Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications

Author(s): Giuseppe Lisco, Vito Angelo Giagulli, Giovanni De Pergola, Edoardo Guastamacchia, Emilio Jirillo, Elsa Vitale* and Vincenzo Triggiani

Volume 24, Issue 3, 2024

Published on: 06 October, 2023

Page: [321 - 332] Pages: 12

DOI: 10.2174/1871530323666230803095118

Price: $65

Abstract

Background: Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D.

A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D.

Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.

Graphical Abstract

[1]
Covelli, V.; Passeri, M.; Leogrande, D.; Jirillo, E.; Amati, L. Drug targets in stress-related disorders. Curr. Med. Chem., 2005, 12(15), 1801-1809.
[http://dx.doi.org/10.2174/0929867054367202] [PMID: 16029148]
[2]
Epel, E.S.; Crosswell, A.D.; Mayer, S.E.; Prather, A.A.; Slavich, G.M.; Puterman, E.; Mendes, W.B. More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol., 2018, 49, 146-169.
[http://dx.doi.org/10.1016/j.yfrne.2018.03.001] [PMID: 29551356]
[3]
Inagaki, H.K.; Chen, S.; Ridder, M.C.; Sah, P.; Li, N.; Yang, Z.; Hasanbegovic, H.; Gao, Z.; Gerfen, C.R.; Svoboda, K. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell, 2022, 185(6), 1065-1081.e23.
[http://dx.doi.org/10.1016/j.cell.2022.02.006] [PMID: 35245431]
[4]
Liu, X.Z.; Pedersen, L.; Halberg, N. Cellular mechanisms linking cancers to obesity. Cell Stress, 2021, 5(5), 55-72.
[http://dx.doi.org/10.15698/cst2021.05.248] [PMID: 33987528]
[5]
Bak, S.; Shin, J.; Jeong, J. Subdividing stress groups into eustress and distress groups using laterality index calculated from brain hemody-namic response. Biosensors, 2022, 12(1), 33.
[http://dx.doi.org/10.3390/bios12010033] [PMID: 35049661]
[6]
Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav. Brain Res., 2018, 341, 79-90.
[http://dx.doi.org/10.1016/j.bbr.2017.12.025] [PMID: 29284108]
[7]
Schaper, S.J.; Stengel, A. Emotional stress responsivity of patients with IBS - a systematic review. J. Psychosom. Res., 2022, 153, 110694.
[http://dx.doi.org/10.1016/j.jpsychores.2021.110694] [PMID: 34942583]
[8]
Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[9]
Herman, J.P.; Ostrander, M.M.; Mueller, N.K.; Figueiredo, H. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(8), 1201-1213.
[http://dx.doi.org/10.1016/j.pnpbp.2005.08.006] [PMID: 16271821]
[10]
Wang, M. The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr. Metab., 2005, 2(1), 3.
[http://dx.doi.org/10.1186/1743-7075-2-3] [PMID: 15689240]
[11]
Roberts, B.L.; Karatsoreos, I.N. Brain–body responses to chronic stress: A brief review. Fac. Rev., 2021, 10, 83.
[http://dx.doi.org/10.12703/r/10-83] [PMID: 35028648]
[12]
Kinlein, S.A.; Karatsoreos, I.N. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front. Neuroendocrinol., 2020, 56, 100819.
[http://dx.doi.org/10.1016/j.yfrne.2019.100819] [PMID: 31863788]
[13]
Merabet, N.; Lucassen, P.J.; Crielaard, L.; Stronks, K.; Quax, R.; Sloot, P.M.A.; la Fleur, S.E.; Nicolaou, M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front. Neuroendocrinol., 2022, 65, 100972.
[http://dx.doi.org/10.1016/j.yfrne.2021.100972] [PMID: 34929260]
[14]
Wohleb, E.S.; Hanke, M.L.; Corona, A.W.; Powell, N.D.; Stiner, L.T.M.; Bailey, M.T.; Nelson, R.J.; Godbout, J.P.; Sheridan, J.F. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J. Neurosci., 2011, 31(17), 6277-6288.
[http://dx.doi.org/10.1523/JNEUROSCI.0450-11.2011] [PMID: 21525267]
[15]
Iwata, M.; Ota, K.T.; Li, X.Y.; Sakaue, F.; Li, N.; Dutheil, S.; Banasr, M.; Duric, V.; Yamanashi, T.; Kaneko, K.; Rasmussen, K.; Glasebrook, A.; Koester, A.; Song, D.; Jones, K.A.; Zorn, S.; Smagin, G.; Duman, R.S. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol. Psychiatry, 2016, 80(1), 12-22.
[http://dx.doi.org/10.1016/j.biopsych.2015.11.026] [PMID: 26831917]
[16]
Franklin, T.R.; Acton, P.D.; Maldjian, J.A.; Gray, J.D.; Croft, J.R.; Dackis, C.A.; O’Brien, C.P.; Childress, A.R. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol. Psychiatry, 2002, 51(2), 134-142.
[http://dx.doi.org/10.1016/S0006-3223(01)01269-0] [PMID: 11822992]
[17]
Cohen, S.; Janicki-Deverts, D.; Doyle, W.J.; Miller, G.E.; Frank, E.; Rabin, B.S.; Turner, R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci., 2012, 109(16), 5995-5999.
[http://dx.doi.org/10.1073/pnas.1118355109] [PMID: 22474371]
[18]
Powell, N.D.; Sloan, E.K.; Bailey, M.T.; Arevalo, J.M.G.; Miller, G.E.; Chen, E.; Kobor, M.S.; Reader, B.F.; Sheridan, J.F.; Cole, S.W. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc. Natl. Acad. Sci., 2013, 110(41), 16574-16579.
[http://dx.doi.org/10.1073/pnas.1310655110] [PMID: 24062448]
[19]
Wohleb, E.S.; McKim, D.B.; Shea, D.T.; Powell, N.D.; Tarr, A.J.; Sheridan, J.F.; Godbout, J.P. Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol. Psychiatry, 2014, 75(12), 970-981.
[http://dx.doi.org/10.1016/j.biopsych.2013.11.029] [PMID: 24439304]
[20]
Gururajan, A.; van de Wouw, M.; Boehme, M.; Becker, T.; O’Connor, R.; Bastiaanssen, T.F.S.; Moloney, G.M.; Lyte, J.M. Ventura silva, A.P.; Merckx, B.; Dinan, T.G.; Cryan, J.F. Resilience to chronic stress is associated with specific neurobiological, neuroendocrine and immune responses. Brain Behav. Immun., 2019, 80, 583-594.
[http://dx.doi.org/10.1016/j.bbi.2019.05.004] [PMID: 31059807]
[21]
Dioli, C.; Patrício, P.; Sousa, N.; Kokras, N.; Dalla, C.; Guerreiro, S.; Santos-Silva, M.A.; Rego, A.C.; Pinto, L.; Ferreiro, E.; Sotiropoulos, I. Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields. Transl. Psychiatry, 2019, 9(1), 143.
[http://dx.doi.org/10.1038/s41398-019-0477-7] [PMID: 31028242]
[22]
Lowery-Gionta, E.G.; Crowley, N.A.; Bukalo, O.; Silverstein, S.; Holmes, A.; Kash, T.L. Chronic stress dysregulates amygdalar output to the prefrontal cortex. Neuropharmacology, 2018, 139, 68-75.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.032] [PMID: 29959957]
[23]
Zhang, J.Y.; Liu, T.H.; He, Y.; Pan, H.Q.; Zhang, W.H.; Yin, X.P.; Tian, X.L.; Li, B.M.; Wang, X.D.; Holmes, A.; Yuan, T.F.; Pan, B.X. Chronic stress remodels synapses in an amygdala circuit–specific manner. Biol. Psychiatry, 2019, 85(3), 189-201.
[http://dx.doi.org/10.1016/j.biopsych.2018.06.019] [PMID: 30060908]
[24]
Tomar, A.; Polygalov, D.; Chattarji, S.; McHugh, T.J. Stress enhances hippocampal neuronal synchrony and alters ripple-spike interaction. Neurobiol. Stress, 2021, 14, 100327.
[http://dx.doi.org/10.1016/j.ynstr.2021.100327] [PMID: 33937446]
[25]
Dai, S.; Mo, Y.; Wang, Y.; Xiang, B.; Liao, Q.; Zhou, M.; Li, X.; Li, Y.; Xiong, W.; Li, G.; Guo, C.; Zeng, Z. Chronic stress promotes cancer development. Front. Oncol., 2020, 10, 1492.
[http://dx.doi.org/10.3389/fonc.2020.01492] [PMID: 32974180]
[26]
Westfall, S.; Caracci, F.; Zhao, D.; Wu, Q.; Frolinger, T.; Simon, J.; Pasinetti, G.M. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav. Immun., 2021, 91, 350-368.
[http://dx.doi.org/10.1016/j.bbi.2020.10.013] [PMID: 33096252]
[27]
Lee, K.T.; Jang, J.Y.; Ha, N.Y.; Lee, S.; Park, H.J. High-performance colorful semitransparent perovskite solar cells with phase-compensated microcavities. Nano Res., 2018, 11(5), 2553-2561.
[http://dx.doi.org/10.1007/s12274-017-1880-0]
[28]
Wohleb, E.S.; Delpech, J.C. Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 79(Pt A), 40-48.
[http://dx.doi.org/10.1016/j.pnpbp.2016.04.013] [PMID: 27154755]
[29]
Bekhbat, M.; Mukhara, D.; Dozmorov, M.G.; Stansfield, J.C.; Benusa, S.D.; Hyer, M.M.; Rowson, S.A.; Kelly, S.D.; Qin, Z.; Dupree, J.L.; Tharp, G.K.; Tansey, M.G.; Neigh, G.N. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology, 2021, 46(5), 949-958.
[http://dx.doi.org/10.1038/s41386-021-00970-2] [PMID: 33558677]
[30]
Lewitus, G.M.; Schwartz, M. Behavioral immunization: Immunity to self-antigens contributes to psychological stress resilience. Mol. Psychiatry, 2009, 14(5), 532-536.
[http://dx.doi.org/10.1038/mp.2008.103] [PMID: 18779818]
[31]
Blanchard, D.C. Are cognitive aspects of defense a core feature of anxiety and depression? Neurosci. Biobehav. Rev., 2023, 144, 104947.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104947] [PMID: 36343691]
[32]
Kuo, T.; McQueen, A.; Chen, T.C.; Wang, J.C. Regulation of glucose homeostasis by glucocorticoids. Adv. Exp. Med. Biol., 2015, 872, 99-126.
[http://dx.doi.org/10.1007/978-1-4939-2895-8_5] [PMID: 26215992]
[33]
Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2), E141-E145.
[http://dx.doi.org/10.1152/ajpendo.00712.2009] [PMID: 20009031]
[34]
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[35]
Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 2017, 83, 25-41.
[http://dx.doi.org/10.1016/j.psyneuen.2017.05.018] [PMID: 28578301]
[36]
Hackett, R.A.; Dal, Z.; Steptoe, A. The relationship between sleep problems and cortisol in people with type 2 diabetes. Psychoneuroendocrinology, 2020, 117, 104688.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104688] [PMID: 32353817]
[37]
Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci., 2009, 10(6), 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[38]
Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y.; Agbessi, M.; Ahsan, H.; Alves, I.; Andiappan, A.; Awadalla, P.; Battle, A.; Beutner, F.; Bonder, M.J.; Boomsma, D.; Christiansen, M.; Claringbould, A.; Deelen, P.; Esko, T.; Favé, M-J.; Franke, L.; Frayling, T.; Gharib, S.; Gibson, G.; Hemani, G.; Jansen, R.; Kähönen, M.; Kalnapenkis, A.; Kasela, S.; Kettunen, J.; Kim, Y.; Kirsten, H.; Kovacs, P.; Krohn, K.; Kronberg-Guzman, J.; Kukushkina, V.; Kutalik, Z.; Lee, B.; Lehtimäki, T.; Loeffler, M.; Marigorta, U.M.; Metspalu, A.; Milani, L.; Müller-Nurasyid, M.; Nauck, M.; Nivard, M.; Penninx, B.; Perola, M.; Pervjakova, N.; Pierce, B.; Powell, J.; Prokisch, H.; Psaty, B.; Raitakari, O.; Ring, S.; Ripatti, S.; Rotzschke, O.; Ruëger, S.; Saha, A.; Scholz, M.; Schramm, K.; Seppälä, I.; Stumvoll, M.; Sullivan, P.; Teumer, A.; Thiery, J.; Tong, L.; Tönjes, A.; van Dongen, J.; van Meurs, J.; Verlouw, J.; Völker, U.; Võsa, U.; Yaghootkar, H.; Zeng, B.; McRae, A.F.; Visscher, P.M.; Zeng, J.; Yang, J. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun., 2018, 9(1), 2941.
[http://dx.doi.org/10.1038/s41467-018-04951-w] [PMID: 30054458]
[39]
Joseph, J.J.; Golden, S.H. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci., 2017, 1391(1), 20-34.
[http://dx.doi.org/10.1111/nyas.13217] [PMID: 27750377]
[40]
Wang, X.; Bao, W.; Liu, J.; OuYang, Y.Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.L.; Zhang, Y.; Yao, P.; Liu, L.G. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care, 2013, 36(1), 166-175.
[http://dx.doi.org/10.2337/dc12-0702] [PMID: 23264288]
[41]
Sytze van Dam, P. Oxidative stress and diabetic neuropathy: Pathophysiological mechanisms and treatment perspectives. Diabetes Metab. Res. Rev., 2002, 18(3), 176-184.
[http://dx.doi.org/10.1002/dmrr.287] [PMID: 12112935]
[42]
Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(3), 45-63.
[PMID: 31333808]
[43]
Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity, 2022, 55(1), 31-55.
[http://dx.doi.org/10.1016/j.immuni.2021.12.013] [PMID: 35021057]
[44]
Inoue, K.; Beekley, J.; Goto, A.; Jeon, C.Y.; Ritz, B.R. Depression and cardiovascular disease events among patients with type 2 diabetes: A systematic review and meta-analysis with bias analysis. J. Diabetes Complications, 2020, 34(12), 107710.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107710] [PMID: 32921574]
[45]
Mingrone, G.; van Baar, A.C.G.; Devière, J.; Hopkins, D.; Moura, E.; Cercato, C.; Rajagopalan, H.; Lopez-Talavera, J.C.; White, K.; Bhambhani, V.; Costamagna, G.; Haidry, R.; Grecco, E.; Galvao Neto, M.; Aithal, G.; Repici, A.; Hayee, B.H.; Haji, A.; Morris, A.J.; Bisschops, R.; Chouhan, M.D.; Sakai, N.S.; Bhatt, D.L.; Sanyal, A.J.; Bergman, J.J.G.H.M. Safety and efficacy of hydrothermal duodenal mucosal resurfacing in patients with type 2 diabetes: The randomised, double-blind, sham-controlled, multicentre REVITA-2 feasibility trial. Gut, 2022, 71(2), 254-264.
[http://dx.doi.org/10.1136/gutjnl-2020-323608] [PMID: 33597157]
[46]
Rohleder, N. Stress and inflammation - The need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology, 2019, 105, 164-171.
[http://dx.doi.org/10.1016/j.psyneuen.2019.02.021] [PMID: 30826163]
[47]
Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252.
[http://dx.doi.org/10.1001/jama.1992.03480090092034] [PMID: 1538563]
[48]
Tsigos, C.; Chrousos, G.P. Physiology of the hypothalamic-pituitary-adrenal axis in health and dysregulation in psychiatric and autoim-mune disorders. Endocrinol. Metab. Clin. North Am., 1994, 23(3), 451-466.
[http://dx.doi.org/10.1016/S0889-8529(18)30078-1] [PMID: 7805648]
[49]
Rotenberg, S.; McGrath, J.J. Inter-relation between autonomic and HPA axis activity in children and adolescents. Biol. Psychol., 2016, 117, 16-25.
[http://dx.doi.org/10.1016/j.biopsycho.2016.01.015] [PMID: 26835595]
[50]
Jones, B.E.; Yang, T.Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol., 1985, 242(1), 56-92.
[http://dx.doi.org/10.1002/cne.902420105] [PMID: 2416786]
[51]
Lewis, D.I.; Coote, J.H. Excitation and inhibition of rat sympathetic preganglionic neurones by catecholamines. Brain Res., 1990, 530(2), 229-234.
[http://dx.doi.org/10.1016/0006-8993(90)91287-Q] [PMID: 2265354]
[52]
Unnerstall, J.R.; Kopajtic, T.A.; Kuhar, M.J. Distribution of α2 agonist binding sites in the rat and human central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res. Brain Res. Rev., 1984, 7(1), 69-101.
[http://dx.doi.org/10.1016/0165-0173(84)90030-4] [PMID: 6324960]
[53]
Antoni, F.A. Hypothalamic control of adrenocorticotropin secretion: Advances since the discovery of 41-residue corticotropin-releasing factor. Endocr. Rev., 1986, 7(4), 351-378.
[http://dx.doi.org/10.1210/edrv-7-4-351] [PMID: 3023041]
[54]
Tsigos, C.; Chrousos, G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[55]
Breuner, C.W.; Orchinik, M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J. Endocrinol., 2002, 175(1), 99-112.
[http://dx.doi.org/10.1677/joe.0.1750099] [PMID: 12379494]
[56]
Seckl, J.R. 11β-hydroxysteroid dehydrogenases: Changing glucocorticoid action. Curr. Opin. Pharmacol., 2004, 4(6), 597-602.
[http://dx.doi.org/10.1016/j.coph.2004.09.001] [PMID: 15525550]
[57]
Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci., 2013, 34(9), 518-530.
[http://dx.doi.org/10.1016/j.tips.2013.07.003] [PMID: 23953592]
[58]
Koning, A.S.C.A.M.; Buurstede, J.C.; van Weert, L.T.C.M.; Meijer, O.C. Glucocorticoid and mineralocorticoid receptors in the brain: A transcriptional perspective. J. Endocr. Soc., 2019, 3(10), 1917-1930.
[http://dx.doi.org/10.1210/js.2019-00158] [PMID: 31598572]
[59]
Pascual-Le Tallec, L.; Lombès, M. The mineralocorticoid receptor: A journey exploring its diversity and specificity of action. Mol. Endocrinol., 2005, 19(9), 2211-2221.
[http://dx.doi.org/10.1210/me.2005-0089] [PMID: 15802372]
[60]
de Kloet, E.R.; Meijer, O.C.; de Nicola, A.F.; de Rijk, R.H.; Joëls, M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front. Neuroendocrinol., 2018, 49, 124-145.
[http://dx.doi.org/10.1016/j.yfrne.2018.02.003] [PMID: 29428549]
[61]
Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol., 2013, 132(5), 1033-1044.
[http://dx.doi.org/10.1016/j.jaci.2013.09.007] [PMID: 24084075]
[62]
Vandevyver, S.; Dejager, L.; Libert, C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr. Rev., 2014, 35(4), 671-693.
[http://dx.doi.org/10.1210/er.2014-1010] [PMID: 24937701]
[63]
Rao, N.A.S.; McCalman, M.T.; Moulos, P.; Francoijs, K.J.; Chatziioannou, A.; Kolisis, F.N.; Alexis, M.N.; Mitsiou, D.J.; Stunnenberg, H.G. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res., 2011, 21(9), 1404-1416.
[http://dx.doi.org/10.1101/gr.118042.110] [PMID: 21750107]
[64]
Stöcklin, E.; Wissler, M.; Gouilleux, F.; Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature, 1996, 383(6602), 726-728.
[http://dx.doi.org/10.1038/383726a0] [PMID: 8878484]
[65]
Ito, K.; Yamamura, S.; Essilfie-Quaye, S.; Cosio, B.; Ito, M.; Barnes, P.J.; Adcock, I.M. Histone deacetylase 2–mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med., 2006, 203(1), 7-13.
[http://dx.doi.org/10.1084/jem.20050466] [PMID: 16380507]
[66]
Irusen, E.; Matthews, J.G.; Takahashi, A.; Barnes, P.J.; Chung, K.F.; Adcock, I.M. p38 Mitogen-activated protein kinase–induced glucocorticoid receptor phosphorylation reduces its activity: Role in steroid-insensitive asthma. J. Allergy Clin. Immunol., 2002, 109(4), 649-657.
[http://dx.doi.org/10.1067/mai.2002.122465] [PMID: 11941315]
[67]
Szatmáry, Z.; Garabedian, M.J.; Vilček, J. Inhibition of glucocorticoid receptor-mediated transcriptional activation by p38 mitogen-activated protein (MAP) kinase. J. Biol. Chem., 2004, 279(42), 43708-43715.
[http://dx.doi.org/10.1074/jbc.M406568200] [PMID: 15292225]
[68]
Tienrungroj, W.; Meshinchi, S.; Sanchez, E.R.; Pratt, S.E.; Grippo, J.F.; Holmgren, A.; Pratt, W.B. The role of sulfhydryl groups in permitting transformation and DNA binding of the glucocorticoid receptor. J. Biol. Chem., 1987, 262(15), 6992-7000.
[http://dx.doi.org/10.1016/S0021-9258(18)48192-6] [PMID: 3584105]
[69]
Hanukoglu, I. Steroidogenic enzymes: Structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol., 1992, 43(8), 779-804.
[http://dx.doi.org/10.1016/0960-0760(92)90307-5] [PMID: 22217824]
[70]
Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev., 2000, 21(1), 55-89.
[PMID: 10696570]
[71]
Zhang, Z.; Tan, E.P.; VandenHull, N.J.; Peterson, K.R.; Slawson, C. O-GlcNAcase expression is sensitive to changes in O-GlcNAc homeo stasis. Front. Endocrinol., 2014, 5, 206.
[http://dx.doi.org/10.3389/fendo.2014.00206] [PMID: 25520704]
[72]
Gomułka, K.; Ruta, M. The role of inflammation and therapeutic concepts in diabetic retinopathy-A short review. Int. J. Mol. Sci., 2023, 24(2), 1024.
[http://dx.doi.org/10.3390/ijms24021024] [PMID: 36674535]
[73]
Peckett, A.J.; Wright, D.C.; Riddell, M.C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism, 2011, 60(11), 1500-1510.
[http://dx.doi.org/10.1016/j.metabol.2011.06.012] [PMID: 21864867]
[74]
Lee, M-J.; Fried, S.K. The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adi-pokine production in human adipocytes. Int. J. Obes., 2014, 38(9), 1228-1233.
[http://dx.doi.org/10.1038/ijo.2014.6] [PMID: 24430397]
[75]
Rahimi, L.; Rajpal, A.; Ismail-Beigi, F. Glucocorticoid-induced fatty liver disease. Diabetes Metab. Syndr. Obes., 2020, 13, 1133-1145.
[http://dx.doi.org/10.2147/DMSO.S247379] [PMID: 32368109]
[76]
Alford, F.; Beck-Nielsen, H.; Ward, G.M.; Henriksen, J.E. Risk and mechanism of dexamethasone-induced deterioration of glucose tolerance in non-diabetic first-degree relatives of NIDDM patients. Diabetologia, 1997, 40(12), 1439-1448.
[http://dx.doi.org/10.1007/s001250050847] [PMID: 9447952]
[77]
Lambillotte, C.; Gilon, P.; Henquin, J.C. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J. Clin. Invest., 1997, 99(3), 414-423.
[http://dx.doi.org/10.1172/JCI119175] [PMID: 9022074]
[78]
Liu, Y.; Nakagawa, Y.; Wang, Y.; Sakurai, R.; Tripathi, P.V.; Lutfy, K.; Friedman, T.C. Increased glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1 expression in hepatocytes may contribute to the phenotype of type 2 diabetes in db/db mice. Diabetes, 2005, 54(1), 32-40.
[http://dx.doi.org/10.2337/diabetes.54.1.32] [PMID: 15616008]
[79]
Xu, X.; Chen, Y.; Zhu, D FX5 as a non-steroidal GR antagonist improved glucose homeostasis in type 2 diabetic mice via GR/HNF4alpha/ miR-122-5p pathway. Aging, 2020, 13(2), 2436e2458.
[80]
Chen, G.; Wang, R.; Chen, H.; Wu, L.; Ge, R.S.; Wang, Y. Gossypol ameliorates liver fibrosis in diabetic rats induced by high-fat diet and streptozocin. Life Sci., 2016, 149, 58-64.
[http://dx.doi.org/10.1016/j.lfs.2016.02.044] [PMID: 26883980]
[81]
Aylward, F.O.; Moniruzzaman, M.; Ha, A.D.; Koonin, E.V. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol., 2021, 19(10), e3001430.
[http://dx.doi.org/10.1371/journal.pbio.3001430] [PMID: 34705818]
[82]
Chiodini, I.; Adda, G.; Scillitani, A.; Coletti, F.; Morelli, V.; Di Lembo, S.; Epaminonda, P.; Masserini, B.; Beck-Peccoz, P.; Orsi, E.; Ambrosi, B.; Arosio, M. Cortisol secretion in patients with type 2 diabetes: Relationship with chronic complications. Diabetes Care, 2007, 30(1), 83-88.
[http://dx.doi.org/10.2337/dc06-1267] [PMID: 17192338]
[83]
Steffensen, C.; Thomsen, H.H.; Dekkers, O.M.; Christiansen, J.S.; Rungby, J.; Jørgensen, J.O.L. Low positive predictive value of midnight salivary cortisol measurement to detect hypercortisolism in type 2 diabetes. Clin. Endocrinol. , 2016, 85(2), 202-206.
[http://dx.doi.org/10.1111/cen.13071] [PMID: 27028214]
[84]
Tsigos, C.; Young, R.J.; White, A. Diabetic neuropathy is associated with increased activity of the hypothalamic-pituitary-adrenal axis. J. Clin. Endocrinol. Metab., 1993, 76(3), 554-558.
[PMID: 8383141]
[85]
Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol., 2017, 17(4), 233-247.
[http://dx.doi.org/10.1038/nri.2017.1] [PMID: 28192415]
[86]
Busillo, J.M.; Cidlowski, J.A. The five Rs of glucocorticoid action during inflammation: Ready, reinforce, repress, resolve, and restore. Trends Endocrinol. Metab., 2013, 24(3), 109-119.
[http://dx.doi.org/10.1016/j.tem.2012.11.005] [PMID: 23312823]
[87]
Chinenov, Y.; Rogatsky, I. Glucocorticoids and the innate immune system: Crosstalk with the Toll-like receptor signaling network. Mol. Cell. Endocrinol., 2007, 275(1-2), 30-42.
[http://dx.doi.org/10.1016/j.mce.2007.04.014] [PMID: 17576036]
[88]
Newton, R.; Shah, S.; Altonsy, M.O.; Gerber, A.N. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory inter actions determine repression or resistance. J. Biol. Chem., 2017, 292(17), 7163-7172.
[http://dx.doi.org/10.1074/jbc.R117.777318] [PMID: 28283576]
[89]
Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature, 2017, 542(7640), 177-185.
[http://dx.doi.org/10.1038/nature21363] [PMID: 28179656]
[90]
Westfall, S.; Caracci, F.; Estill, M.; Frolinger, T.; Shen, L.; Pasinetti, G.M. Chronic stress-induced depression and anxiety priming modulat-ed by gut-brain-axis immunity.Front. Immunol; , 2021, 12, p. 670500.
[http://dx.doi.org/10.3389/fimmu.2021.670500] [PMID: 34248950]
[91]
Bene, N.C.; Alcaide, P.; Wortis, H.H.; Jaffe, I.Z. Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease. Steroids, 2014, 91, 38-45.
[http://dx.doi.org/10.1016/j.steroids.2014.04.005] [PMID: 24769248]
[92]
Panagiotou, C.; Lambadiari, V.; Maratou, E.; Geromeriati, C.; Artemiadis, A.; Dimitriadis, G.; Moutsatsou, P. Insufficient glucocorticoid receptor signaling and flattened salivary cortisol profile are associated with metabolic and inflammatory indices in type 2 diabetes. J. Endocrinol. Invest., 2021, 44(1), 37-48.
[http://dx.doi.org/10.1007/s40618-020-01260-2] [PMID: 32394161]
[93]
Ross, K.M.; Murphy, M.L.M.; Adam, E.K.; Chen, E.; Miller, G.E. How stable are diurnal cortisol activity indices in healthy individuals? Evidence from three multi-wave studies. Psychoneuroendocrinology, 2014, 39, 184-193.
[http://dx.doi.org/10.1016/j.psyneuen.2013.09.016] [PMID: 24119668]
[94]
Barnes, M.A.; Carson, M.J.; Nair, M.G. Non-traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine, 2015, 72(2), 210-219.
[http://dx.doi.org/10.1016/j.cyto.2015.01.008] [PMID: 25703786]
[95]
Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv. Nutr., 2020, 11(4), 890-907.
[http://dx.doi.org/10.1093/advances/nmaa016] [PMID: 32149335]
[96]
Foster, J.A. Decoding microbiome research for clinical psychiatry. Can. J. Psychiatry, 2020, 65(1), 19-20.
[http://dx.doi.org/10.1177/0706743719890725] [PMID: 31777272]
[97]
Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol., 2004, 4(6), 478-485.
[http://dx.doi.org/10.1038/nri1373] [PMID: 15173836]
[98]
Tlaskalová-Hogenová, H.; Štěpánková, R.; Hudcovic, T.; Tučková, L.; Cukrowska, B.; Lodinová-Žádníková, R.; Kozáková, H.; Rossmann, P.; Bártová, J.; Sokol, D.; Funda, D.P.; Borovská, D.; Řeháková, Z.; Šinkora, J.; Hofman, J.; Drastich, P.; Kokešová, A. Com-mensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett., 2004, 93(2-3), 97-108.
[http://dx.doi.org/10.1016/j.imlet.2004.02.005] [PMID: 15158604]
[99]
Morais, L.H.; Schreiber, H.L., IV; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol., 2021, 19(4), 241-255.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[100]
Xie, L.; Alam, M.J.; Marques, F.Z.; Mackay, C.R. A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Semin. Immunol., 2023, 66, 101737.
[http://dx.doi.org/10.1016/j.smim.2023.101737] [PMID: 36857894]
[101]
Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress, 2017, 7, 124-136.
[http://dx.doi.org/10.1016/j.ynstr.2017.03.001] [PMID: 29276734]
[102]
Cussotto, S.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective. Front. Neuroendocrinol., 2018, 51, 80-101.
[http://dx.doi.org/10.1016/j.yfrne.2018.04.002] [PMID: 29753796]
[103]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[104]
Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol., 2018, 9, 2013.
[http://dx.doi.org/10.3389/fmicb.2018.02013] [PMID: 30258412]
[105]
Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Khani, A.A.S.; Yousefimashouf, R.; Karampoor, S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother., 2021, 139, 111619.
[http://dx.doi.org/10.1016/j.biopha.2021.111619]
[106]
Bonnet, U.; Bingmann, D.; Wiemann, M. Intracellular pH modulates spontaneous and epileptiform bioelectric activity of hippocampal CA3-neurones. Eur. Neuropsychopharmacol., 2000, 10(2), 97-103.
[http://dx.doi.org/10.1016/S0924-977X(99)00063-2] [PMID: 10706990]
[107]
Zhu, S.; Jiang, Y.; Xu, K.; Cui, M.; Ye, W.; Zhao, G.; Jin, L.; Chen, X. The progress of gut microbiome research related to brain disorders. J. Neuroinflammation, 2020, 17(1), 25.
[http://dx.doi.org/10.1186/s12974-020-1705-z] [PMID: 31952509]
[108]
Saveanu, R.V.; Nemeroff, C.B. Etiology of depression: Genetic and environmental factors. Psychiatr. Clin. North Am., 2012, 35(1), 51-71.
[http://dx.doi.org/10.1016/j.psc.2011.12.001] [PMID: 22370490]
[109]
Evans, D.L.; Burnett, G.B.; Nemeroff, C.B. The dexamethasone suppression test in the clinical setting. Am. J. Psychiatry, 1983, 140(5), 586-589.
[http://dx.doi.org/10.1176/ajp.140.5.586] [PMID: 6342422]
[110]
Koo, J.W.; Wohleb, E.S. How stress shapes neuroimmune function: Implications for the neurobiology of psychiatric disorders. Biol. Psychiatry, 2021, 90(2), 74-84.
[http://dx.doi.org/10.1016/j.biopsych.2020.11.007] [PMID: 33485589]
[111]
Sotiropoulos, I.; Cerqueira, J.J.; Catania, C.; Takashima, A.; Sousa, N.; Almeida, O.F.X. Stress and glucocorticoid footprints in the brain- The path from depression to Alzheimer’s disease. Neurosci. Biobehav. Rev., 2008, 32(6), 1161-1173.
[http://dx.doi.org/10.1016/j.neubiorev.2008.05.007] [PMID: 18573532]
[112]
Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: Generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085.
[http://dx.doi.org/10.1021/acs.chemrev.5b00407] [PMID: 26875845]
[113]
Morales-Gonzalez, J.A.; Morales-González, Á.; Madrigal-Santillan, E.O. Eds.; A master regulator of oxidative stressthe transcription factor Nrf2; BoD - Books on Demand., 2016, p. 210.
[http://dx.doi.org/10.5772/62743]
[114]
Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol., 2018, 9, 477.
[http://dx.doi.org/10.3389/fphys.2018.00477] [PMID: 29867535]
[115]
Singh, H.; Venkatesan, V. Beta-cell management in type 2 diabetes: Beneficial role of nutraceuticals. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 89-98.
[http://dx.doi.org/10.2174/1871530316666160728091534] [PMID: 27468767]
[116]
Derosa, G.; D’Angelo, A.; Maffioli, P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother. Res., 2022, 36(10), 3709-3765.
[http://dx.doi.org/10.1002/ptr.7564] [PMID: 35912631]
[117]
Emilio, J.; Magrone, T. Editorial: Antimicrobial peptides as mediators of innate immunity. Curr. Pharm. Des., 2018, 24(10), 1041-1042.
[http://dx.doi.org/10.2174/1381612824666180416113811] [PMID: 29663872]
[118]
Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 185-196.
[http://dx.doi.org/10.1080/10408690590957188] [PMID: 16431409]
[119]
Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.G.; Damiani, E.; Puglia, C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of alzheimer’s disease: Formulation development and optimization. Nanomaterials, 2021, 11(2), 391.
[http://dx.doi.org/10.3390/nano11020391] [PMID: 33546352]
[120]
Shen, H.; Kuo, C.C.; Chou, J.; Delvolve, A.; Jackson, S.N.; Post, J.; Woods, A.S.; Hoffer, B.J.; Wang, Y.; Harvey, B.K. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J., 2009, 23(6), 1958-1968.
[http://dx.doi.org/10.1096/fj.08-123281] [PMID: 19218497]
[121]
Rigotti, A. Absorption, transport, and tissue delivery of vitamin E. Mol. Aspects Med., 2007, 28(5-6), 423-436.
[http://dx.doi.org/10.1016/j.mam.2007.01.002] [PMID: 17320165]
[122]
Müller, L.; Theile, K.; Böhm, V. In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol. Nutr. Food Res., 2010, 54(5), 731-742.
[http://dx.doi.org/10.1002/mnfr.200900399] [PMID: 20333724]
[123]
Zainal, A.M.A.; Mohd, A.N.; Zainal, A.N.H.; Lasik-K, M. Utilization of food waste and by-products in the fabrication of active and intelli-gent packaging for seafood and meat products. Foods, 2023, 12(3), 456.
[http://dx.doi.org/10.3390/foods12030456] [PMID: 36765983]
[124]
Sinyor, B.; Mineo, J.; Ochner, C. Alzheimer’s disease, inflammation, and the role of antioxidants. J. Alzheimers Dis. Rep., 2020, 4(1), 175-183.
[http://dx.doi.org/10.3233/ADR-200171] [PMID: 32715278]
[125]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[126]
Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem., 2019, 178, 687-704.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.010] [PMID: 31228811]
[127]
Pham, V.T.; Dold, S.; Rehman, A.; Bird, J.K.; Steinert, R.E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res., 2021, 95, 35-53.
[http://dx.doi.org/10.1016/j.nutres.2021.09.001] [PMID: 34798467]
[128]
Heald, A.H.; Gimeno, L.A.; Gilingham, E.; Hudson, L.; Price, L.; Saboo, A.; Beresford, L.; Seviour, S.; White, A.; Roberts, S.; Abraham, J. Enhancing type 2 diabetes treatment through digital plans of care. First results from the East Cheshire Study of an App to support people in the management of type 2 diabetes. Cardiovasc. Endocrinol. Metab., 2022, 11(3), e0268.
[http://dx.doi.org/10.1097/XCE.0000000000000268] [PMID: 35923172]
[129]
Lopez, D.V.; Al-Jaberi, F.A.H.; Woetmann, A.; Ødum, N.; Bonefeld, C.M.; Kongsbak-Wismann, M.; Geisler, C. Macrophages control the bioavailability of vitamin D and vitamin D-regulated T cell responses. Front. Immunol., 2021, 12, 722806.
[http://dx.doi.org/10.3389/fimmu.2021.722806] [PMID: 34621269]
[130]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants, 2019, 9(1), 35.
[http://dx.doi.org/10.3390/antiox9010035.] [PMID: 31906123]
[131]
Cianciosi, D.; Forbes-Hernández, T.Y.; Regolo, L.; Alvarez-Suarez, J.M.; Navarro-Hortal, M.D.; Xiao, J.; Quiles, J.L.; Battino, M.; Giampieri, F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem., 2022, 375, 131904.
[http://dx.doi.org/10.1016/j.foodchem.2021.131904] [PMID: 34963083]
[132]
Behl, T.; Singh, S.; Sharma, N.; Zahoor, I.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Najmi, A.; Bungau, S. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: Current and future trends. Molecules, 2022, 27(12), 3705.
[http://dx.doi.org/10.3390/molecules27123705] [PMID: 35744831]
[133]
Ullah, R.; Rauf, N.; Nabi, G.; Ullah, H.; Shen, Y.; Zhou, Y.D.; Fu, J. Role of nutrition in the pathogenesis and prevention of non-alcoholic fatty liver disease: Recent updates. Int. J. Biol. Sci., 2019, 15(2), 265-276.
[http://dx.doi.org/10.7150/ijbs.30121] [PMID: 30745819]
[134]
Lorzadeh, E.; Heidary, Z.; Mohammadi, M.; Nadjarzadeh, A.; Ramezani-Jolfaie, N.; Salehi-Abargouei, A. Does pomegranate consumption improve oxidative stress? A systematic review and meta-analysis of randomized controlled clinical trials. Clin. Nutr. ESPEN, 2022, 47, 117-127.
[http://dx.doi.org/10.1016/j.clnesp.2021.11.017] [PMID: 35063191]
[135]
El-Seedi, H.R.; Eid, N.; Abd El-Wahed, A.A.; Rateb, M.E.; Afifi, H.S.; Algethami, A.F.; Zhao, C.; Al Naggar, Y.; Alsharif, S.M.; Tahir, H.E.; Xu, B.; Wang, K.; Khalifa, S.A.M. Honey bee products: Preclinical and clinical studies of their anti-inflammatory and immunomodu-latory properties. Front. Nutr., 2022, 8, 761267.
[http://dx.doi.org/10.3389/fnut.2021.761267] [PMID: 35047540]
[136]
Zamani-Garmsiri, F.; Emamgholipour, S.; Rahmani Fard, S.; Ghasempour, G.; Jahangard, A.R.; Meshkani, R. Polyphenols: Potential anti‐inflammatory agents for treatment of metabolic disorders. Phytother. Res., 2022, 36(1), 415-432.
[http://dx.doi.org/10.1002/ptr.7329] [PMID: 34825416]
[137]
Magrone, T.; Tafaro, A.; Jirillo, F.; Amati, L.; Jirillo, E.; Covelli, V. Elicitation of immune responsiveness against antigenic challenge in age-related diseases: Effects of red wine polyphenols. Curr. Pharm. Des., 2008, 14(26), 2749-2757.
[http://dx.doi.org/10.2174/138161208786264043] [PMID: 18991693]
[138]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Taking advantage of plant defense mechanisms to promote human health. Exploitation of plant natural products for preventing or treating human disease: Second of two parts. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1961-1973.
[http://dx.doi.org/10.2174/1871530321666201229125400] [PMID: 33372886]
[139]
Magrone, T.; Jirillo, E.; Magrone, M.; Russo, M.A.; Romita, P.; Massari, F.; Foti, C. Red grape polyphenol oral administration improves immune response in women affected by nickel-mediated allergic contact dermatitis. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(2), 374-384.
[140]
Marzulli, G.; Magrone, T.; Kawaguchi, K.; Kumazawa, Y.; Jirillo, E. Fermented grape marc (FGM): Immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr. Pharm. Des., 2012, 18(1), 43-50.
[http://dx.doi.org/10.2174/138161212798919011] [PMID: 22211687]
[141]
Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. Oxidative stress in cell death and cardiovascular diseases. Oxid. Med. Cell. Longev., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/9030563] [PMID: 31781356]
[142]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Peripheral immunosenescence and central neuroinflammation: A dangerous liaison-a dietary approach. Endocr. Metab. Immune. Disord. Drug Targets, 2020, 20(9), 1391-1411.
[http://dx.doi.org/10.2174/1871530320666200406123734.] [PMID: 32250234]
[143]
Joffre, C.; Rey, C.; Layé, S. N-3 polyunsaturated fatty acids and the resolution of neuroinflammation. Front. Pharmacol., 2019, 10, 1022.
[http://dx.doi.org/10.3389/fphar.2019.01022] [PMID: 31607902]
[144]
Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.; Ciappolino, V.; Agostoni, C. DHA effects in brain development and function. Nutrients, 2016, 8(1), 6.
[http://dx.doi.org/10.3390/nu8010006] [PMID: 26742060]
[145]
Errata for J. Oleo Science. 2021, 70(2), 249-250. J. Oleo Sci., 2022, 71(12), 1813-1814.
[PMID: 36464289]
[146]
Cândido, F.G.; Valente, F.X.; Grześkowiak, Ł.M.; Moreira, A.P.B.; Rocha, D.M.U.P.; Alfenas, R.C.G. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: Mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr., 2018, 69(2), 125-143.
[http://dx.doi.org/10.1080/09637486.2017.1343286] [PMID: 28675945]
[147]
Liu, W.; Ma, H.; Frost, L.; Yuan, T.; Dain, J.A.; Seeram, N.P. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food Funct., 2014, 5(11), 2996-3004.
[http://dx.doi.org/10.1039/C4FO00538D] [PMID: 25233108]
[148]
Gómez-Donoso, C.; Sánchez-Villegas, A.; Martínez-González, M.A.; Gea, A.; Mendonça, R.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr., 2020, 59(3), 1093-1103.
[http://dx.doi.org/10.1007/s00394-019-01970-1] [PMID: 31055621]
[149]
Mocking, R.J.T.; Steijn, K.; Roos, C.; Assies, J.; Bergink, V.; Ruhé, H.G.; Schene, A.H. Omega-3 fatty acid supplementation for perinatal depression: A meta-analysis. J. Clin. Psychiatry, 2020, 81(5), 19r13106.
[http://dx.doi.org/10.4088/JCP.19r13106] [PMID: 32898343]
[150]
Grosso, G.; Pajak, A.; Marventano, S.; Castellano, S.; Galvano, F.; Bucolo, C.; Drago, F.; Caraci, F. Role of omega-3 fatty acids in the treatment of depressive disorders: A comprehensive meta-analysis of randomized clinical trials. PLoS One, 2014, 9(5), e96905.
[http://dx.doi.org/10.1371/journal.pone.0096905] [PMID: 24805797]
[151]
Song, C.; Li, X.; Leonard, B.E.; Horrobin, D.F. Effects of dietary n-3 or n-6 fatty acids on interleukin-1β-induced anxiety, stress, and inflammatory responses in rats. J. Lipid Res., 2003, 44(10), 1984-1991.
[http://dx.doi.org/10.1194/jlr.M300217-JLR200] [PMID: 12837849]
[152]
Ferraz, A.C.; Delattre, A.M.; Almendra, R.G.; Sonagli, M.; Borges, C.; Araujo, P.; Andersen, M.L.; Tufik, S.; Lima, M.M.S. Chronic ω-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behav. Brain Res., 2011, 219(1), 116-122.
[http://dx.doi.org/10.1016/j.bbr.2010.12.028] [PMID: 21192985]
[153]
Berthelot, E.; Etchecopar-Etchart, D.; Thellier, D.; Lancon, C.; Boyer, L.; Fond, G. Fasting interventions for stress, anxiety and depressive symptoms: A systematic review and meta-analysis. Nutrients, 2021, 13(11), 3947.
[http://dx.doi.org/10.3390/nu13113947] [PMID: 34836202]
[154]
Louis, P.; Flint, H.J.; Michel, C. How to manipulate the microbiota. Prebiotics. Adv. Exp. Med. Biol., 2016, 902, 119-142.
[http://dx.doi.org/10.1007/978-3-319-31248-4_9] [PMID: 27161355]
[155]
Sanders, M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis., 2008, 46(s2), S58-S61.
[http://dx.doi.org/10.1086/523341] [PMID: 18181724]
[156]
Peirce, J.M.; Alviña, K. The role of inflammation and the gut microbiome in depression and anxiety. J. Neurosci. Res., 2019, 97(10), 1223-1241.
[http://dx.doi.org/10.1002/jnr.24476] [PMID: 31144383]
[157]
Flux, M.C.; Lowry, C.A. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol. Dis., 2020, 135, 104578.
[http://dx.doi.org/10.1016/j.nbd.2019.104578] [PMID: 31454550]
[158]
Barrio, C.; Arias-Sánchez, S.; Martín-Monzón, I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology, 2022, 137(137), 105640.
[http://dx.doi.org/10.1016/j.psyneuen.2021.105640] [PMID: 34942539]
[159]
Marotta, A.; Sarno, E.; Del Casale, A.; Pane, M.; Mogna, L.; Amoruso, A.; Felis, G.E.; Fiorio, M. Effects of probiotics on cognitive reactivity, mood, and sleep quality. Front. Psychiatry, 2019, 10, 164.
[http://dx.doi.org/10.3389/fpsyt.2019.00164] [PMID: 30971965]
[160]
Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011, 2(4), 256-261.
[http://dx.doi.org/10.4161/gmic.2.4.16108] [PMID: 21983070]
[161]
Slykerman, R.F.; Hood, F.; Wickens, K.; Thompson, J.M.D.; Barthow, C.; Murphy, R.; Kang, J.; Rowden, J.; Stone, P.; Crane, J.; Stanley, T.; Abels, P.; Purdie, G.; Maude, R.; Mitchell, E.A. Effect of Lactobacillus rhamnosus hn001 in pregnancy on postpartum symptoms of depression and anxiety: A randomised double-blind placebo-controlled trial. EBioMedicine, 2017, 24, 159-165.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.013] [PMID: 28943228]
[162]
Soldi, S.; Tagliacarne, S.C.; Valsecchi, C.; Perna, S.; Rondanelli, M.; Ziviani, L.; Milleri, S.; Annoni, A.; Castellazzi, A. Effect of a multi-strain probiotic (Lactoflorene® Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms. Neurobiol. Stress, 2019, 10, 100138.
[http://dx.doi.org/10.1016/j.ynstr.2018.11.001] [PMID: 30937345]
[163]
Zhao, W.; Guo, M.; Feng, J.; Gu, Z.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Myristica fragrans extract regulates gut microbes and metabo-lites to attenuate hepatic inflammation and lipid metabolism disorders via the AhR–FAS and NF-κB signaling pathways in mice with non-alcoholic fatty liver disease. Nutrients, 2022, 14(9), 1699.
[http://dx.doi.org/10.3390/nu14091699] [PMID: 35565666]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy