Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
[http://dx.doi.org/10.1038/onc.2017.164] [PMID: 28581518]
(b) Xu M, Ni H, Xu L, Shen H, Deng H, Wang Y, et al. B14 ameliorates bone cancer pain through downregulating spinal interleukin-1β via suppressing neuron JAK2/STAT3 pathway. Mollecular Pain 2019; 15: 1744806919886498.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[http://dx.doi.org/10.1016/j.yrtph.2020.104642] [PMID: 32197968]
[http://dx.doi.org/10.4161/cbt.20083] [PMID: 22555804]
[http://dx.doi.org/10.1042/bj3340297] [PMID: 9716487]
[http://dx.doi.org/10.1083/jcb.138.6.1207] [PMID: 9298977]
[http://dx.doi.org/10.1101/gad.12.13.2048] [PMID: 9649508]
[http://dx.doi.org/10.1073/pnas.96.6.2846] [PMID: 10077599]
[http://dx.doi.org/10.1128/MCB.21.5.1621-1632.2001] [PMID: 11238899]
[http://dx.doi.org/10.1038/sj.onc.1203480] [PMID: 10851049]
[http://dx.doi.org/10.1016/j.bmc.2005.05.067] [PMID: 16019216]
(b) Deng J, Grande F, Neamati N. Small molecule inhibitors of Stat3 signaling pathway. Current cancer drug targets 2007; 7(1): 91-107.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[http://dx.doi.org/10.1080/00015458.2017.1341145] [PMID: 28669313]
[PMID: 25957424]
[http://dx.doi.org/10.1172/JCI3661] [PMID: 9802881]
(b) Hu Y, Zhao C, Zheng H, Lu K, Shi D, Liu Z, et al. A novel STAT3 inhibitor HO-3867 induces cell apoptosis by reactive oxygen species-dependent endoplasmic reticulum stress in human pancreatic cancer cells. Anti-cancer drugs 2017; 28(4): 392-400.
[http://dx.doi.org/10.1126/science.277.5332.1630] [PMID: 9287210]
(b) Jang H-j, Park E-j, Lee S-j, Lim H-j, Jo JH, Lee SW, et al. Diarylheptanoids from Curcuma phaeocaulis Suppress IL-6-Induced STAT3 Activation Authors. 2019.
[PMID: 17970038]
(b) Ji P, Yuan C, Ma S, Fan J, Fu W, Qiao C. 4-Carbonyl-2, 6-dibenzylidenecyclohexanone derivatives as small molecule inhibitors of STAT3 signaling pathway. Bioorganic & Medicinal Chemistry 2016; 24(23): 6174-82.
[http://dx.doi.org/10.1016/j.ccr.2005.05.007] [PMID: 15950906]
[http://dx.doi.org/10.1016/j.coi.2015.02.008] [PMID: 25749511]
[http://dx.doi.org/10.1002/jcp.26912] [PMID: 30417346]
[http://dx.doi.org/10.1001/jamaophthalmol.2017.3407] [PMID: 28975281]
[http://dx.doi.org/10.1074/jbc.R300030200] [PMID: 14607831]
(b) Liu Y, Fuchs J, Li C, Lin J. IL-6, a risk factor for hepatocellular carcinoma: FLLL32 inhibits IL-6-induced STAT3 phosphorylation in human hepatocellular cancer cells. Cell cycle 2010; 9(17): 3423-7.
[http://dx.doi.org/10.1242/jcs.03482] [PMID: 17726064]
(b) Alexandrow MG, Song LJ, Altiok S, Gray J, Haura EB, Kumar NB. Curcumin: A novel stat 3 pathway inhibitor for chemoprevention of lung cancer. European Journal of Cancer Prevention 2012; 21(5): 407.
[http://dx.doi.org/10.1038/sj.cr.7310027] [PMID: 16474434]
(b) Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3–NFκB signaling. Anticancer research 2015; 35(1): 39-46.
[http://dx.doi.org/10.1124/mi.11.1.4] [PMID: 21441118]
(b) Zuo M, Li C, Lin J, Javle M. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy. Oncotarget 2015; 6(13): 10940.
[http://dx.doi.org/10.1080/15384101.2016.1156267] [PMID: 26940341]
[http://dx.doi.org/10.3390/pharmaceutics13020179] [PMID: 33525658]
(b) Chung SS, Dutta P, Chard N, Wu Y, Chen Q-H, Chen G, et al. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget 2019; 10(44): 4516.
[http://dx.doi.org/10.1128/MCB.19.1.1] [PMID: 9858526]
(b) Yang C-L, Liu Y-Y, Ma Y-G, et al. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PloS one 2012; 7(5): e37960.
[http://dx.doi.org/10.1093/intimm/12.10.1389] [PMID: 11007756]
[http://dx.doi.org/10.1016/S0092-8674(00)81959-5] [PMID: 10458605 ]
[http://dx.doi.org/10.1128/MCB.25.17.7432-7440.2005] [PMID: 16107692]
(b) Selvendiran K, Ahmed S, Dayton A, Kuppusamy ML, Rivera BK, Kálai T, et al. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer biology & therapy 2011; 12(9): 837-45.
[http://dx.doi.org/10.1073/pnas.0404100101] [PMID: 15249664]
[http://dx.doi.org/10.3748/wjg.v17.i25.2992] [PMID: 21799645]
(b) Zhang W, Guo J, Li S, Ma T, Xu D, Han C, et al. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Scientific reports 2017; 7: 46352.
[http://dx.doi.org/10.1038/sj.onc.1209149] [PMID: 16205632]
(b) Tian M, Tian D, Qiao X, Li J, Zhang L. Modulation of Myb-induced NF-kB-STAT3 signaling and resulting cisplatin resistance in ovarian cancer by dietary factors. Journal of cellular physiology 2019; 234(11): 21126-34.
[http://dx.doi.org/10.1093/emboj/18.17.4657] [PMID: 10469645]
(b) Tierney BJ, McCann GA, Cohn DE, Eisenhauer E, Sudhakar M, Kuppusamy P, et al. HO-3867, a STAT3 inhibitor induces apoptosis by inactivation of STAT3 activity in BRCA1-mutated ovarian cancer cells. Cancer biology & therapy 2012; 13(9): 766-75.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3959] [PMID: 15150111]
(b) Tierney BJ, McCann GA, Naidu S, Rath KS, Saini U, Wanner R, et al. Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecologic oncology 2014; 135(1): 133-41.
[http://dx.doi.org/10.1038/nrc2622] [PMID: 19308067]
(b) Tomida M, Ohtake H, Yokota T, Kobayashi Y, Kurosumi M. Stat3 up-regulates expression of nicotinamide N-methyltransferase in human cancer cells. Journal of cancer research and clinical oncology 2008; 134(5): 551-9.
[http://dx.doi.org/10.1002/med.20101] [PMID: 17457812]
(b) Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer 2015; 18(4): 774-83.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[http://dx.doi.org/10.1038/nm976] [PMID: 14702634]
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[http://dx.doi.org/10.1007/s13238-013-2084-3] [PMID: 23483479]
(b) Du J, Zhao Q, Liu K, Li Z, Fu F, Zhang K, et al. FGFR2/STAT3 Signaling Pathway Involves in the Development of MMTV-Related Spontaneous Breast Cancer in TA2 Mice. Frontiers in Oncology 2020; 10: 652.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[http://dx.doi.org/10.1016/j.eururo.2015.09.033] [PMID: 26454706]
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0289] [PMID: 29089332]
[http://dx.doi.org/10.1016/j.ejmech.2019.07.015] [PMID: 31404861]
[http://dx.doi.org/10.1002/jcp.27404] [PMID: 30239005]
(b) Kim S-L, Choi HS, Kim J-H, Jeong DK, Kim K-S, Lee D-S. Dihydrotanshinone-induced NOX5 activation inhibits breast cancer stem cell through the ROS/Stat3 signaling pathway. Oxidative Medicine and Cellular Longevity 2019.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2182] [PMID: 22108826]
(b) Li W, Saud SM, Young MR, Colburn NH, Hua B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Molecular and cellular biochemistry 2015; 406(1-2): 63-73.
[http://dx.doi.org/10.1016/j.canlet.2009.12.018] [PMID: 20089354]
(b) Li Y, Zhang Y, Liu J. NETO2 promotes pancreatic cancer cell proliferation, invasion and migration via activation of the STAT3 signaling pathway. Cancer Management and Research 2019; 11: 5147.
[http://dx.doi.org/10.4161/cbt.11.5.14410] [PMID: 21193839]
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
(b) Chen Z, Zhu R, Zheng J, Chen C, Huang C, Ma J, et al. Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget 2017; 8(30): 50023.
[http://dx.doi.org/10.1038/bjc.2011.200] [PMID: 21694723]
[http://dx.doi.org/10.3389/fonc.2019.00484] [PMID: 31275848]
(b) Qin W, Tian Y, Zhang J, Liu W, Zhou Q, Hu S, et al. The double inhibition of PDK1 and STAT3-Y705 prevents liver metastasis in colorectal cancer. Scientific reports 2019; 9(1): 1-12.
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
(b) Shen L, Zhang G, Lou Z, Xu G, Zhang G. Cryptotanshinone enhances the effect of Arsenic trioxide in treating liver cancer cell by inducing apoptosis through downregulating phosphorylated-STAT3 in vitro and in vivo. BMC complementary and alternative medicine 2017; 17(1): 1-9.
[http://dx.doi.org/10.3390/nu11122989] [PMID: 31817718]
[http://dx.doi.org/10.1038/s41388-018-0345-6] [PMID: 29849119]
(b) Wang Y, Lu H-l, Liu Y-d, Yang L-y, Jiang Q-k, Zhu X-j, et al. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway. Biomedicine & Pharmacotherapy 2017; 95: 1388-96.
[http://dx.doi.org/10.1186/s13046-018-0959-0] [PMID: 30518397]
(b) Wang J, Zhang G, Dai C, Gao X, Wu J, Shen L, et al. Cryptotanshinone potentiates the antitumor effects of doxorubicin on gastric cancer cells via inhibition of STAT3 activity. Journal of International Medical Research 2017; 45(1): 220-30.
[PMID: 24692720]
[http://dx.doi.org/10.1002/cbdv.201800024] [PMID: 29495104]
[http://dx.doi.org/10.4049/jimmunol.171.7.3863] [PMID: 14500688]
[http://dx.doi.org/10.1038/nrd1381] [PMID: 15136787]
[http://dx.doi.org/10.1038/nrc1275] [PMID: 14964307]
[http://dx.doi.org/10.1038/sj.onc.1205260] [PMID: 11960372]
(b) Zhang W, Yu W, Cai G, Zhu J, Zhang C, Li S, et al. A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell death & disease 2018; 9(11): 1-11.
[http://dx.doi.org/10.1038/sj.onc.1208719] [PMID: 16007214]
(b) Zhang X-P, Jiang Y-B, Zhong C-Q, Ma N, Zhang E-B, Zhang F, et al. PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 Signalling pathway. Cellular Physiology and Biochemistry 2018; 47(4): 1643-54.
[PMID: 28861154]
[http://dx.doi.org/10.3892/or.2015.4279] [PMID: 26397387]
[http://dx.doi.org/10.1124/jpet.115.222570] [PMID: 25862641]
[http://dx.doi.org/10.1016/j.bmc.2008.10.044] [PMID: 19243951]
[http://dx.doi.org/10.1002/mc.22633] [PMID: 28218464]
[http://dx.doi.org/10.3892/ijo.2011.1298] [PMID: 22179587]
[http://dx.doi.org/10.3858/emm.2008.40.6.647] [PMID: 19116450]
[http://dx.doi.org/10.3109/07357900903287006] [PMID: 20121547]
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2468] [PMID: 20215512]
[http://dx.doi.org/10.1208/s12249-017-0833-y] [PMID: 28639178]
[http://dx.doi.org/10.1016/S0022-2143(97)90107-4] [PMID: 9422331]
[http://dx.doi.org/10.2174/1381612023394016] [PMID: 12171541]
(b) Sun X, Xu Q, Zeng L, Xie L, Zhao Q, Xu H, et al. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3Tyr705 phosphorylation. Cancer medicine 2020; 9(22): 8685-700.
[PMID: 9973206]
(b) Wang W, Zhao C, Jou D, LÜ J, Zhang C, Lin L. et al. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer research 2013; 33(10): 4279-84.
[http://dx.doi.org/10.1016/j.canlet.2007.03.005] [PMID: 17448598]
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0174] [PMID: 17041101]
[http://dx.doi.org/10.1016/j.bbrc.2011.10.112] [PMID: 22074823]
(b) Chelsky ZL, Yue P, Kondratyuk TP, Paladino D, Pezzuto JM, Cushman M, et al. A Resveratrol analogue promotes ERKMAPK–dependent Stat3 serine and tyrosine phosphorylation alterations and antitumor effects in vitro against human tumor cells. Molecular pharmacology 2015; 88(3): 524-33.
[http://dx.doi.org/10.1002/ijc.30847] [PMID: 28646535]
[http://dx.doi.org/10.1002/jcb.22558] [PMID: 20235152]
[http://dx.doi.org/10.1016/j.canlet.2009.06.023] [PMID: 19647363]
[http://dx.doi.org/10.3390/ijms21020438] [PMID: 31936675]
(b) Kim JE, Kim HS, Shin Y-J, Lee CS, Won C, Lee S-A, et al. LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression. Experimental & molecular medicine 2008; 40(5): 514-22.
[http://dx.doi.org/10.1371/journal.pone.0040724]
(b) Kotha A, Sekharam M, Cilenti L, Siddiquee K, Khaled A, Zervos AS, et al. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Molecular cancer therapeutics 2006; 5(3): 621-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1233] [PMID: 25124686]
[http://dx.doi.org/10.18632/oncotarget.20924] [PMID: 29254150]
[http://dx.doi.org/10.1080/01635581.2015.1085581] [PMID: 26492225]
[http://dx.doi.org/10.1016/j.bbrc.2013.03.063] [PMID: 23545262]
[http://dx.doi.org/10.1016/S0022-5223(03)00970-X] [PMID: 14666012]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.601690] [PMID: 16534004]
(b) Li S, Zhang W, Yang Y, Ma T, Guo J, Wang S, et al. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. European journal of medicinal chemistry 2016; 124: 1006-18.
[http://dx.doi.org/10.1177/0091270005282630] [PMID: 16291709]
[http://dx.doi.org/10.1517/14656566.5.12.2485] [PMID: 15571467]
[http://dx.doi.org/10.3390/ijms131013621] [PMID: 23202971]
[http://dx.doi.org/10.1016/j.jep.2017.08.011] [PMID: 28807849]
[http://dx.doi.org/10.1007/s00277-010-0996-z] [PMID: 20512574]
[http://dx.doi.org/10.1093/carcin/bgn151] [PMID: 18586687]
[http://dx.doi.org/10.18632/oncotarget.3648] [PMID: 26202747]
[http://dx.doi.org/10.1111/jcmm.14539] [PMID: 31293090]
(b) Boykin C, Zhang G, Chen Y, Zhang R, Fan X, Yang W, et al. Cucurbitacin IIa: a novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation. British journal of cancer 2011; 104(5): 781-9.
[http://dx.doi.org/10.1002/mc.21888] [PMID: 22389266]
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0575] [PMID: 17909010]
[http://dx.doi.org/10.1016/j.neulet.2009.12.069] [PMID: 20045721]
[http://dx.doi.org/10.3892/etm.2018.6562] [PMID: 30214513]
(b) Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 2010; 31(12): 2097-104.
[http://dx.doi.org/10.18632/oncotarget.5353] [PMID: 26417930]
(b) Guo H, Kuang S, Song Q-l, Liu M, Sun X-x, Yu Q. Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacologica Sinica 2018; 39(3): 425-37.
[http://dx.doi.org/10.3892/ijo.2011.1290] [PMID: 22159814]
[http://dx.doi.org/10.1158/0008-5472.939.65.3] [PMID: 15705894]
[http://dx.doi.org/10.1172/JCI32533] [PMID: 18060036]
(b) Liu T, Peng H, Zhang M, Deng Y, Wu Z. Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. European journal of pharmacology 2010; 641(1): 15-22.
[http://dx.doi.org/10.1016/j.cell.2009.10.014] [PMID: 19878981]
[http://dx.doi.org/10.1038/onc.2011.517] [PMID: 22105366]
[http://dx.doi.org/10.1002/jcb.24553] [PMID: 23553622]
[http://dx.doi.org/10.3390/ijms18081616] [PMID: 28757590]
[http://dx.doi.org/10.1007/s11101-009-9123-y]
[http://dx.doi.org/10.1016/j.ejmech.2011.10.025] [PMID: 22063755]
[http://dx.doi.org/10.3390/cells9010217] [PMID: 31952344]
[http://dx.doi.org/10.4049/jimmunol.179.11.7593] [PMID: 18025205]
[http://dx.doi.org/10.1186/s12906-022-03625-x] [PMID: 35606804]
[http://dx.doi.org/10.3109/1061186X.2016.1157882] [PMID: 26904961]
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2575] [PMID: 19118003]
(b) Shen G-N, Wang C, Luo Y-H, Wang J-R, Wang R, Xu W-T, et al. 2-(6-Hydroxyhexylthio)-5, 8-dimethoxy-1, 4-naphthoquinone Induces Apoptosis through ROS-Mediated MAPK, STAT3, and NF-κB Signalling Pathways in Lung Cancer A549 Cells. Evidence-Based Complementary and Alternative Medicine 2020.
[http://dx.doi.org/10.1002/cam4.1691] [PMID: 30094960]
[http://dx.doi.org/10.1016/j.bbrc.2016.01.131] [PMID: 26826383]
(b) Wang J-R, Shen G-N, Luo Y-H, Piao X-J, Zhang Y, Wang H, et al. 2-(4-methoxyphenylthio)-5, 8-dimethoxy-1, 4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells. Journal of Chemotherapy 2019; 31(4): 214-26.
[http://dx.doi.org/10.2147/CMAR.S192263] [PMID: 31118769]
[http://dx.doi.org/10.1002/cbin.11414] [PMID: 32584509]
(b) Thaper D, Vahid S, Kaur R, Kumar S, Nouruzi S, Bishop JL, et al. Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Scientific reports 2018; 8(1): 1-9.
[http://dx.doi.org/10.3892/mmr.2015.4379] [PMID: 26459366]
[http://dx.doi.org/10.1016/j.phrs.2020.104661] [PMID: 31982491]
(b) Busker S, Page B, Arnér ES. To inhibit TrxR1 is to inactivate STAT3-Inhibition of TrxR1 enzymatic function by STAT3 small molecule inhibitors. Redox biology 2020; 36: 101646.
[http://dx.doi.org/10.3389/fonc.2020.00491] [PMID: 32328465]
[http://dx.doi.org/10.1016/j.canlet.2017.12.007] [PMID: 29247826]
[http://dx.doi.org/10.18632/oncotarget.20444] [PMID: 29207645]
(b) Escobar Z, Bjartell A, Canesin G, Evans-Axelsson S, Sterner O, Hellsten R, et al. Preclinical characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ, 3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. Journal of medicinal chemistry 2016; 59(10): 4551-62.
[http://dx.doi.org/10.7150/jca.35453] [PMID: 31956373]
(b) Handle F, Puhr M, Schaefer G, Lorito N, Hoefer J, Gruber M, et al. The STAT3 inhibitor galiellalactone reduces IL6-mediated AR activity in benign and malignant prostate models. Molecular cancer therapeutics 2018; 17(12): 2722-31.
[http://dx.doi.org/10.1186/s12935-020-01495-2] [PMID: 32863764]
(b) Hellsten R, Johansson M, Dahlman A, Dizeyi N, Sterner O, Bjartell A. Galiellalactone is a novel therapeutic candidate against hormone-refractory prostate cancer expressing activated Stat3. The Prostate 2008; 68(3): 269-80.
[http://dx.doi.org/10.1007/s11427-018-9324-y] [PMID: 30054832]
(b) Hellsten R, Lilljebjörn L, Johansson M, Leandersson K, Bjartell A. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. The Prostate 2019; 79(14): 1611-21.
[http://dx.doi.org/10.1016/j.jff.2017.01.005]
[http://dx.doi.org/10.2147/OTT.S187777] [PMID: 30774375]
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[http://dx.doi.org/10.1182/blood.V92.10.3804.422k36_3804_3816] [PMID: 9808574]
(b) Qiu HY, Fu JY, Yang MK, Han HW, Wang PF, Zhang YH, et al. Identification of new shikonin derivatives as STAT3 inhibitors. Biochem Pharmacol 2017; 146: 74-86.
[http://dx.doi.org/10.2147/OTT.S259016] [PMID: 32801741]
(b) Qiu HY, Zhu X, Luo YL, Lin HY, Tang CY, Qi JL, et al. Identification of New Shikonin Derivatives as Antitumor Agents Targeting STAT3 SH2 Domain. Sci Rep 2017; 7(1): 2863.
[http://dx.doi.org/10.1016/j.amjms.2016.08.027] [PMID: 27865301]
[http://dx.doi.org/10.1016/j.ygyno.2015.09.087] [PMID: 26432044]
[http://dx.doi.org/10.18632/genesandcancer.15] [PMID: 25061499]
[http://dx.doi.org/10.1016/S2665-9913(21)00139-9] [PMID: 34124694]
(b) Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M, et al. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother 2019; 68(3): 489-502.
[PMID: 30387805]
[http://dx.doi.org/10.18632/oncotarget.25993] [PMID: 30250641]
[http://dx.doi.org/10.1371/journal.pone.0205918] [PMID: 30356255]
[PMID: 25664004]
[http://dx.doi.org/10.1186/s13048-015-0152-4] [PMID: 25896424]
[http://dx.doi.org/10.3233/CBM-170483] [PMID: 29504523]
[http://dx.doi.org/10.3390/ijms19071983] [PMID: 29986501]
[http://dx.doi.org/10.1016/j.phymed.2016.02.011] [PMID: 27064016]
[http://dx.doi.org/10.1371/journal.pone.0055183] [PMID: 23372833]
(b) Yu C, Zhang Q, Zhang HY, Zhang X, Huo X, Cheng E, et al. Targeting the intrinsic inflammatory pathway: honokiol exerts proapoptotic effects through STAT3 inhibition in transformed Barrett's cells. Am J Physiol Gastrointest Liver Physiol 2012; 303(5): G561-9.
[http://dx.doi.org/10.1038/srep31672] [PMID: 28442746]
[http://dx.doi.org/10.21037/atm.2017.04.41] [PMID: 28758096]
[http://dx.doi.org/10.3892/or.2013.2748] [PMID: 24064760]
(b) Ahmad B, Gamallat Y, Su P, Husain A, Rehman AU, Zaky MY, et al. Alantolactone induces apoptosis in THP-1 cells through STAT3, survivin inhibition, and intrinsic apoptosis pathway. Chem Biol Drug Des 2020.
[http://dx.doi.org/10.2147/OTT.S226580] [PMID: 32063715]
(b) Chen W, Li P, Liu Y, Yang Y, Ye X, Zhang F, et al. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J Exp Clin Cancer Res 2018; 37(1): 309.
[http://dx.doi.org/10.1002/jcp.22806] [PMID: 21503893]
[http://dx.doi.org/10.4062/biomolther.2014.061] [PMID: 25414773]
[http://dx.doi.org/10.3233/CBM-191010] [PMID: 31958078]
[http://dx.doi.org/10.1016/S1470-2045(16)30364-3] [PMID: 27592805]
[http://dx.doi.org/10.3892/etm.2017.4547] [PMID: 28673003]
[http://dx.doi.org/10.1038/sj.onc.1211028]
[http://dx.doi.org/10.1016/j.abb.2020.108314] [PMID: 32088220]
(b) Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S, et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proceedings of the National Academy of Sciences 2005; 102(17): 5998-6003.
[http://dx.doi.org/10.3892/mmr.2014.2581] [PMID: 25242136]
[http://dx.doi.org/10.3390/ijms20030755] [PMID: 30754640]
[http://dx.doi.org/10.1002/jcb.26808] [PMID: 29575175]
[http://dx.doi.org/10.1016/j.canlet.2009.07.015] [PMID: 19700240]
[http://dx.doi.org/10.1142/S0192415X15500226] [PMID: 25787299]
[http://dx.doi.org/10.1007/s11010-015-2509-9] [PMID: 26169986]
(b) Kim YH, Yoon YJ, Lee Y-J, Kim C-H, Lee S, Choung DH, et al. Piperlongumine derivative, CG-06, inhibits STAT3 activity by direct binding to STAT3 and regulating the reactive oxygen species in DU145 prostate carcinoma cells. Bioorganic & Medicinal Chemistry Letters 2018; 28(14): 2566-72.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.025] [PMID: 18930029]
(b) Lee Y-J, Song H, Yoon YJ, Park S-J, Kim S-Y, Cho Han D, et al. Ethacrynic acid inhibits STAT3 activity through the modulation of SHP2 and PTP1B tyrosine phosphatases in DU145 prostate carcinoma cells. Biochemical Pharmacology 2020; 175.
[http://dx.doi.org/10.3390/molecules25030560] [PMID: 32012950]
[http://dx.doi.org/10.1007/s00432-009-0698-x] [PMID: 19816711]
[http://dx.doi.org/10.18632/oncotarget.21704] [PMID: 29262554]
[http://dx.doi.org/10.3390/biom10010023] [PMID: 31878046]
[http://dx.doi.org/10.1002/cmdc.202000872] [PMID: 33278061]
[http://dx.doi.org/10.1016/j.cbi.2019.03.004] [PMID: 30871965]
[http://dx.doi.org/10.1007/s00280-020-04059-3] [PMID: 32236642]
(b) Yao X, Zhu F, Zhao Z, Liu C, Luo L, Yin Z. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway. Journal of cellular biochemistry 2011; 112(10): 2837-49.
[http://dx.doi.org/10.1016/S2468-1253(18)30009-8] [PMID: 29397354]
[http://dx.doi.org/10.4248/BR201304007] [PMID: 26273514]
[http://dx.doi.org/10.1021/acs.jnatprod.8b00247] [PMID: 30003778]
[http://dx.doi.org/10.3892/ijmm.2018.3722] [PMID: 29901084]
(b) Lee KC, Chang HH, Chung YH, Lee TY. Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-κB pathway. Journal of ethnopharmacology 2011; 135(3): 678-84.
[http://dx.doi.org/10.3389/fphar.2020.00748] [PMID: 32536866]
[http://dx.doi.org/10.1093/carcin/bgs291] [PMID: 22976928]
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0231] [PMID: 25627799]
(b) Chen SR, Li F, Ding MY, Wang D, Zhao Q, Wang Y, et al. Andrographolide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorganic & medicinal chemistry 2018; 26(18): 5053-61.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0257] [PMID: 20068065]
[http://dx.doi.org/10.3892/mmr.2019.10500] [PMID: 31322207]
(b) Song X, Wang M, Zhang L, Zhang J, Wang X, Liu W, et al. Changes in cell ultrastructure and inhibition of JAK1/STAT3 signaling pathway in CBRH-7919 cells with astaxanthin. Toxicology mechanisms and methods 2012; 22(9): 679-86.
[http://dx.doi.org/10.3892/or_00000394] [PMID: 19424643]
[http://dx.doi.org/10.1016/j.eururo.2015.06.016] [PMID: 26144873]
[http://dx.doi.org/10.1001/jamaoncol.2018.5441] [PMID: 30570649]
[http://dx.doi.org/10.1016/j.bmc.2017.06.036] [PMID: 28705432]
[http://dx.doi.org/10.1016/j.ejphar.2008.04.041] [PMID: 18514188]
[http://dx.doi.org/10.1038/srep10194] [PMID: 25973915]
[http://dx.doi.org/10.3892/or.2020.7683] [PMID: 32705271]
[http://dx.doi.org/10.1016/j.lfs.2018.05.012] [PMID: 29738778]
[http://dx.doi.org/10.1186/s12860-018-0179-7] [PMID: 30594131]
[http://dx.doi.org/10.1038/onc.2014.72] [PMID: 24681959]
[http://dx.doi.org/10.3390/molecules24122338] [PMID: 31242627]
[http://dx.doi.org/10.3892/mmr.2016.5091] [PMID: 27053336]
[http://dx.doi.org/10.1371/journal.pone.0143964] [PMID: 26645674]
[http://dx.doi.org/10.1007/s11095-009-9926-y] [PMID: 19543955]
[http://dx.doi.org/10.3390/molecules25010216] [PMID: 31948057]
[http://dx.doi.org/10.1080/1042819021000006295] [PMID: 12685829]
[http://dx.doi.org/10.1002/tox.22587] [PMID: 30076764]
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0129] [PMID: 27849557]
[http://dx.doi.org/10.1021/acsomega.0c02832] [PMID: 32803080]
[http://dx.doi.org/10.3892/or.2014.3434] [PMID: 25175884]
[http://dx.doi.org/10.3390/cancers11010022] [PMID: 30587839]
[http://dx.doi.org/10.4161/cbt.21781] [PMID: 22895078]
[http://dx.doi.org/10.1155/2013/248532]
(b) Lee JY, Talhi O, Jang D, Cerella C, Gaigneaux A, Kim KW, et al. Cytostatic hydroxycoumarin OT52 induces ER/Golgi stress and STAT3 inhibition triggering non-canonical cell death and synergy with BH3 mimetics in lung cancer. Cancer letters 2018; 416: 94-108.
[http://dx.doi.org/10.1111/cbdd.13778] [PMID: 32780548]
[http://dx.doi.org/10.1016/j.canlet.2014.11.049] [PMID: 25434800]
[http://dx.doi.org/10.1177/0960327119855128] [PMID: 31203647]
(b) Wu J, Tang Q, Yang L, Chen Y, Zheng F, Hann SS. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to β-elemene-inhibited growth of nasopharyngeal carcinoma cells. Scientific reports 2017; 7(1): 509.
[http://dx.doi.org/10.1038/s41598-017-06535-y] [PMID: 28740138]
[http://dx.doi.org/10.1080/14786419.2018.1543676] [PMID: 30661396]
[PMID: 31974628]
[http://dx.doi.org/10.1016/j.cytogfr.2019.10.005] [PMID: 31677966]
[http://dx.doi.org/10.1155/2013/719858]
[http://dx.doi.org/10.1038/nrc2129] [PMID: 17446857]
[http://dx.doi.org/10.3892/mmr.2016.5171] [PMID: 27108756]
[http://dx.doi.org/10.1002/jcp.26892] [PMID: 30078206]
[http://dx.doi.org/10.1016/S1535-6108(02)00033-8] [PMID: 12086876]
[http://dx.doi.org/10.1007/s13277-016-5102-2] [PMID: 27333990]
[http://dx.doi.org/10.1002/cbin.10868] [PMID: 28880428]
[http://dx.doi.org/10.1055/s-2001-16493] [PMID: 11509983]
[http://dx.doi.org/10.1371/journal.pone.0123478] [PMID: 25954974]
[http://dx.doi.org/10.1186/1471-2407-13-619] [PMID: 24380387]
(b) Wang Z, Chen H, Chen J, Hong Z, Liao Y, Zhang Q, et al. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer management and research 2019; 11: 8463-73.
[http://dx.doi.org/10.1142/S0192415X15500846] [PMID: 26503561]
(b) Andrés RM, Montesinos MC, Navalón P, Payá M, Terencio MC. NF-κBκB and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. The Journal of investigative dermatology 2013; 133(10): 2362-71.
[PMID: 9332168]
[http://dx.doi.org/10.1007/s10495-007-0129-x] [PMID: 17874299]
[http://dx.doi.org/10.15430/JCP.2015.20.3.185] [PMID: 26473157]
[http://dx.doi.org/10.1016/j.bbrc.2012.08.133] [PMID: 22982675]
[http://dx.doi.org/10.4137/BCI.S18863]
[http://dx.doi.org/10.2147/DDDT.S174613] [PMID: 30323565]
[http://dx.doi.org/10.1016/j.molonc.2012.10.013] [PMID: 23206899]
(b) Lee MM, Chan BD, Wong WY, Qu Z, Chan MS, Leung TW, et al. Anti-cancer Activity of Centipeda minima Extract in Triple Negative Breast Cancer via Inhibition of AKT, NF-κB, and STAT3 Signaling Pathways. Frontiers in oncology 2020; 10: 491.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[http://dx.doi.org/10.2147/OTT.S132558] [PMID: 29033580]
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0388] [PMID: 25370465]
[http://dx.doi.org/10.1016/j.fct.2012.05.058] [PMID: 22705772]
[http://dx.doi.org/10.1111/bcpt.12270] [PMID: 24842412]
[http://dx.doi.org/10.18632/oncotarget.13393] [PMID: 27861147]
[http://dx.doi.org/10.1016/j.intimp.2008.12.002] [PMID: 19110075]
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<333::AID-PTR584>3.0.CO;2-D] [PMID: 10925397]
[http://dx.doi.org/10.1078/094471102321616391] [PMID: 12487322]
[http://dx.doi.org/10.1007/s10495-010-0502-z] [PMID: 20446039]
[http://dx.doi.org/10.1016/j.intimp.2010.08.002] [PMID: 20728594]
[http://dx.doi.org/10.1016/j.bcp.2009.12.014] [PMID: 20026083]
[http://dx.doi.org/10.1016/j.toxlet.2013.06.241] [PMID: 23845849]
[http://dx.doi.org/10.3390/md12010128] [PMID: 24402174]
[http://dx.doi.org/10.1073/pnas.0511338103] [PMID: 16488972]
[http://dx.doi.org/10.1002/iub.2104] [PMID: 31251469]
(b) Yamashita S, Yamashita T, Yamada K, Tachibana H. Flavones suppress type I IL-4 receptor signaling by down-regulating the expression of common gamma chain. FEBS letters 2010; 584(4): 775-9.
[http://dx.doi.org/10.3390/md18080415] [PMID: 32784629]
[http://dx.doi.org/10.1016/j.cell.2007.08.021] [PMID: 17803898]
[http://dx.doi.org/10.2165/00126839-200304010-00001] [PMID: 12568630]
[http://dx.doi.org/10.1038/nchembio0707-360] [PMID: 17576417]
[http://dx.doi.org/10.1016/j.bcp.2006.08.027] [PMID: 17097618]
[http://dx.doi.org/10.1016/j.clim.2008.07.018] [PMID: 18757245]
[http://dx.doi.org/10.1002/jcp.24949] [PMID: 25655308]
[http://dx.doi.org/10.3858/emm.2009.41.10.078] [PMID: 19561401]
[http://dx.doi.org/10.1007/s12032-022-01691-2] [PMID: 35599281]
[http://dx.doi.org/10.3892/ijmm.2017.3122] [PMID: 28901387]
[http://dx.doi.org/10.1016/j.ejmech.2015.01.040] [PMID: 25703298]
[http://dx.doi.org/10.1016/S0891-5849(98)00180-4] [PMID: 9870564]
[http://dx.doi.org/10.3389/fonc.2019.00461] [PMID: 31214503]
[http://dx.doi.org/10.1007/s00280-011-1575-2] [PMID: 21340606]
[PMID: 11431339]
[http://dx.doi.org/10.3892/ijo.2016.3351] [PMID: 26794366]
[http://dx.doi.org/10.3892/ijo.26.1.185] [PMID: 15586239]
[http://dx.doi.org/10.1186/s13046-018-1010-1] [PMID: 30646963]
[http://dx.doi.org/10.1038/s41598-020-70948-5] [PMID: 32811873]
[http://dx.doi.org/10.1016/j.phymed.2017.12.001] [PMID: 29433670]
[PMID: 15015587]
[http://dx.doi.org/10.2174/157488707781662715] [PMID: 18474008]
[http://dx.doi.org/10.1002/cbdv.200690108] [PMID: 17193331]
[http://dx.doi.org/10.1007/s00280-009-1077-7] [PMID: 19629483]
[http://dx.doi.org/10.3892/ijmm.2013.1358] [PMID: 23613111]
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0648] [PMID: 22203730]
[http://dx.doi.org/10.1002/pros.22457] [PMID: 22161756]
[http://dx.doi.org/10.1007/s11095-010-0079-9] [PMID: 20182772]
[http://dx.doi.org/10.1080/15384047.2016.1264540] [PMID: 27981892]
[http://dx.doi.org/10.1002/mc.22777] [PMID: 29278657]
[http://dx.doi.org/10.1002/mnfr.200800253] [PMID: 19437484]
[http://dx.doi.org/10.1016/j.bbrc.2018.02.193] [PMID: 29499193]
[http://dx.doi.org/10.1093/abbs/gmq091] [PMID: 20978038]
[http://dx.doi.org/10.1248/bpb.b17-00271] [PMID: 28515374]
[PMID: 24956825]
[http://dx.doi.org/10.1111/ejh.12741] [PMID: 26821882]
[http://dx.doi.org/10.1016/j.steroids.2020.108729] [PMID: 32941921]
[http://dx.doi.org/10.1016/j.taap.2018.07.031] [PMID: 30076870]
[http://dx.doi.org/10.1021/jf025934g] [PMID: 12537449]
[http://dx.doi.org/10.1371/journal.pone.0011788] [PMID: 20694196]
[http://dx.doi.org/10.1159/000351100] [PMID: 23816666]
[http://dx.doi.org/10.3892/ijo.2014.2250] [PMID: 24402583]
[PMID: 3598341]
[http://dx.doi.org/10.1089/107555302317371451] [PMID: 12006124]
[http://dx.doi.org/10.1016/j.joca.2005.10.003] [PMID: 16309928]
[http://dx.doi.org/10.1371/journal.pone.0033361] [PMID: 22485142]
[http://dx.doi.org/10.4196/kjpp.2009.13.2.131] [PMID: 19885008]
[http://dx.doi.org/10.1016/j.biopha.2017.06.060] [PMID: 28686966]
[http://dx.doi.org/10.1248/bpb.31.2063] [PMID: 18981574]
[http://dx.doi.org/10.1248/bpb.31.760] [PMID: 18379079]
[http://dx.doi.org/10.3389/fphar.2019.01195] [PMID: 31649548]
[http://dx.doi.org/10.1038/cddis.2016.305] [PMID: 27735939]
[http://dx.doi.org/10.3390/md10030604] [PMID: 22611357]
[http://dx.doi.org/10.3390/md9101806] [PMID: 22072997]
[http://dx.doi.org/10.1016/j.fct.2010.05.003] [PMID: 20457205]
[http://dx.doi.org/10.1002/mnfr.200900079] [PMID: 19842104]
[http://dx.doi.org/10.1002/jcb.240590829] [PMID: 8538203]
[http://dx.doi.org/10.3390/molecules17033202] [PMID: 22418926]
[http://dx.doi.org/10.3390/md10092055] [PMID: 23118721]
[http://dx.doi.org/10.1007/s13577-017-0188-4] [PMID: 29110251]
[http://dx.doi.org/10.1371/journal.pone.0120713] [PMID: 25816210]
[http://dx.doi.org/10.3892/or.2016.4690] [PMID: 26987028]
[http://dx.doi.org/10.3892/or.2019.6976] [PMID: 30747218]
[http://dx.doi.org/10.18632/oncotarget.10581] [PMID: 27419630]
[http://dx.doi.org/10.3390/molecules22030387] [PMID: 28257115]
[PMID: 21109980]
[http://dx.doi.org/10.1111/j.1471-4159.2012.07744.x] [PMID: 22458555]
[http://dx.doi.org/10.3109/08923970902814129] [PMID: 19874221]
[http://dx.doi.org/10.12659/MSM.916246] [PMID: 31630150]
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[http://dx.doi.org/10.1186/1476-4598-8-81] [PMID: 19796390]
[http://dx.doi.org/10.7314/APJCP.2014.15.4.1767] [PMID: 24641406]
[http://dx.doi.org/10.1080/10286020802675076] [PMID: 19408145]
[http://dx.doi.org/10.1016/j.leukres.2005.05.023] [PMID: 16023722]
[http://dx.doi.org/10.2147/OTT.S223242] [PMID: 31920333]
[http://dx.doi.org/10.1016/j.molonc.2012.05.002] [PMID: 22717603]
[http://dx.doi.org/10.1016/j.biopha.2017.08.092] [PMID: 28962084]
[http://dx.doi.org/10.3892/ol.2018.8909] [PMID: 30008912]
[http://dx.doi.org/10.1016/j.yexmp.2016.02.002] [PMID: 26892683]
[http://dx.doi.org/10.1016/j.biopha.2021.111350] [PMID: 33721752]
[http://dx.doi.org/10.2174/0929867321666131228205703] [PMID: 24372208]
[http://dx.doi.org/10.1242/jcs.001222] [PMID: 17646672]
[http://dx.doi.org/10.1074/jbc.M116.769455] [PMID: 27994057]
[http://dx.doi.org/10.1186/s12943-018-0856-3] [PMID: 30045773]
[http://dx.doi.org/10.3892/ol.2017.5851] [PMID: 28521392]
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1687] [PMID: 24486593]
[http://dx.doi.org/10.1186/s13046-015-0160-7]
[http://dx.doi.org/10.1080/00365513.2016.1208444]
[http://dx.doi.org/10.18632/oncotarget.14841] [PMID: 28146427]
[http://dx.doi.org/10.1111/cas.13177] [PMID: 28132399]
[http://dx.doi.org/10.1038/s12276-018-0146-6] [PMID: 30209296]
[http://dx.doi.org/10.1080/10286020600727673] [PMID: 17613619]
[http://dx.doi.org/10.3390/molecules16075998] [PMID: 21772232]
[http://dx.doi.org/10.1080/14786419.2017.1371158] [PMID: 28880111]
[http://dx.doi.org/10.1055/s-0043-117742] [PMID: 28793356]
[http://dx.doi.org/10.3892/or.2016.5115] [PMID: 27666560]
[http://dx.doi.org/10.1080/14786419.2017.1396596] [PMID: 29086600]
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0462] [PMID: 19706767]
[http://dx.doi.org/10.3389/fphar.2019.01071] [PMID: 31607920]
[http://dx.doi.org/10.1016/j.cbi.2008.12.007] [PMID: 19135036]
[http://dx.doi.org/10.1002/jcb.21541] [PMID: 17985362]
[http://dx.doi.org/10.1016/j.lfs.2007.07.015] [PMID: 17764702]
[http://dx.doi.org/10.1016/j.ejphar.2011.02.005] [PMID: 21376032]
[http://dx.doi.org/10.1371/journal.pone.0016781] [PMID: 21408143]
[http://dx.doi.org/10.1371/journal.pone.0081657] [PMID: 24324713]
[http://dx.doi.org/10.18632/oncotarget.5578] [PMID: 26376676]
[http://dx.doi.org/10.1093/carcin/bgw044] [PMID: 27207661]
[http://dx.doi.org/10.3892/or.2016.5224] [PMID: 27840963]
[http://dx.doi.org/10.3748/wjg.v16.i27.3377] [PMID: 20632439]
[http://dx.doi.org/10.1016/j.fct.2011.11.039] [PMID: 22142694]
[http://dx.doi.org/10.1016/j.biopha.2017.10.059] [PMID: 29091869]
[http://dx.doi.org/10.1055/s-2006-957887] [PMID: 8792657]
[http://dx.doi.org/10.3390/ijms20184340] [PMID: 31491838]
[http://dx.doi.org/10.18632/oncotarget.10410] [PMID: 27391337]
[http://dx.doi.org/10.1186/s12935-019-0820-3] [PMID: 31011292]
[http://dx.doi.org/10.1016/S0305-7372(03)00117-8] [PMID: 14585258]
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[http://dx.doi.org/10.1016/j.canlet.2014.05.005] [PMID: 24831030]
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980703)77:1<146::AID-IJC22>3.0.CO;2-B] [PMID: 9639406]
[http://dx.doi.org/10.1182/blood.V91.2.458] [PMID: 9427698]
[PMID: 9516149]
[PMID: 10537362]
[PMID: 8895733]
[http://dx.doi.org/10.1182/blood.V90.11.4307] [PMID: 9373241]
[PMID: 9815832]
[PMID: 10811119]
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0235] [PMID: 16432172]
[http://dx.doi.org/10.1016/j.intimp.2010.12.007] [PMID: 21185919]
[PMID: 17352239]
[http://dx.doi.org/10.3181/0811-RM-326] [PMID: 19244543]
[http://dx.doi.org/10.1186/s13020-015-0033-1] [PMID: 25806084]
[http://dx.doi.org/10.1111/j.1349-7006.2008.00966.x] [PMID: 19037992]
[http://dx.doi.org/10.1159/000339424] [PMID: 22890165]
[http://dx.doi.org/10.2147/DDDT.S224312] [PMID: 31824138]
[http://dx.doi.org/10.1126/science.8160011] [PMID: 8160011]
[PMID: 21500482]
[http://dx.doi.org/10.1016/j.bmc.2005.11.039] [PMID: 16338240]
[http://dx.doi.org/10.1016/j.canlet.2014.08.002] [PMID: 25130169]
[http://dx.doi.org/10.3390/molecules25112599] [PMID: 32503228]
[PMID: 22524801]
[http://dx.doi.org/10.2147/CMAR.S200974] [PMID: 31239776]
[http://dx.doi.org/10.3892/ijo.30.5.1129] [PMID: 17390014]
[http://dx.doi.org/10.1016/j.canlet.2008.12.012] [PMID: 19155124]
[http://dx.doi.org/10.3390/ijms13056117] [PMID: 22754353]
[http://dx.doi.org/10.3390/molecules21060710] [PMID: 27248992]
[http://dx.doi.org/10.3892/etm.2015.2963] [PMID: 26998046]
[PMID: 26095111]
[http://dx.doi.org/10.1111/jphp.12683] [PMID: 28124440]
[http://dx.doi.org/10.1002/ijc.25678] [PMID: 20848589]
[http://dx.doi.org/10.18632/oncotarget.21973] [PMID: 29254203]
[http://dx.doi.org/10.1007/s11095-009-9932-0] [PMID: 19575286]
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0456] [PMID: 18790750]
[http://dx.doi.org/10.1093/carcin/bgr015] [PMID: 21289371]
[http://dx.doi.org/10.1016/j.bmcl.2010.02.020] [PMID: 20227875]
[http://dx.doi.org/10.3390/biom9080361] [PMID: 31412593]
[http://dx.doi.org/10.1016/j.phymed.2018.09.211] [PMID: 30599904]
[http://dx.doi.org/10.3390/molecules22091546] [PMID: 32961646]
[http://dx.doi.org/10.2147/IJN.S174146] [PMID: 30319255]
[http://dx.doi.org/10.1016/j.bbrc.2020.03.097] [PMID: 32321640]
[http://dx.doi.org/10.1002/prp2.118] [PMID: 26038694]
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0692] [PMID: 28951519]
[http://dx.doi.org/10.1002/cam4.2612] [PMID: 31631559]
[http://dx.doi.org/10.3390/nu12092584] [PMID: 32858812]
[http://dx.doi.org/10.3390/molecules13123198] [PMID: 19104486]
[http://dx.doi.org/10.1016/j.jep.2009.07.037] [PMID: 19665539]
[http://dx.doi.org/10.1016/j.bmcl.2017.03.061] [PMID: 28427809]
[http://dx.doi.org/10.1055/s-2008-1034278] [PMID: 18214815]
[PMID: 7575760]
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2704] [PMID: 27036136]
[http://dx.doi.org/10.1016/j.pbb.2007.04.009] [PMID: 17509675]
[http://dx.doi.org/10.1016/j.etap.2017.06.004] [PMID: 28667862]
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[http://dx.doi.org/10.1155/2013/162750]
[http://dx.doi.org/10.1186/1472-6882-13-234] [PMID: 24053256]
[http://dx.doi.org/10.1007/BF02974074] [PMID: 17024847]
[http://dx.doi.org/10.1371/journal.pone.0177123] [PMID: 28570563]
[http://dx.doi.org/10.1038/sj.jp.7210643] [PMID: 11803427]
[http://dx.doi.org/10.1172/JCI200418385] [PMID: 14702117]
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13993.x] [PMID: 8306094]
[http://dx.doi.org/10.1016/0014-2999(91)90624-Y] [PMID: 1830846]
[http://dx.doi.org/10.1016/j.lfs.2005.11.020] [PMID: 16376386]
[http://dx.doi.org/10.1007/BF02256113] [PMID: 12928592]
[http://dx.doi.org/10.1371/journal.pone.0080391] [PMID: 24260381]
[PMID: 33680016]
[PMID: 32922496]
[http://dx.doi.org/10.3390/nu9060597] [PMID: 28608828]
[http://dx.doi.org/10.3892/or.2013.2667] [PMID: 23969634]
[http://dx.doi.org/10.3390/biom10101374] [PMID: 32992587]
[http://dx.doi.org/10.3892/ol.2018.8522] [PMID: 29805643]
[http://dx.doi.org/10.1016/j.bcp.2007.04.011] [PMID: 17493588]
[http://dx.doi.org/10.1021/jf100421w] [PMID: 20443595]
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[http://dx.doi.org/10.1016/j.canlet.2008.02.003] [PMID: 18329793]
[http://dx.doi.org/10.1038/onc.2008.298] [PMID: 18931688]
[http://dx.doi.org/10.1016/j.ctrv.2008.11.006] [PMID: 19117685]
[http://dx.doi.org/10.1002/med.20123] [PMID: 18273883]
[http://dx.doi.org/10.3892/ijo.2013.1926] [PMID: 23636231]
[http://dx.doi.org/10.1074/jbc.M706110200] [PMID: 17698840]
[http://dx.doi.org/10.1111/j.1349-7006.2012.02272.x] [PMID: 22417066]
[http://dx.doi.org/10.1111/j.1749-6632.2010.05853.x] [PMID: 21261655]
[http://dx.doi.org/10.1016/j.bmc.2022.116941] [PMID: 35944386]
[http://dx.doi.org/10.1016/j.tips.2015.10.001] [PMID: 26576830]