Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Drug Repurposing against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The Computational Perspective

Author(s): Shweta Rai, Shruti Shukla, Luciana Scotti and Ashutosh Mani*

Volume 31, Issue 38, 2024

Published on: 25 September, 2023

Page: [6272 - 6287] Pages: 16

DOI: 10.2174/0929867331666230807151708

Price: $65

Abstract

Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.

[1]
Burchard, G.D. Treatment of illnesses acquired during long-distance travel. Internist., 2014, 55(9), 1100-1107, 1012.
[http://dx.doi.org/10.1007/s00108-014-3546-2] [PMID: 25070614]
[2]
White, N.J. Antimalarial drug resistance. J. Clin. Invest., 2004, 113(8), 1084-1092.
[http://dx.doi.org/10.1172/JCI21682] [PMID: 15085184]
[3]
World Health Organization. WHO briefing on Malaria Treatment Guidelines and artemisinin monotherapies; WHO: Geneva, 2006, pp. 1-28.
[4]
Herlekar, I. The resistance gene in malaria parasite identified. Curr. Sci., 2014, 106(3), 345-345.
[5]
Beare, N.A.; Harding, S.P.; Lewallen, S.; Molyneux, M.; Taylor, T. Malarial retinopathy: A newly established diagnostic sign in severe malaria. Am. J. Trop. Med. Hyg., 2006, 75(5), 790-797.
[http://dx.doi.org/10.4269/ajtmh.2006.75.790] [PMID: 17123967]
[6]
Bartoloni, A.; Zammarchi, L. Clinical aspects of uncomplicated and severe malaria. Mediterr. J. Hematol. Infect. Dis., 2012, 4(1), e2012026.
[http://dx.doi.org/10.4084/mjhid.2012.026] [PMID: 22708041]
[7]
Schlagenhauf-Lawlor P, ed. Travelers’ malaria. Hamilton, Ontario: BC Decker Inc; 2001.
[8]
Castelli, F.; Odolini, S.; Autino, B.; Foca, E.; Russo, R. Malaria prophylaxis: A comprehensive review. Pharmaceuticals., 2010, 3(10), 3212-3239.
[http://dx.doi.org/10.3390/ph3103212]
[9]
Mueller, I.; Shakri, A.R.; Chitnis, C.E. Development of vaccines for Plasmodium vivax malaria. Vaccine, 2015, 33(52), 7489-7495.
[http://dx.doi.org/10.1016/j.vaccine.2015.09.060] [PMID: 26428453]
[10]
Kokwaro, G. Ongoing challenges in the management of malaria. Malar. J., 2009, 8(S1), S2.
[http://dx.doi.org/10.1186/1475-2875-8-S1-S2] [PMID: 19818169]
[11]
Manyando, C.; Kayentao, K.; D’Alessandro, U.; Okafor, H.U.; Juma, E.; Hamed, K. A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy. Malar. J., 2012, 11(1), 141.
[http://dx.doi.org/10.1186/1475-2875-11-141] [PMID: 22548983]
[12]
Waters, C.N.; Edstein, M.D. 8-Aminoquioones:Primaquine and Tafenoquine. In: Prevention of Malaria: Antimalarial Drug Chemistry, Action and Use; Staines HM, K.S., Ed., 2012.
[13]
Sinha, S.; Medhi, B.; Sehgal, R. Challenges of drug-resistant malaria. Parasite, 2014, 21, 61.
[http://dx.doi.org/10.1051/parasite/2014059] [PMID: 25402734]
[14]
Newman, R.D. Relegating malaria resurgences to history. Malar. J., 2012, 11(1), 123.
[http://dx.doi.org/10.1186/1475-2875-11-123] [PMID: 22531295]
[15]
Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug discovery — approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11(12), 849-862.
[http://dx.doi.org/10.1038/nrmicro3138] [PMID: 24217412]
[16]
Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195.
[http://dx.doi.org/10.1038/nrd3368] [PMID: 21358738]
[17]
Sharma, R.; Lawrenson, A.S.; Fisher, N.E.; Warman, A.J.; Shone, A.E.; Hill, A.; Mbekeani, A.; Pidathala, C.; Amewu, R.K.; Leung, S.; Gibbons, P.; Hong, D.W.; Stocks, P.; Nixon, G.L.; Chadwick, J.; Shearer, J.; Gowers, I.; Cronk, D.; Parel, S.P.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A.; Berry, N.G. Identification of novel antimalarial chemotypes via chemoinformatic compound selection methods for a high-throughput screening program against the novel malarial target, PfNDH2: increasing hit rate via virtual screening methods. J. Med. Chem., 2012, 55(7), 3144-3154.
[http://dx.doi.org/10.1021/jm3001482] [PMID: 22380711]
[18]
Werbovetz, K.A. Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curr. Med. Chem., 2000, 7(8), 835-860.
[http://dx.doi.org/10.2174/0929867003374615] [PMID: 10828290]
[19]
Gurard-Levin, Z.A.; Scholle, M.D.; Eisenberg, A.H.; Mrksich, M. High-throughput screening of small molecule libraries using SAMDI mass spectrometry. ACS Comb. Sci., 2011, 13(4), 347-350.
[http://dx.doi.org/10.1021/co2000373] [PMID: 21639106]
[20]
Schweitzer, B.I.; Dicker, A.P.; Bertino, J.R. Dihydrofolate reductase as a therapeutic target. FASEB J., 1990, 4(8), 2441-2452.
[http://dx.doi.org/10.1096/fasebj.4.8.2185970] [PMID: 2185970]
[21]
Verma, S.; Prabhakar, Y. Target based drug design - a reality in virtual sphere. Curr. Med. Chem., 2015, 22(13), 1603-1630.
[http://dx.doi.org/10.2174/0929867322666150209151209] [PMID: 25666805]
[22]
Tang, Y.; Dong, Y.; Vennerstrom, J.L. Synthetic peroxides as antimalarials. Med. Res. Rev., 2004, 24(4), 425-448.
[http://dx.doi.org/10.1002/med.10066] [PMID: 15170591]
[23]
Cechinel-Filho, V. Plant bioactives and drug discovery: principles, practice, and perspectives; John Wiley & Sons, 2012.
[http://dx.doi.org/10.1002/9781118260005]
[24]
Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[http://dx.doi.org/10.2174/156802610790232251] [PMID: 19929824]
[25]
Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800.
[http://dx.doi.org/10.2174/1568026615666150506151101] [PMID: 25961523]
[26]
Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[27]
Dondorp, A.M.; Fairhurst, R.M.; Slutsker, L.; Macarthur, J.R.; Breman, J.G.; Guerin, P.J.; Wellems, T.E.; Ringwald, P.; Newman, R.D.; Plowe, C.V. The threat of artemisinin-resistant malaria. N. Engl. J. Med., 2011, 365(12), 1073-1075.
[http://dx.doi.org/10.1056/NEJMp1108322] [PMID: 21992120]
[28]
Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361(5), 455-467.
[http://dx.doi.org/10.1056/NEJMoa0808859] [PMID: 19641202]
[29]
Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med., 2008, 359(24), 2619-2620.
[http://dx.doi.org/10.1056/NEJMc0805011] [PMID: 19064625]
[30]
Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; Nguon, C.; Ghorbal, M.; Lopez-Rubio, J.J.; Pfrender, M.; Emrich, S.; Mohandas, N.; Dondorp, A.M.; Wiest, O.; Haldar, K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520(7549), 683-687.
[http://dx.doi.org/10.1038/nature14412] [PMID: 25874676]
[31]
Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; Lim, P.; Leang, R.; Duong, S.; Sreng, S.; Suon, S.; Chuor, C.M.; Bout, D.M.; Ménard, S.; Rogers, W.O.; Genton, B.; Fandeur, T.; Miotto, O.; Ringwald, P.; Le Bras, J.; Berry, A.; Barale, J.C.; Fairhurst, R.M.; Benoit-Vical, F.; Mercereau-Puijalon, O.; Ménard, D. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 2014, 505(7481), 50-55.
[http://dx.doi.org/10.1038/nature12876] [PMID: 24352242]
[32]
Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.B.; Munguti, K.; Campagne, P.; Criscuolo, A.; Ariey, F.; Murindahabi, M.; Ringwald, P.; Fidock, D.A.; Mbituyumuremyi, A.; Menard, D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med., 2020, 26(10), 1602-1608.
[http://dx.doi.org/10.1038/s41591-020-1005-2] [PMID: 32747827]
[33]
Zhang, D.D.; Lo, S.C.; Cross, J.V.; Templeton, D.J.; Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol., 2004, 24(24), 10941-10953.
[http://dx.doi.org/10.1128/MCB.24.24.10941-10953.2004] [PMID: 15572695]
[34]
Coppée, R.; Jeffares, D.C.; Sabbagh, A.; Clain, J. Structural evolutionary analysis predicts functional sites in the artemisinin resistance malaria protein K13. bioRxiv, 2018, 346668.
[http://dx.doi.org/10.1101/346668]
[35]
Malaria, G.E.N. Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. eLife, 2016, 08714.
[36]
Straimer, J.; Gnädig, N.F.; Witkowski, B.; Amaratunga, C.; Duru, V.; Ramadani, A.P.; Dacheux, M.; Khim, N.; Zhang, L.; Lam, S.; Gregory, P.D.; Urnov, F.D.; Mercereau-Puijalon, O.; Benoit-Vical, F.; Fairhurst, R.M.; Ménard, D.; Fidock, D.A. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 2015, 347(6220), 428-431.
[http://dx.doi.org/10.1126/science.1260867] [PMID: 25502314]
[37]
Dogovski, C.; Xie, S.C.; Burgio, G.; Bridgford, J.; Mok, S.; McCaw, J.M.; Chotivanich, K.; Kenny, S.; Gnädig, N.; Straimer, J.; Bozdech, Z.; Fidock, D.A.; Simpson, J.A.; Dondorp, A.M.; Foote, S.; Klonis, N.; Tilley, L. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol., 2015, 13(4), e1002132.
[http://dx.doi.org/10.1371/journal.pbio.1002132] [PMID: 25901609]
[38]
Witkowski, B.; Amaratunga, C.; Khim, N.; Sreng, S.; Chim, P.; Kim, S.; Lim, P.; Mao, S.; Sopha, C.; Sam, B.; Anderson, J.M.; Duong, S.; Chuor, C.M.; Taylor, W.R.J.; Suon, S.; Mercereau-Puijalon, O.; Fairhurst, R.M.; Menard, D. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect. Dis., 2013, 13(12), 1043-1049.
[http://dx.doi.org/10.1016/S1473-3099(13)70252-4] [PMID: 24035558]
[39]
Karuppasamy, R.; Verma, K.; Sequeira, V.M.; Basavanna, L.N.; Veerappapillai, S. An Integrative drug repurposing pipeline: Switching viral drugs to breast cancer. J. Cell. Biochem., 2017, 118(6), 1412-1422.
[http://dx.doi.org/10.1002/jcb.25799] [PMID: 27859674]
[40]
Strittmatter, S.M. Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks. Nat. Med., 2014, 20(6), 590-591.
[http://dx.doi.org/10.1038/nm.3595] [PMID: 24901567]
[41]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[42]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[43]
Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology—patient and health systems opportunities. Nat. Rev. Clin. Oncol., 2015, 12(12), 732-742.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[44]
Verma, K.; Lahariya, A.K.; Dubey, S.; Verma, A.K.; Das, A.; Schneider, K.A.; Bharti, P.K. An integrated virtual screening and drug repurposing strategy for the discovery of new antimalarial drugs against Plasmodium falciparum phosphatidylinositol 3-kinase. J. Cell. Biochem., 2021, 122(10), 1326-1336.
[http://dx.doi.org/10.1002/jcb.29954] [PMID: 33998049]
[45]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[46]
Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci., 2020, 117(3), 1496-1503.
[http://dx.doi.org/10.1073/pnas.1914677117] [PMID: 31896580]
[47]
Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci., 1997, 22(12), 488-490.
[http://dx.doi.org/10.1016/S0968-0004(97)01140-7] [PMID: 9433130]
[48]
Bwire, G.M.; Ngasala, B.; Mikomangwa, W.P.; Kilonzi, M.; Kamuhabwa, A.A.R. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci. Rep., 2020, 10(1), 3500.
[http://dx.doi.org/10.1038/s41598-020-60549-7] [PMID: 32103124]
[49]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[50]
Verma, K.; Kannan, K.; v, S.; R, S.; v, K.; K, R. Exploring β-tubulin inhibitors from plant origin using computational approach. Phytochem. Anal., 2017, 28(3), 230-241.
[http://dx.doi.org/10.1002/pca.2665] [PMID: 28008675]
[51]
Wang, J.; Huang, L.; Li, J.; Fan, Q.; Long, Y.; Li, Y.; Zhou, B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One, 2010, 5(3), e9582.
[http://dx.doi.org/10.1371/journal.pone.0009582] [PMID: 20221395]
[52]
Ramanathan, K.; Verma, K.; Gupta, N.; Shanthi, V. Discovery of therapeutic lead molecule against β-tubulin using computational approach. Interdiscip. Sci., 2018, 10(4), 734-747.
[http://dx.doi.org/10.1007/s12539-017-0233-8] [PMID: 28488218]
[53]
Hu, Q.; Feng, M.; Lai, L.; Pei, J. Prediction of drug-likeness using deep autoencoder neural networks. Front. Genet., 2018, 9, 585.
[http://dx.doi.org/10.3389/fgene.2018.00585] [PMID: 30538725]
[54]
Tondi, D.; Slomczynska, U.; Costi, M.P.; Watterson, D.M.; Ghelli, S.; Shoichet, B.K. Structure-based discovery and in-parallel optimization of novelcompetitive inhibitors of thymidylate synthase. Chem. Biol., 1999, 6(5), 319-331.
[http://dx.doi.org/10.1016/S1074-5521(99)80077-5] [PMID: 10322126]
[55]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[56]
von Korff, M.; Sander, T. Toxicity-indicating structural patterns. J. Chem. Inf. Model., 2006, 46(2), 536-544.
[http://dx.doi.org/10.1021/ci050358k] [PMID: 16562981]
[57]
Pu, L.; Naderi, M.; Liu, T.; Wu, H.C.; Mukhopadhyay, S.; Brylinski, M. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol., 2019, 20(1), 2.
[http://dx.doi.org/10.1186/s40360-018-0282-6] [PMID: 30621790]
[58]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[PMID: 32329419]
[59]
Pratap Singh, H.; Sharma, C.S.; Mishra, S.S.; Pandiya, H.; Kumar, N. In silico ADME, bioactivity and toxicity prediction of some selected anti-Parkinson agents. Int J Pharm Phytopharmacol Res., 2017, 6(3), 64-67.
[http://dx.doi.org/10.24896/eijppr.2016631]
[60]
Mazzatorta, P.; Estevez, M.D.; Coulet, M.; Schilter, B. Modeling oral rat chronic toxicity. J. Chem. Inf. Model., 2008, 48(10), 1949-1954.
[http://dx.doi.org/10.1021/ci8001974] [PMID: 18803370]
[61]
Sarkar, P.; Alheety, M.A.; Srivastava, V. Molecular docking and ADMET study of spice-derived potential phytochemicals against human DNA topoisomerase III alpha. Macromol. Symp., 2023, 407(1), 2200108.
[http://dx.doi.org/10.1002/masy.202200108]
[62]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small- molecule pharmacokinetic and toxicity properties using graph- based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[63]
Stowers, A.W.; Cioce, V.; Shimp, R.L.; Lawson, M.; Hui, G.; Muratova, O.; Kaslow, D.C.; Robinson, R.; Long, C.A.; Miller, L.H. Efficacy of two alternate vaccines based on Plasmodium falciparum merozoite surface protein 1 in an Aotus challenge trial. Infect. Immun., 2001, 69(3), 1536-1546.
[http://dx.doi.org/10.1128/IAI.69.3.1536-1546.2001] [PMID: 11179324]
[64]
Mogire, R.M.; Akala, H.M.; Macharia, R.W.; Juma, D.W.; Cheruiyot, A.C.; Andagalu, B.; Brown, M.L.; El-Shemy, H.A.; Nyanjom, S.G. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets. PLoS One, 2017, 12(10), e0186364.
[http://dx.doi.org/10.1371/journal.pone.0186364] [PMID: 29088219]
[65]
Malhotra, H.; Kumar, A.; Afaq, Y. Molecular docking analysis of FDA approved drugs with the glycoprotein from Junin and Machupo viruses. Bioinformation, 2022, 18(2), 119-126.
[http://dx.doi.org/10.6026/97320630018119] [PMID: 36420432]
[66]
Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1), S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[67]
Guedes, I.A.; Costa, L.S.C.; dos Santos, K.B.; Karl, A.L.M.; Rocha, G.K.; Teixeira, I.M.; Galheigo, M.M.; Medeiros, V.; Krempser, E.; Custódio, F.L.; Barbosa, H.J.C.; Nicolás, M.F.; Dardenne, L.E. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep., 2021, 11(1), 5543.
[http://dx.doi.org/10.1038/s41598-021-84700-0] [PMID: 33692377]
[68]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[69]
Wagener, M.; van Geerestein, V.J. Potential drugs and nondrugs: Prediction and identification of important structural features. J. Chem. Inf. Comput. Sci., 2000, 40(2), 280-292.
[http://dx.doi.org/10.1021/ci990266t] [PMID: 10761129]
[70]
Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1882-1889.
[http://dx.doi.org/10.1021/ci0341161] [PMID: 14632437]
[71]
Soliman, M.E.; Adewumi, A.T.; Akawa, O.B.; Subair, T.I.; Okunlola, F.O.; Akinsuku, O.E.; Khan, S. Simulation models for prediction of bioavailability of medicinal drugs—the interface between experiment and computation. AAPS PharmSciTech, 2022, 23(3), 86.
[http://dx.doi.org/10.1208/s12249-022-02229-5] [PMID: 35292867]
[72]
Walum, E. Acute oral toxicity. Environ. Health Perspect., 1998, 106(S2), 497-503.
[http://dx.doi.org/10.1289/ehp.98106497] [PMID: 9599698]
[73]
Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol., 2018, 11(1), 5-12.
[http://dx.doi.org/10.2478/intox-2018-0001] [PMID: 30181707]
[74]
Xu, Y.; Pei, J.; Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model., 2017, 57(11), 2672-2685.
[http://dx.doi.org/10.1021/acs.jcim.7b00244] [PMID: 29019671]
[75]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics., 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[76]
Nations, U. Globally harmonized system of classification and labelling of chemicals (GHS); United Nations: New York, NY, USA, 2011.
[http://dx.doi.org/10.18356/4255cc90-en]
[77]
Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]
[78]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[79]
Biovia, D.S. Discovery Studio Modeling Environment, Release, 4; Dassault Systèmes: San Diego, 2017.
[80]
Balmforth, G.V.; Samuel, R.K. Controlled trial of oxethazaine as an analgesic in duodenal ulcer. BMJ, 1964, 1(5379), 355-356.
[http://dx.doi.org/10.1136/bmj.1.5379.355] [PMID: 14079039]
[81]
Moghadasian, M.H. Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Life Sci., 1999, 65(13), 1329-1337.
[http://dx.doi.org/10.1016/S0024-3205(99)00199-X] [PMID: 10503952]
[82]
Massi-Benedetti, M.; Damsbo, P. Pharmacology and clinical experience with repaglinide. Expert Opin. Investig. Drugs, 2000, 9(4), 885-898.
[http://dx.doi.org/10.1517/13543784.9.4.885] [PMID: 11060717]
[83]
Cazzola, M.; Rogliani, P.; Matera, M.G. Aclidinium bromide/formoterol fumarate fixed-dose combination for the treatment of chronic obstructive pulmonary disease. Expert Opin. Pharmacother., 2013, 14(6), 775-781.
[http://dx.doi.org/10.1517/14656566.2013.776539] [PMID: 23472632]
[84]
Connolly, S.J.; Kates, R.E.; Lebsack, C.S.; Harrison, D.C.; Winkle, R.A. Clinical pharmacology of propafenone. Circulation, 1983, 68(3), 589-596.
[http://dx.doi.org/10.1161/01.CIR.68.3.589] [PMID: 6872170]
[85]
Boruta, T.; Bizukojc, M. Production of lovastatin and itaconic acid by Aspergillus terreus: A comparative perspective. World J. Microbiol. Biotechnol., 2017, 33(2), 34.
[http://dx.doi.org/10.1007/s11274-017-2206-9] [PMID: 28102516]
[86]
Wong, R.P.M.; Davis, T.M.E. Statins as potential antimalarial drugs: Low relative potency and lack of synergy with conventional antimalarial drugs. Antimicrob. Agents Chemother., 2009, 53(5), 2212-2214.
[http://dx.doi.org/10.1128/AAC.01469-08] [PMID: 19258270]
[87]
Grellier, P.; Valentin, A.; Millerioux, V.; Schrevel, J.; Rigomier, D. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob. Agents Chemother., 1994, 38(5), 1144-1148.
[http://dx.doi.org/10.1128/AAC.38.5.1144] [PMID: 8067753]
[88]
Diallo, B.N.; Swart, T.; Hoppe, H.C.; Tastan Bishop, Ö.; Lobb, K. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Sci. Rep., 2021, 11(1), 1413.
[http://dx.doi.org/10.1038/s41598-020-80722-2] [PMID: 33446838]
[89]
Painter, H.J.; Morrisey, J.M.; Vaidya, A.B. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother., 2010, 54(12), 5281-5287.
[http://dx.doi.org/10.1128/AAC.00937-10] [PMID: 20855748]
[90]
Gomez-Lorenzo, M.G.; Rodríguez-Alejandre, A.; Martínez-Hoyos, M.; Bahamontes-Rosa, N.; Gonzalez Del Rio, R.; Carolina, R.; de la Fuente, J.; Jose, L.L.; García-Bustos, J.F.; Mendoza-Losana, A. Functional screening of selective mitochondrial inhibitors of Plasmodium. Int J Parasitol Drugs Drug Resist., 2018, 8(2), 295-303.
[http://dx.doi.org/10.1016/j.ijpddr.2018.04.007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy