.03.025] [PMID: 29752079]
[44]
Chiu, H.T.; Su, C.K.; Sun, Y.C.; Chiang, C.S.; Huang, Y.F. Albumin-gold nanorod nanoplatform for cell-mediated tumoritropic delivery with homogenous chemodrug distribution and enhanced retention ability. Theranostics, 2017, 7(12), 3034-3052.
[http://dx.doi.org/10.7150/thno.19279] [PMID: 28839462]
[45]
Fu, C.; Ding, C.; Sun, X.; Fu, A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. Mater. Sci. Eng. C, 2018, 87, 149-154.
[http://dx.doi.org/10.1016/j.msec.2017.12.028] [PMID: 29549944]
[46]
Hu, C.; Liu, Y.; Qin, J.; Nie, G.; Lei, B.; Xiao, Y.; Zheng, M.; Rong, J. Fabrication of reduced graphene oxide and sliver nanoparticle hybrids for Raman detection of absorbed folic acid: A potential cancer diagnostic probe. ACS Appl. Mater. Interfaces, 2013, 5(11), 4760-4768.
[http://dx.doi.org/10.1021/am4000485] [PMID: 23629451]
[47]
Zhang, K.; Li, D.; Zhou, B.; Liu, J.; Luo, X.; Wei, R.; Wang, L.; Hu, X.; Su, Z.; Lin, H.; Gao, J.; Shan, H. Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomater. Sci., 2021, 10(1), 243-257.
[http://dx.doi.org/10.1039/D1BM01374B] [PMID: 34846385]
[48]
Jaswal, T.; Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc., 2021.
[49]
Zorraquín-Peña, I.; Cueva, C.; Bartolomé, B.; Moreno-Arribas, M.V. Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations. Microorganisms, 2020, 8(1), 132.
[http://dx.doi.org/10.3390/microorganisms8010132] [PMID: 31963508]
[50]
Hadrup, N.; Lam, H.R. Oral toxicity of silver ions, silver nanoparticles and colloidal silver: A review. Regul. Toxicol. Pharmacol., 2014, 68(1), 1-7.
[http://dx.doi.org/10.1016/j.yrtph.2013.11.002] [PMID: 24231525]
[51]
Ismail, R.A.; Almashhadani, N.J.; Sadik, R.H. Preparation and properties of polystyrene incorporated with gold and silver nanoparticles for optoelectronic applications. Appl. Nanosci., 2017, 7(3-4), 109-116.
[http://dx.doi.org/10.1007/s13204-017-0550-6]
[52]
Ortega-Mendoza, J.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Zaca-Morán, P.; Villegas-Hernández, D.; Chávez, F. Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors, 2014, 14(10), 18701-18710.
[http://dx.doi.org/10.3390/s141018701] [PMID: 25302813]
[53]
Hu, Y.; Chen, X.; Xu, Y.; Han, X.; Wang, M.; Gong, T.; Zhang, Z.R.; John Kao, W.; Fu, Y. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale, 2019, 11(35), 16476-16487.
[http://dx.doi.org/10.1039/C9NR03684A] [PMID: 31453622]
[54]
Ma, B.B.Y.; Bristow, R.G.; Kim, J.; Siu, L.L. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J. Clin. Oncol., 2003, 21(14), 2760-2776.
[http://dx.doi.org/10.1200/JCO.2003.10.044] [PMID: 12860956]
[55]
Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag., 2021, 15, 100428.
[http://dx.doi.org/10.1016/j.enmm.2021.100428]
[56]
Majeed, S.; Aripin, F.H.B.; Shoeb, N.S.B.; Danish, M.; Ibrahim, M.N.M.; Hashim, R. Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Mater. Sci. Eng. C, 2019, 102, 254-263.
[http://dx.doi.org/10.1016/j.msec.2019.04.041] [PMID: 31146998]
[57]
Stürzenbaum, S.R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J-S.; Taniguchi, S.; Dailey, L-A.; Khanbeigi, R.A.; Rosca, E.V.; Thanou, M.; Suhling, K.; Zayats, A.V.; Green, M. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol., 2013, 8(1), 57-60.
[http://dx.doi.org/10.1038/nnano.2012.232] [PMID: 23263722]
[58]
Zeng, X.; Sun, J.; Li, S.; Shi, J.; Gao, H.; Sun Leong, W.; Wu, Y.; Li, M.; Liu, C.; Li, P.; Kong, J.; Wu, Y.Z.; Nie, G.; Fu, Y.; Zhang, G. Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat. Commun., 2020, 11(1), 567.
[http://dx.doi.org/10.1038/s41467-019-14131-z] [PMID: 31992692]
[59]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[60]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[61]
Hasannejad-Asl, B. Nanoparticles as powerful tools for crossing the blood-brain barrier. CNS & Neurological Disorders-Drug Targets (Formerly. Current Drug Targets-CNS & Neurological Disorders, 2023, 22(1), 18-26.
[62]
Chang, C.; Wang, C.; Zhang, C.; Li, L.; Zhang, Q.; Huang, Q. Albumin-encapsulated platinum nanoparticles for targeted photothermal treatment of glioma. J. Biomed. Nanotechnol., 2019, 15(8), 1744-1753.
[http://dx.doi.org/10.1166/jbn.2019.2803] [PMID: 31219025]
[63]
Jovčevska, I.; Muyldermans, S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1), 11-26.
[http://dx.doi.org/10.1007/s40259-019-00392-z] [PMID: 31686399]
[64]
Wartlick, H.; Michaelis, K.; Balthasar, S.; Strebhardt, K.; Kreuter, J.; Langer, K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J. Drug Target., 2004, 12(7), 461-471.
[http://dx.doi.org/10.1080/10611860400010697] [PMID: 15621671]
[65]
Anhorn, M.G.; Wagner, S.; Kreuter, J.; Langer, K.; von Briesen, H. Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug. Chem., 2008, 19(12), 2321-2331.
[http://dx.doi.org/10.1021/bc8002452] [PMID: 18937508]
[66]
Steinhauser, I.; Spänkuch, B.; Strebhardt, K.; Langer, K. Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells. Biomaterials, 2006, 27(28), 4975-4983.
[http://dx.doi.org/10.1016/j.biomaterials.2006.05.016] [PMID: 16757022]
[67]
Löw, K.; Wacker, M.; Wagner, S.; Langer, K.; von Briesen, H. Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine, 2011, 7(4), 454-463.
[http://dx.doi.org/10.1016/j.nano.2010.12.003] [PMID: 21215330]
[68]
Kazemi-Lomedasht, F.; Behdani, M.; Bagheri, K.P.; Habibi-Anbouhi, M.; Abolhassani, M.; Arezumand, R.; Shahbazzadeh, D.; Mirzahoseini, H. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol. Immunol., 2015, 65(1), 58-67.
[http://dx.doi.org/10.1016/j.molimm.2015.01.010] [PMID: 25645505]
[69]
Sadeghi, A.; Behdani, M.; Muyldermans, S.; Habibi-Anbouhi, M.; Kazemi-Lomedasht, F. Development of a mono‐specific anti‐VEGF bivalent nanobody with extended plasma half‐life for treatment of pathologic neovascularization. Drug Test. Anal., 2020, 12(1), 92-100.
[http://dx.doi.org/10.1002/dta.2693] [PMID: 31476257]
[70]
Karami, E.; Sabatier, J.M.; Behdani, M.; Irani, S.; Kazemi-Lomedasht, F. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1233-1239.
[http://dx.doi.org/10.1080/14756366.2020.1758690] [PMID: 32441172]
[71]
Baharlou, R.; Tajik, N.; Behdani, M.; Shokrgozar, M.A.; Tavana, V.; Kazemi-Lomedasht, F.; Faraji, F.; Habibi-Anbouhi, M. An antibody fragment against human delta-like ligand-4 for inhibition of cell proliferation and neovascularization. Immunopharmacol. Immunotoxicol., 2018, 40(5), 368-374.
[http://dx.doi.org/10.1080/08923973.2018.1505907] [PMID: 30183441]
[72]
Bagheri, M.; Babaei, E.; Shahbazzadeh, D.; Habibi-Anbouhi, M.; Alirahimi, E.; Kazemi-Lomedasht, F.; Behdani, M. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Rev., 2017, 36(1), 7-11.
[http://dx.doi.org/10.1080/15569543.2016.1244552]
[73]
Roshan, R.; Naderi, S.; Behdani, M.; Cohan, R.A.; Ghaderi, H.; Shokrgozar, M.A.; Golkar, M.; Kazemi-Lomedasht, F. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol. Immunol., 2021, 129, 70-77.
[http://dx.doi.org/10.1016/j.molimm.2020.10.021] [PMID: 33183767]
[74]
Naderi, S.; Roshan, R.; Ghaderi, H.; Behdani, M.; Mahmoudi, S.; Habibi-Anbouhi, M.; Shokrgozar, M.A.; Kazemi-Lomedasht, F. Selection and characterization of specific nanobody against neuropilin-1 for inhibition of angiogenesis. Mol. Immunol., 2020, 128, 56-63.
[http://dx.doi.org/10.1016/j.molimm.2020.10.004] [PMID: 33070092]
[75]
Ahadi, M.; Ghasemian, H.; Behdani, M.; Kazemi-Lomedasht, F. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J. Immunotoxicol., 2019, 16(1), 34-42.
[http://dx.doi.org/10.1080/1547691X.2018.1526234] [PMID: 30409071]
[76]
Hoefman, S.; Ottevaere, I.; Baumeister, J.; Sargentini-Maier, M. Pre-clinical intravenous serum pharmacokinetics of albumin binding and non-half-life extended Nanobodies®. Antibodies, 2015, 4(3), 141-156.
[http://dx.doi.org/10.3390/antib4030141]
[77]
Roovers, R.C.; Vosjan, M.J.W.D.; Laeremans, T.; el Khoulati, R.; de Bruin, R.C.G.; Ferguson, K.M.; Verkleij, A.J.; van Dongen, G.A.M.S.; van Bergen en Henegouwen, P.M.P. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer, 2011, 129(8), 2013-2024.
[http://dx.doi.org/10.1002/ijc.26145] [PMID: 21520037]
[78]
Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet., 2022, 23(5), 265-280.
[http://dx.doi.org/10.1038/s41576-021-00439-4] [PMID: 34983972]
[79]
Son, S.; Song, S.; Lee, S.J.; Min, S.; Kim, S.A.; Yhee, J.Y.; Huh, M.S.; Chan Kwon, I.; Jeong, S.Y.; Byun, Y.; Kim, S.H.; Kim, K. Self-crosslinked human serum albumin nanocarriers for systemic delivery of polymerized siRNA to tumors. Biomaterials, 2013, 34(37), 9475-9485.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.085] [PMID: 24050874]
[80]
Wen, H.; Yin, Y.; Huang, C.; Pan, W.; Liang, D. Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci. China Chem., 2017, 60(1), 130-135.
[http://dx.doi.org/10.1007/s11426-016-0094-8]
[81]
Tagde, P.; Kulkarni, G.T.; Mishra, D.K.; Kesharwani, P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2020, 56, 101613.
[http://dx.doi.org/10.1016/j.jddst.2020.101613]
[82]
Lamichhane, S.; Lee, S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133.
[http://dx.doi.org/10.1007/s12272-020-01204-7] [PMID: 31916145]
[83]
Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[84]
Wang, H.; Sun, S.; Zhang, Y.; Wang, J.; Zhang, S.; Yao, X.; Chen, L.; Gao, Z.; Xie, B. Improved drug targeting to liver tumor by sorafenib-loaded folate-decorated bovine serum albumin nanoparticles. Drug Deliv., 2019, 26(1), 89-97.
[http://dx.doi.org/10.1080/10717544.2018.1561766] [PMID: 30744448]
[85]
Dong, Y.; Fu, R.; Yang, J.; Ma, P.; Liang, L.; Mi, Y.; Fan, D. Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo. Int. J. Nanomedicine, 2019, 14, 6971-6988.
[http://dx.doi.org/10.2147/IJN.S210882] [PMID: 31507319]
[86]
Torres-Martinez, Z.; Pérez, D.; Torres, G.; Estrada, S.; Correa, C.; Mederos, N.; Velazquez, K.; Castillo, B.; Griebenow, K.; Delgado, Y. A Synergistic pH-Responsive serum albumin-based drug delivery system loaded with doxorubicin and pentacyclic triterpene betulinic acid for potential treatment of NSCLC. BioTech, 2023, 12(1), 13.
[http://dx.doi.org/10.3390/biotech12010013] [PMID: 36810440]
[87]
Lei, C.; Liu, X.R.; Chen, Q.B.; Li, Y.; Zhou, J.L.; Zhou, L.Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release, 2021, 331, 416-433.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.033] [PMID: 33503486]
[88]
Kim, J.; Moon, M.; Kim, D.; Heo, S.; Jeong, Y. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers, 2018, 10(10), 1133.
[http://dx.doi.org/10.3390/polym10101133] [PMID: 30961058]
[89]
Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Nicoletta, F.P.; Leggio, A.; Iemma, F. Dual-targeted hyaluronic acid/albumin micelle-like nanoparticles for the vectorization of doxorubicin. Pharmaceutics, 2021, 13(3), 304.
[http://dx.doi.org/10.3390/pharmaceutics13030304] [PMID: 33652648]
[90]
Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol., 2018, 120(Pt B), 1682-1695.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.188] [PMID: 30287361]
[91]
Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics, 2019, 9(1), 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[92]
How, K.N.; Yap, W.H.; Lim, C.L.H.; Goh, B.H.; Lai, Z.W. Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review. Front. Pharmacol., 2020, 11, 1105.
[http://dx.doi.org/10.3389/fphar.2020.01105] [PMID: 32848737]
[93]
Zhang, X.; Zhao, M.; Cao, N.; Qin, W.; Zhao, M.; Wu, J.; Lin, D. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci., 2020, 8(7), 1885-1896.
[http://dx.doi.org/10.1039/C9BM01927H] [PMID: 32022813]
[94]
Nigam, P.; Waghmode, S.; Louis, M.; Wangnoo, S.; Chavan, P.; Sarkar, D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(21), 3190-3195.
[http://dx.doi.org/10.1039/C4TB00015C] [PMID: 32261580]
[95]
Karaca, N.; Ünlüer, Ö.B. Albumin based nanoparticles for detection of pancreatic cancer cells. Protein Pept. Lett., 2019, 26(4), 271-280.
[http://dx.doi.org/10.2174/0929866526666190119121434] [PMID: 30659529]
[96]
Stewart, B.; Wild, C.P. International agency for research on cancer. World cancer report, 2014.
[97]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[98]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[99]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[100]
Meng, R. Preparation of drug-loaded albumin nanoparticles and its application in cancer therapy. Journal of Nanomaterials, 2022.
[http://dx.doi.org/10.1155/2022/3052175]
[101]
Verma, D. Protein based nanostructures for drug delivery. Journal of pharmaceutics, 2018.
[http://dx.doi.org/10.1155/2018/9285854]
[102]
Mao, S.J.; Hou, S.X.; He, R.; Zhang, L.K.; Wei, D.P.; Bi, Y.Q.; Jin, H. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes. World J. Gastroenterol., 2005, 11(20), 3075-3079.
[http://dx.doi.org/10.3748/wjg.v11.i20.3075] [PMID: 15918193]
[103]
Kremer, P.; Wunder, A.; Sinn, H.; Haase, T.; Rheinwald, M.; Zillmann, U.; Albert, F.K.; Kunze, S. Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin: Experimental and preliminary clinical results. Neurol. Res., 2000, 22(5), 481-489.
[http://dx.doi.org/10.1080/01616412.2000.11740705] [PMID: 10935221]
[104]
Parodi, A.; Miao, J.; Soond, S.; Rudzińska, M.; Zamyatnin, A., Jr Albumin nanovectors in cancer therapy and imaging. Biomolecules, 2019, 9(6), 218.
[http://dx.doi.org/10.3390/biom9060218] [PMID: 31195727]
[105]
Elzoghby, A.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J. Control. Release, 2013, 172(3), 1075-1091.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[106]
Otagiri, M.; Chuang, V.T.G. Albumin in medicine: Pathological and clinical applications. Springer, 2016.
[http://dx.doi.org/10.1007/978-981-10-2116-9]
[107]
Kimura, K.; Yamasaki, K.; Nishi, K.; Taguchi, K.; Otagiri, M. Investigation of anti-tumor effect of doxorubicin-loaded human serum albumin nanoparticles prepared by a desolvation technique. Cancer Chemother. Pharmacol., 2019, 83(6), 1113-1120.
[http://dx.doi.org/10.1007/s00280-019-03832-3] [PMID: 30972458]
[108]
Gharbavi, M.; Manjili, H.K.; Amani, J.; Sharafi, A.; Danafar, H. In vivo and in vitro biocompatibility study of novel microemulsion hybridized with bovine serum albumin as nanocarrier for drug delivery. Heliyon, 2019, 5(6), e01858.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01858] [PMID: 31198875]
[109]
Qi, X.; Wei, W.; Li, J.; Liu, Y.; Hu, X.; Zhang, J.; Bi, L.; Dong, W. Fabrication and characterization of a novel anticancer drug delivery system: Salecan/poly (methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater. Sci. Eng., 2015, 1(12), 1287-1299.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00346] [PMID: 33429676]
[110]
Wei, W.; Qi, X.; Li, J.; Zuo, G.; Sheng, W.; Zhang, J.; Dong, W. Smart macroporous salecan/poly (N, N-diethylacrylamide) semi-IPN hydrogel for anti-inflammatory drug delivery. ACS Biomater. Sci. Eng., 2016, 2(8), 1386-1394.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00318] [PMID: 33434992]
[111]
Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350.
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[112]
Hassanin, I.; Elzoghby, A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist., 2020, 3(4), 930-946.
[http://dx.doi.org/10.20517/cdr.2020.68] [PMID: 35582218]
[113]
Prajapati, R.; Garcia-Garrido, E.; Somoza, Á. Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer. Cancers, 2021, 13(12), 3011.
[http://dx.doi.org/10.3390/cancers13123011] [PMID: 34208533]
[114]
Cruz-Nova, P.; Ancira-Cortez, A.; Ferro-Flores, G.; Ocampo-García, B.; Gibbens-Bandala, B. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer. Pharmaceutics, 2022, 14(5), 1095.
[http://dx.doi.org/10.3390/pharmaceutics14051095] [PMID: 35631681]
[115]
AlQahtani, A.D.; O’Connor, D.; Domling, A.; Goda, S.K. Strategies for the production of long-acting therapeutics and efficient drug delivery for cancer treatment. Biomed. Pharmacother., 2019, 113, 108750.
[http://dx.doi.org/10.1016/j.biopha.2019.108750] [PMID: 30849643]
[116]
Motevalli, S.M.; Eltahan, A.S.; Liu, L.; Magrini, A.; Rosato, N.; Guo, W.; Bottini, M.; Liang, X-J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys. Rep., 2019, 5(1), 19-30.
[http://dx.doi.org/10.1007/s41048-018-0079-6]
[117]
Yu, L.; Hua, Z.; Luo, X.; Zhao, T.; Liu, Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(1), 188655.
[http://dx.doi.org/10.1016/j.bbcan.2021.188655] [PMID: 34780933]
[118]
Sharifi-Rad, J.; Bahukhandi, A.; Dhyani, P.; Sati, P.; Capanoglu, E.; Docea, A.O.; Al-Harrasi, A.; Dey, A.; Calina, D. Therapeutic potential of neoechinulins and their derivatives: an overview of the molecular mechanisms behind pharmacological activities. Front. Nutr., 2021, 8, 664197.
[http://dx.doi.org/10.3389/fnut.2021.664197] [PMID: 34336908]
[119]
Sharifi-Rad, J. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxidative Medicine and Cellular Longevity, 2021.
[http://dx.doi.org/10.1155/2021/3687700]
[120]
Khalifa, A.M.; Elsheikh, M.A.; Khalifa, A.M.; Elnaggar, Y.S.R. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release, 2019, 311-312, 125-137.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.034] [PMID: 31476342]
[121]
Gong, G.; Jiao, Y.; Pan, Q.; Tang, H.; An, Y.; Yuan, A.; Wang, K.; Huang, C.; Dai, W.; Lu, Y.; Wang, S.; Zhang, J.; Su, H. Antitumor effect and toxicity of an albumin-paclitaxel nanocarrier system constructed via controllable alkali-induced conformational changes. ACS Biomater. Sci. Eng., 2019, 5(4), 1895-1906.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00312] [PMID: 33405563]
[122]
Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420.
[http://dx.doi.org/10.1016/j.apsb.2018.09.001] [PMID: 30976492]
[123]
Zhi, D.; Yang, T.; O’Hagan, J.; Zhang, S.; Donnelly, R.F. Photothermal therapy. J. Control. Release, 2020, 325, 52-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.032] [PMID: 32619742]
[124]
Liu, S.; Pan, X.; Liu, H. Two‐dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed., 2020, 59(15), 5890-5900.
[http://dx.doi.org/10.1002/anie.201911477] [PMID: 32017308]
[125]
An, F.; Yang, Z.; Zheng, M.; Mei, T.; Deng, G.; Guo, P.; Li, Y.; Sheng, R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J. Nanobiotechnology, 2020, 18(1), 49.
[http://dx.doi.org/10.1186/s12951-020-00603-8] [PMID: 32183838]
[126]
Khafaji, M.; Zamani, M.; Golizadeh, M.; Bavi, O. Inorganic nanomaterials for chemo/photothermal therapy: A promising horizon on effective cancer treatment. Biophys. Rev., 2019, 11(3), 335-352.
[http://dx.doi.org/10.1007/s12551-019-00532-3] [PMID: 31102198]
[127]
Patel, V.; Rajani, C.; Tambe, V.; Kalyane, D.; Anup, N.; Deb, P.K.; Kalia, K.; Tekade, R.K. Nanomaterials assisted chemo-photothermal therapy for combating cancer drug resistance. J. Drug Deliv. Sci. Technol., 2022, 70, 103164.
[http://dx.doi.org/10.1016/j.jddst.2022.103164]
[128]
Li, Z.; Chen, Y.; Yang, Y.; Yu, Y.; Zhang, Y.; Zhu, D.; Yu, X.; Ouyang, X.; Xie, Z.; Zhao, Y.; Li, L. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front. Bioeng. Biotechnol., 2019, 7, 293.
[http://dx.doi.org/10.3389/fbioe.2019.00293] [PMID: 31696114]
[129]
Rocco, D.; Della Gravara, L.; Battiloro, C.; Gridelli, C. The role of combination chemo-immunotherapy in advanced non-small cell lung cancer. Expert Rev. Anticancer Ther., 2019, 19(7), 561-568.
[http://dx.doi.org/10.1080/14737140.2019.1631800] [PMID: 31188040]
[130]
Shafique, M.; Tanvetyanon, T. Immunotherapy alone or chemo-immunotherapy as front-line treatment for advanced non-small cell lung cancer. Expert Opin. Biol. Ther., 2019, 19(3), 225-232.
[http://dx.doi.org/10.1080/14712598.2019.1571036] [PMID: 30657338]
[131]
Yu, M.; Cao, R.; Ma, Z.; Zhu, M. Development of “smart” drug delivery systems for chemo/PDT synergistic treatment. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(7), 1416-1433.
[http://dx.doi.org/10.1039/D2TB02248F] [PMID: 36734612]
[132]
Kadkhoda, J.; Tarighatnia, A.; Barar, J.; Aghanejad, A.; Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 37, 102697.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102697] [PMID: 34936918]
[133]
Hak, A.; Ravasaheb Shinde, V.; Rengan, A.K. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagn. Photodyn. Ther., 2021, 33, 102205.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102205] [PMID: 33561574]
[134]
Zhang, Y.; Ye, Z.; He, R.; Li, Y.; Xiong, B.; Yi, M.; Chen, Y.; Liu, J.; Lu, B. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf. B Biointerfaces, 2023, 224, 113201.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113201] [PMID: 36822117]
[135]
Dewangan, H.K. Albumin as natural versatile drug carrier for various diseases treatment. Sustain. Agric. Res., 2020, 43, 239-268.
[136]
Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-based nanodevices as drug carriers. Curr. Pharm. Des., 2016, 22(10), 1371-1390.
[http://dx.doi.org/10.2174/1381612822666160125114900] [PMID: 26806342]
[137]
Rosenstock, J.; Reusch, J.; Bush, M.; Yang, F.; Stewart, M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care, 2009, 32(10), 1880-1886.
[http://dx.doi.org/10.2337/dc09-0366] [PMID: 19592625]
[138]
Bahman, F.; Greish, K.; Taurin, S. Nanotechnology in insulin delivery for management of diabetes. Pharm. Nanotechnol., 2019, 7(2), 113-128.
[http://dx.doi.org/10.2174/2211738507666190321110721] [PMID: 30907328]
[139]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[140]
He, Y.; Al-Mureish, A.; Wu, N. Nanotechnology in the treatment of diabetic complications: A comprehensive narrative review. 2021.
[http://dx.doi.org/10.1155/2021/6612063]
[141]
Pourkazemi, A.; Ghanbari, A.; Khojamli, M.; Balo, H.; Hemmati, H.; Jafaryparvar, Z.; Motamed, B. Diabetic foot care: Knowledge and practice. BMC Endocr. Disord., 2020, 20(1), 40.
[http://dx.doi.org/10.1186/s12902-020-0512-y] [PMID: 32192488]
[142]
Elsadek, B.; Kratz, F. Impact of albumin on drug delivery: New applications on the horizon. J. Control. Release, 2012, 157(1), 4-28.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.069] [PMID: 21959118]
[143]
Wang, W.; Ou, Y.; Shi, Y. AlbuBNP, a recombinant B-type natriuretic peptide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure. Pharm. Res., 2004, 21(11), 2105-2111.
[http://dx.doi.org/10.1023/B:PHAM.0000048203.30568.81] [PMID: 15587934]
[144]
Moosavian, S.A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorganic Chemistry and Applications, 2021.
[http://dx.doi.org/10.1155/2021/4041415]
[145]
Huang, Y.; Deng, S.; Luo, X.; Liu, Y.; Xu, W.; Pan, J.; Wang, M.; Xia, Z. Evaluation of intestinal absorption mechanism and pharmacokinetics of curcumin-loaded galactosylated albumin nanoparticles. Int. J. Nanomedicine, 2019, 14, 9721-9730.
[http://dx.doi.org/10.2147/IJN.S229992] [PMID: 31849464]
[146]
Organization, W.H. Global hepatitis report 2017. World Health Organization, 2017.
[147]
Rustgi, V.K. Albinterferon alfa-2b, a novel fusion protein of human albumin and human interferon alfa-2b, for chronic hepatitis C. Curr. Med. Res. Opin., 2009, 25(4), 991-1002.
[http://dx.doi.org/10.1185/03007990902779186] [PMID: 19275518]
[148]
Rabiee, N.; Ahmadi, S.; Afshari, R.; Khalaji, S.; Rabiee, M.; Bagherzadeh, M.; Fatahi, Y.; Dinarvand, R.; Tahriri, M.; Tayebi, L.; Hamblin, M.R.; Webster, T.J. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv. Ther., 2021, 4(3), 2000076.
[http://dx.doi.org/10.1002/adtp.202000076]
[149]
Avramopoulos, D. Genetics of Alzheimer’s disease: recent advances. Genome Med., 2009, 1(3), 34.
[http://dx.doi.org/10.1186/gm34] [PMID: 19341505]
[150]
Wilson, B.; Geetha, K.M. Neurotherapeutic applications of nanomedicine for treating Alzheimer’s disease. J. Control. Release, 2020, 325, 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.044] [PMID: 32473177]
[151]
Samanta, M.K.; Wilson, B.; Santhi, K.; Sampath Kumar, K.P.; Suresh, B. Alzheimer disease and its management: A review. Am. J. Ther., 2006, 13(6), 516-526.
[http://dx.doi.org/10.1097/01.mjt.0000208274.80496.f1] [PMID: 17122533]
[152]
Gopalan, D.; Pandey, A.; Udupa, N.; Mutalik, S. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J. Control. Release, 2020, 319, 183-200.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.034] [PMID: 31866505]
[153]
Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2017, 70(1), 59-69.
[http://dx.doi.org/10.1111/jphp.12836] [PMID: 29034965]
[154]
Nasr, S.H.; Kouyoumdjian, H.; Mallett, C.; Ramadan, S.; Zhu, D.C.; Shapiro, E.M.; Huang, X. Detection of β-amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small, 2018, 14(3), 1701828.
[http://dx.doi.org/10.1002/smll.201701828] [PMID: 29134771]
[155]
Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature, 2003, 423(6937), 356-361.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[156]
Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int. J. Nanomedicine, 2019, 14, 9113-9125.
[http://dx.doi.org/10.2147/IJN.S219413] [PMID: 31819422]
[157]
Byeon, H.J.; Min, S.Y.; Kim, I.; Lee, E.S.; Oh, K.T.; Shin, B.S.; Lee, K.C.; Youn, Y.S. Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis. Bioconjug. Chem., 2014, 25(12), 2212-2221.
[http://dx.doi.org/10.1021/bc500427g] [PMID: 25387356]
[158]
Smolen, J.S.; Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov., 2003, 2(6), 473-488.
[http://dx.doi.org/10.1038/nrd1109] [PMID: 12776222]
[159]
Janakiraman, K.; Krishnaswami, V.; Rajendran, V.; Natesan, S.; Kandasamy, R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater. Today Commun., 2018, 17, 200-213.
[http://dx.doi.org/10.1016/j.mtcomm.2018.09.011] [PMID: 32289062]
[160]
Wunder, A.; Müller-Ladner, U.; Stelzer, E.H.K.; Funk, J.; Neumann, E.; Stehle, G.; Pap, T.; Sinn, H.; Gay, S.; Fiehn, C. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J. Immunol., 2003, 170(9), 4793-4801.
[http://dx.doi.org/10.4049/jimmunol.170.9.4793] [PMID: 12707361]
[161]
Gong, T.; Tan, T.; Zhang, P.; Li, H.; Deng, C.; Huang, Y.; Gong, T.; Zhang, Z. Palmitic acid-modified bovine serum albumin nanoparticles target scavenger receptor: A on activated macrophages to treat rheumatoid arthritis. Biomaterials, 2020, 258, 120296.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120296] [PMID: 32781326]
[162]
Thao, L.Q.; Byeon, H.J.; Lee, C.; Lee, S.; Lee, E.S.; Choi, H.G.; Park, E.S.; Youn, Y.S. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int. J. Pharm., 2016, 497(1-2), 268-276.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.004] [PMID: 26657273]
[163]
Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[164]
Lamichhane, N.; Sharma, S.; Parul; Verma, A.; Roy, I.; Sen, T. Iron oxide-based magneto-optical nanocomposites for in vivo biomedical applications. Biomedicines, 2021, 9(3), 288.
[http://dx.doi.org/10.3390/biomedicines9030288] [PMID: 34156393]
[165]
Chubarov, A.S. Serum albumin for magnetic nanoparticles coating. Magnetochemistry, 2022, 8(2), 13.
[http://dx.doi.org/10.3390/magnetochemistry8020013]
[166]
Das, P.; Ganguly, S.; Banerjee, S.; Das, N.C. Graphene based emergent nanolights: A short review on the synthesis, properties and application. Res. Chem. Intermed., 2019, 45(7), 3823-3853.
[http://dx.doi.org/10.1007/s11164-019-03823-2]
[167]
Das, P.; Ganguly, S.; Agarwal, T.; Maity, P.; Ghosh, S.; Choudhary, S.; Gangopadhyay, S.; Maiti, T.K.; Dhara, S.; Banerjee, S.; Das, N.C. Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Mater. Chem. Phys., 2019, 237, 121860.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121860]
[168]
Ganguly, S.; Neelam; Grinberg, I.; Margel, S. Layer by layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications. Polym. Adv. Technol., 2021, 32(10), 3909-3921.
[http://dx.doi.org/10.1002/pat.5344]
[169]
Srivastava, A.; Prajapati, A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. Asian Biomed., 2020, 14(6), 217-242.
[http://dx.doi.org/10.1515/abm-2020-0032]
[170]
Tzameret, A.; Ketter-Katz, H.; Edelshtain, V.; Sher, I.; Corem-Salkmon, E.; Levy, I.; Last, D.; Guez, D.; Mardor, Y.; Margel, S.; Rotenstrich, Y. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J. Nanobiotechnology, 2019, 17(1), 3.
[http://dx.doi.org/10.1186/s12951-018-0438-y] [PMID: 30630490]
[171]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[172]
Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv. Protein Chem. Struct. Biol., 2015, 98, 121-143.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.002] [PMID: 25819278]
[173]
Caraceni, P.; Tufoni, M.; Bonavita, M.E. Clinical use of albumin. Blood Transfus., 2013, 11(Suppl 4)(Suppl. 4), s18-s25.
[PMID: 24333308]
[174]
Arroyo, V.; García-Martinez, R.; Salvatella, X. Human serum albumin, systemic inflammation, and cirrhosis. J. Hepatol., 2014, 61(2), 396-407.
[http://dx.doi.org/10.1016/j.jhep.2014.04.012] [PMID: 24751830]
[175]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
[176]
Phan, H.T.M.; Bartelt-Hunt, S.; Rodenhausen, K.B.; Schubert, M.; Bartz, J.C. Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PLoS One, 2015, 10(10), e0141282.
[http://dx.doi.org/10.1371/journal.pone.0141282] [PMID: 26505481]
[177]
Sun, C.; Yang, J.; Wu, X.; Huang, X.; Wang, F.; Liu, S. Unfolding and refolding of bovine serum albumin induced by cetylpyridinium bromide. Biophys. J., 2005, 88(5), 3518-3524.
[http://dx.doi.org/10.1529/biophysj.104.051516] [PMID: 15731386]
[178]
Huntington, J.A.; Stein, P.E. Structure and properties of ovalbumin. J. Chromatogr., Biomed. Appl., 2001, 756(1-2), 189-198.
[http://dx.doi.org/10.1016/S0378-4347(01)00108-6] [PMID: 11419711]
[179]
Savadkoohi, S.; Bannikova, A.; Mantri, N.; Kasapis, S. Structural properties of condensed ovalbumin systems following application of high pressure. Food Hydrocoll., 2016, 53, 104-114.
[http://dx.doi.org/10.1016/j.foodhyd.2014.09.021]
[180]
Zheng, N.; Zhu, S.; Liu, L.; Yu, X. Rat serum albumin is not equal to human serum albumin. Fertil. Steril., 2011, 95(8), e81.
[http://dx.doi.org/10.1016/j.fertnstert.2011.05.021] [PMID: 21605861]
[181]
Stehle, G.; Wunder, A.; Schrenk, H.H.; Hartung, G.; Heene, D.L.; Sinn, H. Albumin-based drug carriers. Anticancer Drugs, 1999, 10(8), 785-790.
[http://dx.doi.org/10.1097/00001813-199909000-00012] [PMID: 10573211]
[182]
Zheng, Y.R.; Suntharalingam, K.; Johnstone, T.C.; Yoo, H.; Lin, W.; Brooks, J.G.; Lippard, S.J. Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc., 2014, 136(24), 8790-8798.
[http://dx.doi.org/10.1021/ja5038269] [PMID: 24902769]
[183]
Huang, H.; Yang, D.P.; Liu, M.; Wang, X.; Zhang, Z.; Zhou, G.; Liu, W.; Cao, Y.; Zhang, W.J.; Wang, X. pH-sensitive Au–BSA–DOX–FA nanocomposites for combined CT imaging and targeted drug delivery. Int. J. Nanomedicine, 2017, 12, 2829-2843.
[http://dx.doi.org/10.2147/IJN.S128270] [PMID: 28435261]
[184]
Leopold, L.F.; Tódor, I.S.; Diaconeasa, Z.; Rugină, D.; Ştefancu, A.; Leopold, N.; Coman, C. Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids Surf. A Physicochem. Eng. Asp., 2017, 532, 70-76.
[http://dx.doi.org/10.1016/j.colsurfa.2017.06.061]
[185]
Chen, J.; Sheng, Z.; Li, P.; Wu, M.; Zhang, N.; Yu, X.F.; Wang, Y.; Hu, D.; Zheng, H.; Wang, G.P. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale, 2017, 9(33), 11888-11901.
[http://dx.doi.org/10.1039/C7NR02798B] [PMID: 28561825]
[186]
Li, J.; Cai, R.; Kawazoe, N.; Chen, G. Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(28), 5806-5814.
[http://dx.doi.org/10.1039/C5TB00633C] [PMID: 32262577]
[187]
Lian, H.; Wu, J.; Hu, Y.; Guo, H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int. J. Nanomedicine, 2017, 12, 7777-7787.
[http://dx.doi.org/10.2147/IJN.S144634] [PMID: 29123392]
[188]
Kayani, Z.; Firuzi, O.; Bordbar, A.K. Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. Int. J. Biol. Macromol., 2018, 107(Pt B), 1835-1843.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.041] [PMID: 29030194]
[189]
Tang, B.; Qian, Y.; Gou, Y.; Cheng, G.; Fang, G. VE-albumin core-shell nanoparticles for paclitaxel delivery to treat MDR breast cancer. Molecules, 2018, 23(11), 2760.
[http://dx.doi.org/10.3390/molecules23112760] [PMID: 30366367]
[190]
Onafuye, H.; Pieper, S.; Mulac, D.; Jr, J.C.; Wass, M.N.; Langer, K.; Michaelis, M. Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein J. Nanotechnol., 2019, 10(1), 1707-1715.
[http://dx.doi.org/10.3762/bjnano.10.166] [PMID: 31501742]
[191]
Yu, X.; Zhu, W.; Di, Y.; Gu, J.; Guo, Z.; Li, H.; Fu, D.; Jin, C. Triple-functional albumin-based nanoparticles for combined chemotherapy and photodynamic therapy of pancreatic cancer with lymphatic metastases. Int. J. Nanomedicine, 2017, 12, 6771-6785.
[http://dx.doi.org/10.2147/IJN.S131295] [PMID: 28979117]
[192]
Han, H.; Wang, J.; Chen, T.; Yin, L.; Jin, Q.; Ji, J. Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. J. Colloid Interface Sci., 2017, 507, 217-224.
[http://dx.doi.org/10.1016/j.jcis.2017.07.047] [PMID: 28800445]
[193]
Shen, Y.; Li, W. HA/HSA co-modified erlotinib–albumin nanoparticles for lung cancer treatment. Drug Des. Devel. Ther., 2018, 12, 2285-2292.
[http://dx.doi.org/10.2147/DDDT.S169734] [PMID: 30087553]
[194]
Phuong, P.T.T.; Lee, S.; Lee, C.; Seo, B.; Park, S.; Oh, K.T.; Lee, E.S.; Choi, H.G.; Shin, B.S.; Youn, Y.S. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids Surf. B Biointerfaces, 2018, 171, 123-133.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.016] [PMID: 30025374]
[195]
Luis de Redín, I.; Expósito, F.; Agüeros, M.; Collantes, M.; Peñuelas, I.; Allemandi, D.; Llabot, J.M.; Calvo, A.; Irache, J.M. In vivo efficacy of bevacizumab-loaded albumin nanoparticles in the treatment of colorectal cancer. Drug Deliv. Transl. Res., 2020, 10(3), 635-645.
[http://dx.doi.org/10.1007/s13346-020-00722-7] [PMID: 32040774]
[196]
Long, Q.; Zhu, W.; Guo, L.; Pu, L. RGD-conjugated resveratrol HSA nanoparticles as a novel delivery system in ovarian cancer therapy. Drug Des. Devel. Ther., 2020, 14, 5747-5756.
[http://dx.doi.org/10.2147/DDDT.S248950] [PMID: 33408463]
[197]
Lee, J.E.; Kim, M.G.; Jang, Y.L.; Lee, M.S.; Kim, N.W.; Yin, Y.; Lee, J.H.; Lim, S.Y.; Park, J.W.; Kim, J.; Lee, D.S.; Kim, S.H.; Jeong, J.H. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv., 2018, 25(1), 1570-1578.
[http://dx.doi.org/10.1080/10717544.2018.1489430] [PMID: 30044159]
[198]
Yuan, H.; Guo, H.; Luan, X.; He, M.; Li, F.; Burnett, J.; Truchan, N.; Sun, D. Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm., 2020, 17(7), 2275-2286.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01221] [PMID: 32485107]
[199]
Liu, Y.; Dong, Y.; Zhu, H.; Jing, W.; Guo, H.; Yu, J. Nanoparticle albumin-bound paclitaxel in elder patients with advanced squamous non-small-cell lung cancer: A retrospective study. Cancer Med., 2020, 9(4), 1365-1373.
[http://dx.doi.org/10.1002/cam4.2791] [PMID: 31876976]
[200]
Zhang, L.; Liu, Z.; Yang, K.; Kong, C.; Liu, C.; Chen, H.; Huang, J.; Qian, F. Tumor progression of non-small cell lung cancer controlled by albumin and micellar nanoparticles of itraconazole, a multitarget angiogenesis inhibitor. Mol. Pharm., 2017, 14(12), 4705-4713.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00855] [PMID: 29068216]
[201]
Ye, Z.; Zhang, Y.; Liu, Y.; Liu, Y.; Tu, J.; Shen, Y. EGFR targeted cetuximab-valine-citrulline (vc)-doxorubicin immunoconjugates-loaded bovine serum albumin (BSA) nanoparticles for colorectal tumor therapy. Int. J. Nanomedicine, 2021, 16, 2443-2459.
[http://dx.doi.org/10.2147/IJN.S289228] [PMID: 33814909]
[202]
Sun, P.; Li, H.; Yang, M.; Qu, H.; Liu, A.; Liu, J. Efficacy and safety of nanoparticle albumin-bound paclitaxel as neoadjuvant chemotherapy in HER2-negative breast cancer. J. Cancer Res. Ther., 2019, 15(7), 1561-1566.
[http://dx.doi.org/10.4103/jcrt.JCRT_241_19] [PMID: 31939438]
[203]
Iqbal, H.; Yang, T.; Li, T.; Zhang, M.; Ke, H.; Ding, D.; Deng, Y.; Chen, H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release, 2021, 329, 997-1022.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.030] [PMID: 33091526]
[204]
Xu, S.; Wang, F.; Li, H.; Wang, Y.; Fang, D. Albumin-binding tag derived Exendin-4 analogue for treating hyperglycemia and diabetic complications. Bioengineered, 2022, 13(3), 4621-4633.
[http://dx.doi.org/10.1080/21655979.2021.1995993] [PMID: 34696658]
[205]
Bilia, A.R.; Nardiello, P.; Piazzini, V.; Leri, M.; Bergonzi, M.C.; Bucciantini, M.; Casamenti, F. Successful brain delivery of andrographolide loaded in human albumin nanoparticles to TgCRND8 mice, an Alzheimer’s disease mouse model. Front. Pharmacol., 2019, 10, 910.
[http://dx.doi.org/10.3389/fphar.2019.00910] [PMID: 31507412]
[206]
Luppi, B.; Bigucci, F.; Corace, G.; Delucca, A.; Cerchiara, T.; Sorrenti, M.; Catenacci, L.; Di Pietra, A.M.; Zecchi, V. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur. J. Pharm. Sci., 2011, 44(4), 559-565.
[http://dx.doi.org/10.1016/j.ejps.2011.10.002] [PMID: 22009109]
[207]
Yang, R.; Zheng, Y.; Wang, Q.; Zhao, L. Curcumin-loaded chitosan–bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res. Lett., 2018, 13(1), 330.
[http://dx.doi.org/10.1186/s11671-018-2759-z] [PMID: 30350003]
[208]
Dou, Y.; Zhao, D.; Yang, F.; Tang, Y.; Chang, J. Natural phyto-antioxidant albumin nanoagents to treat advanced alzheimer’s disease. ACS Appl. Mater. Interfaces, 2021, 13(26), 30373-30382.
[http://dx.doi.org/10.1021/acsami.1c07281] [PMID: 34180234]
[209]
Yang, H.; Mu, W.; Wei, D.; Zhang, Y.; Duan, Y.; Gao, J.; Gong, X.; Wang, H.; Wu, X.; Tao, H.; Chang, J. A novel targeted and high-efficiency nanosystem for combinational therapy for Alzheimer’s disease. Adv. Sci., 2020, 7(19), 1902906.
[http://dx.doi.org/10.1002/advs.201902906] [PMID: 33042734]
[210]
Al-Rahim, A.M. Folate-methotrexate loaded bovine serum albumin nanoparticles preparation: An in vitro drug targeting cytokines overwhelming expressed immune cells from rheumatoid arthritis patients. Anim. Biotechnol., 2021, 1-17.
[PMID: 34319853]
[211]
Gong, T.; Zhang, P.; Deng, C.; Xiao, Y.; Gong, T.; Zhang, Z. An effective and safe treatment strategy for rheumatoid arthritis based on human serum albumin and Kolliphor ® HS 15. Nanomedicine, 2019, 14(16), 2169-2187.
[http://dx.doi.org/10.2217/nnm-2019-0110] [PMID: 31397202]
[212]
Lyu, J.; Wang, L.; Bai, X.; Du, X.; Wei, J.; Wang, J.; Lin, Y.; Chen, Z.; Liu, Z.; Wu, J.; Zhong, Z. Treatment of rheumatoid arthritis by serum albumin nanoparticles coated with mannose to target neutrophils. ACS Appl. Mater. Interfaces, 2021, 13(1), 266-276.
[http://dx.doi.org/10.1021/acsami.0c19468] [PMID: 33379867]
[213]
Liu, M.; Huang, Y.; Hu, L.; Liu, G.; Hu, X.; Liu, D.; Yang, X. Selective delivery of interleukine-1 receptor antagonist to inflamed joint by albumin fusion. BMC Biotechnol., 2012, 12(1), 68.
[http://dx.doi.org/10.1186/1472-6750-12-68] [PMID: 23006786]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy