Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Hesperidin Alleviates Acute Necrotizing Pancreatitis by Activating SIRT1 - Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation

Author(s): Rui Zhang, Junjie Lan, Qi Chen, Yang Liu, Linfang Hu, Jinyong Cao, Huaye Zhao and Yan Shen*

Volume 27, Issue 12, 2024

Published on: 22 August, 2023

Page: [1745 - 1757] Pages: 13

DOI: 10.2174/1386207326666230803140408

Price: $65

Abstract

Background: Acute necrotizing pancreatitis is a serious pancreatic injury with limited effective treatments. This study aims to investigate the therapeutic effects of hesperidin on Larginine- induced acute pancreatitis and its potential targets.

Methods: The authors induced acute pancreatitis in mice by administering two hourly intraperitoneal injections of L-arginine-HCl, and evaluated the impact of hesperidin on pancreatic and lung tissues, plasma amylase activity, and myeloperoxidase content. Additionally, necrosis and mitochondrial function was tested in primary pancreatic acinar cells. The interactions between hesperidin and proteins involved in necrosis and mitochondrial dysfunction were further invested using in silico molecular docking and molecular dynamic simulations.

Results: Hesperidin effectively ameliorated the severity of acute necrotizing pancreatitis by reducing plasma amylase, pancreatic MPO, serum IL-6 levels, pancreatic edema, inflammation, and pancreatic necrosis. Hesperidin also protected against acute pancreatitis-associated lung injury and prevented acinar cell necrosis, mitochondrial membrane potential loss, and ATP depletion. In addition, hesperidin exhibited a high binding affinity with SIRT1 and increased the protein levels of SIRT1. The SIRT1 inhibitor EX527 abolished the protective effect of hesperidin against necrosis in acinar cells.

Conclusion: These findings indicate that hesperidin alleviates the severity of acute necrotizing pancreatitis by activating SIRT1, which may provide insight into the mechanisms of natural compounds in treating AP. Hesperidin has potential as a therapeutic agent for acute necrotizing pancreatitis and provides a new approach for novel therapeutic strategies.

Graphical Abstract

[1]
van Dijk, S.M.; Hallensleben, N.D.L.; van Santvoort, H.C.; Fockens, P.; van Goor, H.; Bruno, M.J.; Besselink, M.G. Acute pancreatitis: Recent advances through randomised trials. Gut, 2017, 66(11), 2024-2032.
[http://dx.doi.org/10.1136/gutjnl-2016-313595] [PMID: 28838972]
[2]
Petrov, M.S.; Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(3), 175-184.
[http://dx.doi.org/10.1038/s41575-018-0087-5] [PMID: 30482911]
[3]
Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute pancreatitis: Diagnosis and treatment. Drugs, 2022, 82(12), 1251-1276.
[http://dx.doi.org/10.1007/s40265-022-01766-4] [PMID: 36074322]
[4]
Garg, P.K.; Singh, V.P. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology, 2019, 156(7), 2008-2023.
[http://dx.doi.org/10.1053/j.gastro.2018.12.041] [PMID: 30768987]
[5]
Jaber, S.; Garnier, M.; Asehnoune, K.; Bounes, F.; Buscail, L.; Chevaux, J.B.; Dahyot-Fizelier, C.; Darrivere, L.; Jabaudon, M.; Joannes-Boyau, O.; Launey, Y.; Levesque, E.; Levy, P.; Montravers, P.; Muller, L.; Rimmelé, T.; Roger, C.; Savoye-Collet, C.; Seguin, P.; Tasu, J.P.; Thibault, R.; Vanbiervliet, G.; Weiss, E.; De Jong, A. Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth. Crit. Care Pain Med., 2022, 41(3), 101060.
[http://dx.doi.org/10.1016/j.accpm.2022.101060] [PMID: 35636304]
[6]
Lee, P.J.; Papachristou, G.I. New insights into acute pancreatitis. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 479-496.
[http://dx.doi.org/10.1038/s41575-019-0158-2] [PMID: 31138897]
[7]
Maléth, J.; Hegyi, P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1700), 20150425.
[http://dx.doi.org/10.1098/rstb.2015.0425] [PMID: 27377719]
[8]
Biczo, G.; Vegh, E.T.; Shalbueva, N.; Mareninova, O.A.; Elperin, J.; Lotshaw, E.; Gretler, S.; Lugea, A.; Malla, S.R.; Dawson, D.; Ruchala, P.; Whitelegge, J.; French, S.W.; Wen, L.; Husain, S.Z.; Gorelick, F.S.; Hegyi, P.; Rakonczay, Z., Jr; Gukovsky, I.; Gukovskaya, A.S. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology, 2018, 154(3), 689-703.
[http://dx.doi.org/10.1053/j.gastro.2017.10.012] [PMID: 29074451]
[9]
Saluja, A.; Dudeja, V.; Dawra, R.; Sah, R.P. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology, 2019, 156(7), 1979-1993.
[http://dx.doi.org/10.1053/j.gastro.2019.01.268] [PMID: 30776339]
[10]
Mukherjee, R.; Mareninova, O.A.; Odinokova, I.V.; Huang, W.; Murphy, J.; Chvanov, M.; Javed, M.A.; Wen, L.; Booth, D.M.; Cane, M.C.; Awais, M.; Gavillet, B.; Pruss, R.M.; Schaller, S.; Molkentin, J.D.; Tepikin, A.V.; Petersen, O.H.; Pandol, S.J.; Gukovsky, I.; Criddle, D.N.; Gukovskaya, A.S.; Sutton, R. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65(8), 1333-1346.
[http://dx.doi.org/10.1136/gutjnl-2014-308553] [PMID: 26071131]
[11]
Habtezion, A.; Gukovskaya, A.S.; Pandol, S.J. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology, 2019, 156(7), 1941-1950.
[http://dx.doi.org/10.1053/j.gastro.2018.11.082] [PMID: 30660726]
[12]
Criddle, D.N.; Gerasimenko, J.V.; Baumgartner, H.K.; Jaffar, M.; Voronina, S.; Sutton, R.; Petersen, O.H.; Gerasimenko, O.V. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ., 2007, 14(7), 1285-1294.
[http://dx.doi.org/10.1038/sj.cdd.4402150] [PMID: 17431416]
[13]
Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 2013, 38(2), 209-223.
[http://dx.doi.org/10.1016/j.immuni.2013.02.003] [PMID: 23438821]
[14]
Chen, R.; Kang, R.; Fan, X-G.; Tang, D. Release and activity of histone in diseases. Cell Death Dis., 2014, 5(8), e1370.
[http://dx.doi.org/10.1038/cddis.2014.337] [PMID: 25118930]
[15]
Sendler, M.; Mayerle, J.; Lerch, M.M. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(4), 407-408.
[http://dx.doi.org/10.1016/j.jcmgh.2016.05.007] [PMID: 28174728]
[16]
Hoque, R.; Sohail, M.; Malik, A.; Sarwar, S.; Luo, Y.; Shah, A.; Barrat, F.; Flavell, R.; Gorelick, F.; Husain, S.; Mehal, W. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology, 2011, 141(1), 358-369.
[http://dx.doi.org/10.1053/j.gastro.2011.03.041] [PMID: 21439959]
[17]
Sendler, M.; van den Brandt, C.; Glaubitz, J.; Wilden, A.; Golchert, J.; Weiss, F.U.; Homuth, G.; De Freitas Chama, L.L.; Mishra, N.; Mahajan, U.M.; Bossaller, L.; Völker, U.; Bröker, B.M.; Mayerle, J.; Lerch, M.M. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology, 2020, 158(1), 253-269.e14.
[http://dx.doi.org/10.1053/j.gastro.2019.09.040] [PMID: 31593700]
[18]
Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112.
[http://dx.doi.org/10.1038/s41577-019-0215-7] [PMID: 31558839]
[19]
Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García-Lidón, A.; Ortuño, A. Citrus limon: a source of flavonoids of pharmaceutical interest. Food Chem., 2004, 84(3), 457-461.
[http://dx.doi.org/10.1016/S0308-8146(03)00272-3]
[20]
Giuffrè, A.M.; Zappia, C.; Capocasale, M. Physicochemical stability of blood orange juice during frozen storage. Int. J. Food Prop., 2017, 20(S2), 1930-1943.
[21]
Maria, G.A.; Riccardo, N. Citrus bergamia, Risso: the peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emir. J. Food Agric., 2020, 32(7), 522-532.
[http://dx.doi.org/10.9755/ejfa.2020.v32.i7.2128]
[22]
Sharma, P. Ruchika; Dhiman, P.; Kumar, R.; Saneja, A.; Singh, D. A solid dispersion of Citrus reticulata peel biowaste as an effective antiepileptic: Sustainable approach toward value addition and agro-industrial waste valorisation. J. Drug Deliv. Sci. Technol., 2023, 81, 104238.
[http://dx.doi.org/10.1016/j.jddst.2023.104238]
[23]
Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A Therapeutic Agent For Obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866.
[http://dx.doi.org/10.2147/DDDT.S227499] [PMID: 32009777]
[24]
Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 613-631.
[http://dx.doi.org/10.1080/10408398.2014.906382] [PMID: 25675136]
[25]
Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules, 2019, 24(3), 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[26]
Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem., 2019, 25(37), 4929-4945.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[27]
Wang, S.; He, N.; Xing, H.; Sun, Y.; Ding, J.; Liu, L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J. Recept. Signal Transduct. Res., 2020, 40(4), 388-394.
[http://dx.doi.org/10.1080/10799893.2020.1738483] [PMID: 32164488]
[28]
Liang, G.; Yang, J.; Liu, T.; Wang, S.; Wen, Y.; Han, C.; Huang, Y.; Wang, R.; Wang, Y.; Hu, L.; Wang, G.; Li, F.; Tyndall, J.D.A.; Deng, L.; Du, D.; Xia, Q. A multi-strategy platform for quality control and Q-markers screen of Chaiqin chengqi decoction. Phytomedicine, 2021, 85, 153525.
[http://dx.doi.org/10.1016/j.phymed.2021.153525] [PMID: 33740732]
[29]
Aja, P.M.; Izekwe, F.I.; Famurewa, A.C.; Ekpono, E.U.; Nwite, F.E.; Igwenyi, I.O.; Awoke, J.N.; Ani, O.G.; Aloke, C.; Obasi, N.A.; Udeh, K.U.; Ale, B.A. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and iNOS/NF-ĸB signaling in rats. Life Sci., 2020, 259, 118268.
[http://dx.doi.org/10.1016/j.lfs.2020.118268] [PMID: 32800830]
[30]
Nagashima, S.; Tábara, L.C.; Tilokani, L.; Paupe, V.; Anand, H.; Pogson, J.H.; Zunino, R.; McBride, H.M.; Prudent, J. Golgi-derived PI (4) P-containing vesicles drive late steps of mitochondrial division. Science, 2020, 367(6484), 1366-1371.
[http://dx.doi.org/10.1126/science.aax6089] [PMID: 32193326]
[31]
Zhang, X.; Jin, T.; Shi, N.; Yao, L.; Yang, X.; Han, C.; Wen, L.; Du, D.; Szatmary, P.; Mukherjee, R.; Liu, T.; Xia, Q.; Criddle, D.N.; Huang, W.; Chvanov, M.; Sutton, R. Mechanisms of Pancreatic Injury Induced by Basic Amino Acids Differ Between L-Arginine, L-Ornithine, and L-Histidine. Front. Physiol., 2019, 9, 1922.
[http://dx.doi.org/10.3389/fphys.2018.01922] [PMID: 30697165]
[32]
Liu, X.; Lu, J.; Liao, Y.; Liu, S.; Chen, Y.; He, R.; Men, L.; Lu, C.; Chen, Z.; Li, S.; Xiong, G.; Yang, S. Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed. Pharmacother., 2019, 117, 109070.
[http://dx.doi.org/10.1016/j.biopha.2019.109070] [PMID: 31176164]
[33]
Dawra, R.; Sharif, R.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Saluja, A.K. Development of a new mouse model of acute pancreatitis induced by administration of L -arginine. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(4), G1009-G1018.
[http://dx.doi.org/10.1152/ajpgi.00167.2006] [PMID: 17170029]
[34]
Shen, Y.; Wen, L.; Zhang, R.; Wei, Z.; Shi, N.; Xiong, Q.; Xia, Q.; Xing, Z.; Zeng, Z.; Niu, H.; Huang, W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br. J. Pharmacol., 2018, 175(10), 1621-1636.
[http://dx.doi.org/10.1111/bph.14169] [PMID: 29457828]
[35]
Zhang, R.; Wen, L.; Shen, Y.; Shi, N.; Xing, Z.; Xia, Q.; Niu, H.; Huang, W. One compound of saponins from Disocorea zingiberensis protected against experimental acute pancreatitis by preventing mitochondria-mediated necrosis. Sci. Rep., 2016, 6(1), 35965.
[http://dx.doi.org/10.1038/srep35965] [PMID: 27779235]
[36]
Chen, W.; Shen, Y.; Li, Z.; Zhang, M.; Lu, C.; Shen, Y. Design and synthesis of 2-phenylnaphthalenoids as inhibitors of DNA topoisomeraseIIα and antitumor agents. Eur. J. Med. Chem., 2014, 86, 782-796.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.073] [PMID: 25240702]
[37]
Wang, Y.; Sternfeld, L.; Yang, F.; Rodriguez, J.A.; Ross, C.; Hayden, M.R.; Carriere, F.; Liu, G.; Hofer, W.; Schulz, I. Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells. Gut, 2009, 58(3), 422-430.
[http://dx.doi.org/10.1136/gut.2007.146258] [PMID: 18936103]
[38]
Xiao, J.; Feng, X.; Huang, X.Y.; Huang, Z.; Huang, Y.; Li, C.; Li, G.; Nong, S.; Wu, R.; Huang, Y.; Long, X.D. Spautin-1 Ameliorates Acute Pancreatitis via inhibiting impaired Autophagy and Alleviating Calcium Overload. Mol. Med., 2016, 22(1), 643-652.
[http://dx.doi.org/10.2119/molmed.2016.00034] [PMID: 27579473]
[39]
Duan, H.; Zhang, R.; Yuan, L.; Liu, Y.; Asikaer, A.; Liu, Y.; Shen, Y. Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation. RSC Advances, 2023, 13(20), 13971-13984.
[http://dx.doi.org/10.1039/D3RA01761C] [PMID: 37181515]
[40]
He, Q.; Zhao, L.; Li, G.; Shen, Y.; Hu, Y.; Wang, Y. The antimicrobial cyclic peptide B2 combats multidrug resistant Acinetobacter baumannii infection. New J. Chem., 2022, 46(14), 6577-6586.
[http://dx.doi.org/10.1039/D1NJ05353A]
[41]
Li, L.; Peng, C.; Wang, Y.; Xiong, C.; Liu, Y.; Wu, C.; Wang, J. Identify promising IKK-β inhibitors: A docking-based 3D-QSAR study combining molecular design and molecular dynamics simulation. Arab. J. Chem., 2022, 15(5), 103786.
[http://dx.doi.org/10.1016/j.arabjc.2022.103786]
[42]
Fu, L.; Chen, Y.; Guo, H.; Xu, L.; Tan, M.; Dong, Y.; Shu, M.; Wang, R.; Lin, Z. A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation. Struct. Chem., 2021, 32(2), 819-834.
[http://dx.doi.org/10.1007/s11224-020-01668-9]
[43]
Singh, V.K.; Yadav, D.; Garg, P.K. Diagnosis and management of chronic pancreatitis: a review. JAMA, 2019, 322(24), 2422-2434.
[http://dx.doi.org/10.1001/jama.2019.19411] [PMID: 31860051]
[44]
Rakonczay, Z., Jr; Hegyi, P.; Dósa, S.; Iványi, B.; Jármay, K.; Biczó, G.; Hracskó, Z.; Varga, I.S.; Karg, E.; Kaszaki, J.; Varró, A.; Lonovics, J.; Boros, I.; Gukovsky, I.; Gukovskaya, A.S.; Pandol, S.J.; Takács, T. A new severe acute necrotizing pancreatitis model induced by l-ornithine in rats. Crit. Care Med., 2008, 36(7), 2117-2127.
[http://dx.doi.org/10.1097/CCM.0b013e31817d7f5c] [PMID: 18594222]
[45]
Granger, J.; Remick, D. Acute pancreatitis: models, markers, and mediators. Shock, 2005, 24(Suppl. 1), 45-51.
[http://dx.doi.org/10.1097/01.shk.0000191413.94461.b0] [PMID: 16374372]
[46]
Khan, G.M.; Li, J.J.; Tenner, S. Association of extent and infection of pancreatic necrosis with organ failure and death in acute necrotizing pancreatitis. Clin. Gastroenterol. Hepatol., 2005, 3(8), 829.
[http://dx.doi.org/10.1016/S1542-3565(05)00485-4] [PMID: 16234014]
[47]
Johnson, C.D.; Abu-Hilal, M. Persistent organ failure during the first week as a marker of fatal outcome in acute pancreatitis. Gut, 2004, 53(9), 1340-1344.
[http://dx.doi.org/10.1136/gut.2004.039883] [PMID: 15306596]
[48]
Mofidi, R.; Duff, M.D.; Wigmore, S.J.; Madhavan, K.K.; Garden, O.J.; Parks, R.W. Association between early systemic inflammatory response, severity of multiorgan dysfunction and death in acute pancreatitis. Br. J. Surg., 2006, 93(6), 738-744.
[http://dx.doi.org/10.1002/bjs.5290] [PMID: 16671062]
[49]
Nassar, T.I.; Qunibi, W.Y. AKI Associated with Acute Pancreatitis. Clin. J. Am. Soc. Nephrol., 2019, 14(7), 1106-1115.
[http://dx.doi.org/10.2215/CJN.13191118] [PMID: 31118209]
[50]
Holodinsky, J.K.; Roberts, D.J.; Ball, C.G.; Blaser, A.; Starkopf, J.; Zygun, D.A.; Stelfox, H.; Malbrain, M.L.; Jaeschke, R.C.; Kirkpatrick, A.W. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit. Care, 2013, 17(5), R249.
[http://dx.doi.org/10.1186/cc13075] [PMID: 24144138]
[51]
Song, A.M.; Bhagat, L.; Singh, V.P.; Van Acker, G.G.D.; Steer, M.L.; Saluja, A.K. Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(5), G1166-G1174.
[http://dx.doi.org/10.1152/ajpgi.00370.2001] [PMID: 12381531]
[52]
Hofbauer, B.; Saluja, A.; Bhatia, M.; Frossard, J.; Lee, H.; Bhagat, L.; Steer, M. Effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis. Gastroenterology, 1998, 115(5), 1238-1247.
[http://dx.doi.org/10.1016/S0016-5085(98)70096-4] [PMID: 9797380]
[53]
Bhatia, M.; Saluja, A.K.; Hofbauer, B.; Lee, H.S.; Frossard, J.L.; Steer, M.L. The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int. J. Pancreatol., 1998, 24(2), 77-83.
[http://dx.doi.org/10.1007/BF02788564] [PMID: 9816540]
[54]
Párniczky, A.; Kui, B.; Szentesi, A.; Balázs, A.; Szűcs, Á.; Mosztbacher, D.; Czimmer, J.; Sarlós, P.; Bajor, J.; Gódi, S.; Vincze, Á.; Illés, A.; Szabó, I.; Pár, G.; Takács, T.; Czakó, L.; Szepes, Z.; Rakonczay, Z.; Izbéki, F.; Gervain, J.; Halász, A.; Novák, J.; Crai, S.; Hritz, I.; Góg, C.; Sümegi, J.; Golovics, P.; Varga, M.; Bod, B.; Hamvas, J.; Varga-Müller, M.; Papp, Z.; Sahin-Tóth, M.; Hegyi, P. Prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis. PLoS One, 2016, 11(10), e0165309.
[http://dx.doi.org/10.1371/journal.pone.0165309] [PMID: 27798670]
[55]
Sathyanarayan, G.; Garg, P.K.; Prasad, H.K.; Tandon, R.K. Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis. J. Gastroenterol. Hepatol., 2007, 22(4), 550-554.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04752.x] [PMID: 17376050]
[56]
Ismail, O.Z.; Bhayana, V. Lipase or amylase for the diagnosis of acute pancreatitis? Clin. Biochem., 2017, 50(18), 1275-1280.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.07.003] [PMID: 28720341]
[57]
Pyrzynska, K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients, 2022, 14(12), 2387.
[http://dx.doi.org/10.3390/nu14122387] [PMID: 35745117]
[58]
du Preez, B.V.P.; de Beer, D.; Joubert, E. By-product of honeybush (Cyclopia maculata) tea processing as source of hesperidin-enriched nutraceutical extract. Ind. Crops Prod., 2016, 87, 132-141.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.012]
[59]
Chen, G.; Zhang, L.; Zhao, J.; Ye, J. Determination of hesperidin and synephrine in Pericarpium Citri Reticulatae by capillary electrophoresis with electrochemical detection. Anal. Bioanal. Chem., 2002, 373(3), 169-173.
[http://dx.doi.org/10.1007/s00216-002-1300-4] [PMID: 12043020]
[60]
Köksoy, F.N.; Yankol, Y.; Oran, E.S.E.N.; Őzkan Gūrdal, S.; Yūksel, M.; Akyildiz Iğdem, A.; Yildirim Yazgan, N.; Soybir, G.R. Preventive effects of enoxaparin and hesperidin in cerulein-induced acute pancreatitis in rats. Turk. J. Gastroenterol., 2013, 24(6), 495-501.
[http://dx.doi.org/10.4318/tjg.2013.0585] [PMID: 24623288]
[61]
Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M.J. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2011, 96(5), E782-E792.
[http://dx.doi.org/10.1210/jc.2010-2879] [PMID: 21346065]
[62]
Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195.
[http://dx.doi.org/10.1074/jbc.M501250200] [PMID: 15749705]
[63]
Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B.; Bemis, J.E.; Xie, R.; Disch, J.S.; Ng, P.Y.; Nunes, J.J.; Lynch, A.V.; Yang, H.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D.A.; Olefsky, J.M.; Jirousek, M.R.; Elliott, P.J.; Westphal, C.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450(7170), 712-716.
[http://dx.doi.org/10.1038/nature06261] [PMID: 18046409]
[64]
Tang, B.L. Sirt1's systemic protective roles and its promise as a target in antiaging medicine. Transl. Res., 2011, 157(5), 276-284.
[http://dx.doi.org/10.1016/j.trsl.2010.11.006] [PMID: 21497775]
[65]
Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 679-690.
[http://dx.doi.org/10.1038/nrm.2016.93] [PMID: 27552971]
[66]
Liu, Y.; Sun, Y.; Xue, B.H.; Wang, X.D.; Yu, W.L. Negative Regulation of SIRT1 by IRF9 Involved in Hyperlipidemia Acute Pancreatitis Associated with Kidney Injury. Dig. Dis. Sci., 2021, 66(4), 1063-1071.
[http://dx.doi.org/10.1007/s10620-020-06331-1] [PMID: 32462510]
[67]
Bansod, S.; Godugu, C. Nimbolide ameliorates pancreatic inflammation and apoptosis by modulating NF-κB/SIRT1 and apoptosis signaling in acute pancreatitis model. Int. Immunopharmacol., 2021, 90, 107246.
[http://dx.doi.org/10.1016/j.intimp.2020.107246] [PMID: 33310297]
[68]
Wang, N.; Zhang, F.; Yang, L.; Zou, J.; Wang, H.; Liu, K.; Liu, M.; Zhang, H.; Xiao, X.; Wang, K. Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int. J. Mol. Med., 2017, 40(2), 427-437.
[http://dx.doi.org/10.3892/ijmm.2017.3012] [PMID: 28586010]
[69]
Rong, Y.; Ren, J.; Song, W.; Xiang, R.; Ge, Y.; Lu, W.; Fu, T. Resveratrol Suppresses Severe Acute Pancreatitis-Induced Microcirculation Disturbance through Targeting SIRT1-FOXO1 Axis. Oxid. Med. Cell. Longev., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/8891544] [PMID: 33628394]
[70]
Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells, 2016, 39(2), 87-95.
[http://dx.doi.org/10.14348/molcells.2016.2318] [PMID: 26831453]
[71]
Aquilano, K.; Baldelli, S.; Pagliei, B.; Cannata, S.M.; Rotilio, G.; Ciriolo, M.R. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid. Redox Signal., 2013, 18(4), 386-399.
[http://dx.doi.org/10.1089/ars.2012.4615] [PMID: 22861165]
[72]
Beyfuss, K.; Hood, D.A. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep., 2018, 23(1), 100-117.
[http://dx.doi.org/10.1080/13510002.2017.1416773] [PMID: 29298131]
[73]
Daitoku, H.; Hatta, M.; Matsuzaki, H.; Aratani, S.; Ohshima, T.; Miyagishi, M.; Nakajima, T.; Fukamizu, A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10042-10047.
[http://dx.doi.org/10.1073/pnas.0400593101] [PMID: 15220471]
[74]
Famurewa, A.C.; Renu, K.; Eladl, M.A.; Chakraborty, R.; Myakala, H.; El-Sherbiny, M.; Elsherbini, D.M.A.; Vellingiri, B.; Madhyastha, H.; Ramesh Wanjari, U.; Goutam Mukherjee, A.; Valsala Gopalakrishnan, A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed. Pharmacother., 2022, 149, 112914.
[http://dx.doi.org/10.1016/j.biopha.2022.112914] [PMID: 36068775]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy