Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Mechanistic Views on the Manganese Catalyzed Homogeneous Coupling Reactions

Author(s): Parvathi Santhoshkumar, C. Rajalakshmi, Rehin Sulay and Vibin Ipe Thomas*

Volume 27, Issue 10, 2023

Published on: 31 August, 2023

Page: [807 - 813] Pages: 7

DOI: 10.2174/1385272827666230803092641

Price: $65

Abstract

The transition metal-catalyzed C-C and C-X (X=heteroatom) homo and crosscoupling reactions were pioneered as a momentous strategy for the total synthesis of natural products, agrochemicals, pharmaceuticals, etc. Among the various transition metal-catalyzed reactions, manganese catalysis held a distinctive identity owing to its earth-abundance and eco-friendliness apart from its unique characteristics. Despite having many synthetic advancements, exploiting manganese as a catalyst for coupling reactions has recently gained pivotal gravity. An in-depth comprehension of the molecular mechanism of the chemical reaction will provide further insight to optimize the reaction conditions. The mechanisms adopted by Mn-catalyzed couplings are found to differ from other first-row transition metal counterparts. Hence in this article, we provide the state-of-the-art on the detailed theoretical aspects of manganese-catalyzed carbon-carbon (C-C) and carbon-heteroatom (C-X; X=Si) coupling reactions.

Next »
Graphical Abstract

[1]
Yao W, Wang J, Lou Y, et al. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org Chem Front 2021; 8(16): 4554-9.
[http://dx.doi.org/10.1039/D1QO00705J]
[2]
Yao W, Wang J, Zhong A, Wang S, Shao Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org Chem Front 2020; 7(21): 3515-20.
[http://dx.doi.org/10.1039/D0QO01092H]
[3]
Negishi E. Magical power of transition metals: Past, present, and future (Nobel Lecture). Angew Chem Int Ed 2011; 50(30): 6738-64.
[http://dx.doi.org/10.1002/anie.201101380] [PMID: 21717531]
[4]
Ullmann F, Bielecki J. Ueber synthesen in der biphenylreihe. Reports German Chem Soc 1901; 34: 2174-85.
[5]
Ullmann F. Ueber eine neue bildungsweise von diphenylaminderivaten. Ber Dtsch Chem Ges 1903; 36(2): 2382-4.
[http://dx.doi.org/10.1002/cber.190303602174]
[6]
Ullmann F, Sponagel P. Ueber die pheny- Ilrung von phenolen. Chem Ber 1903; 2211-2.
[7]
Goldberg I. Goldberg-1906-Berichte_der_deutschen_chemischen_Gesell-schaft. Berichte der Dtsch. Chem Gesellerschaft 1906; 39(April): 5-6.
[8]
Leenders SHAM, Gramage-Doria R, de Bruin B, Reek JNH. Transition metal catalysis in confined spaces Chem Soc Rev, 2015; 44(2): 433-48.
[http://dx.doi.org/10.1039/C4CS00192C]
[9]
Hickman AJ, Sanford MS. High-valent organometallic copper and palladium in catalysis. Nature 2012; 484(7393): 177-85.
[http://dx.doi.org/10.1038/nature11008] [PMID: 22498623]
[10]
Xue L, Lin Z. Theoretical aspects of palladium-catalysed carbon-carbon cross-coupling reactions. Chem Soc Rev 2010; 39(5): 1692-705.
[http://dx.doi.org/10.1039/B814973A] [PMID: 20419215]
[11]
Gridnev ID. Birds of a feather-asymmetric organocatalysis meets asymmetric transition metal catalysis. Catalysts 2022; 12(2): 214.
[http://dx.doi.org/10.3390/catal12020214]
[12]
Martelli LSR, Machado IV, dos Santos JRN, Corrêa AG. Recent advances in greener asymmetric organocatalysis using bio-based solvents. Catalysts 2023; 13(3): 553.
[http://dx.doi.org/10.3390/catal13030553]
[13]
Swift EC, Jarvo ER. Asymmetric transition metal-catalyzed cross-coupling reactions for the construction of tertiary stereocenters. Tetrahedron 2013; 69(29): 5799-817.
[http://dx.doi.org/10.1016/j.tet.2013.05.001] [PMID: 23956470]
[14]
Wang YF, Wang CJ, Feng QZ, et al. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para -quinone methides with β-ketoesters. Chem Commun 2022; 58(46): 6653-6.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[15]
Yang L, Huang H. Asymmetric catalytic carbon–carbon coupling reactions via C–H bond activation. Catal Sci Technol 2012; 2(6): 1099.
[http://dx.doi.org/10.1039/c2cy20111a]
[16]
Cornils B, Herrmann WA. Concepts in homogeneous catalysis: The industrial view. J Catal 2003; 216(1-2): 23-31.
[http://dx.doi.org/10.1016/S0021-9517(02)00128-8]
[17]
D’Alterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Mechanistic aspects of the palladium-catalyzed suzuki-miyaura cross-coupling reaction. Chemistry 2021; 27(54): 13481-93.
[http://dx.doi.org/10.1002/chem.202101880] [PMID: 34269488]
[18]
Chung IS, Kim SY, Advanced K. Meta-Activated nucleophilic aromatic substitution reaction: Poly (biphenylene oxide) s with trifluoromethyl pendent groups via nitro displacement. Macromolecules 2001; (13): 11071-2.
[19]
Yamamura S, Nishiyama S. Biomimetic syntheses of isodityrosine natural products, and an approach to chemistry and molecular recognition of secoaglucovancomycin and related oligopeptides. J Synth Org Chem Jpn 1997; 55(11): 1029-39.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.55.1029]
[20]
Evano G, Theunissen C, Pradal A. Impact of copper-catalyzed cross-coupling reactions in natural product synthesis: The emergence of new retrosynthetic paradigms. Nat Prod Rep 2013; 30(12): 1467-89.
[http://dx.doi.org/10.1039/c3np70071b] [PMID: 24154547]
[21]
Torborg C, Beller M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv Synth Catal 2009; 351(18): 3027-43.
[http://dx.doi.org/10.1002/adsc.200900587]
[22]
Wang LH, Chen XJ, Ye DN, et al. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C–H direct arylation. Polym Chem 2022; 13(16): 2351-61.
[http://dx.doi.org/10.1039/D2PY00139J]
[23]
Liu SY, Liu WQ, Yuan CX, et al. Diketopyrrolopyrrole-based oligomers accessed via sequential C H activated coupling for fullerene-free organic photovoltaics. Dyes Pigments 2016; 134: 139-47.
[http://dx.doi.org/10.1016/j.dyepig.2016.07.007]
[24]
Hao W, Liu H, Yin L, Cai M. Phosphine-free, heterogeneous palladium-catalyzed atom-efficient carbonylative cross-coupling of triarylbismuths with aryl iodides: Synthesis of biaryl ketones. J Org Chem 2016; 81(10): 4244-51.
[http://dx.doi.org/10.1021/acs.joc.6b00570] [PMID: 27129099]
[25]
Kondolff I, Doucet H, Santelli M. Palladium-tetraphosphine as catalyst precursor for high-turnover-number negishi cross-coupling of Alkyl- or phenylzinc derivatives with aryl bromides. Organometallics 2006; 25(22): 5219-22.
[http://dx.doi.org/10.1021/om060605p]
[26]
Rajalakshmi C, Jibin SS, Sulay R, Asha S, Ipe Thomas V, Anilkumar G. Theoretical investigation into the mechanism of copper-catalyzed Sonogashira coupling using trans-1,2-diamino cyclohexane ligand. Polyhedron 2021; 193114869
[http://dx.doi.org/10.1016/j.poly.2020.114869]
[27]
Shirakawa E, Sato T, Imazaki Y, Kimura T, Hayashi T. Cobalt-catalyzed cross-coupling of alkynyl Grignard reagents with alkenyl triflates. Chem Commun 2007; (43): 4513-5.
[http://dx.doi.org/10.1039/b711884h] [PMID: 17971973]
[28]
Cahiez G, Moyeux A. Cobalt-catalyzed cross-coupling reactions. Chem Rev 2010; 110(3): 1435-62.
[http://dx.doi.org/10.1021/cr9000786] [PMID: 20148539]
[29]
Lipschutz MI, Tilley TD. Carbon-carbon cross-coupling reactions catalyzed by a two-coordinate nickel(II)-bis(amido) complex via observable Ni(I), Ni(II), and Ni(III) intermediates. Angew Chem Int Ed 2014; 53(28): 7290-4.
[http://dx.doi.org/10.1002/anie.201404577] [PMID: 24889777]
[30]
Beletskaya IP, Latyshev GV, Tsvetkov AV, Lukashev NV. The nickel-catalyzed sonogashira-hagihara reaction. Tetrahedron Lett 2003; 44(27): 5011-3.
[http://dx.doi.org/10.1016/S0040-4039(03)01174-2]
[31]
Procter RJ, Dunsford JJ, Rushworth PJ, Hulcoop DG, Layfield RA, Ingleson MJ. A zinc catalyzed C(sp3)-C(sp2) suzuki-miyaura cross-coupling reaction mediated by aryl-zincates. Chemistry 2017; 23(63): 15889-93.
[http://dx.doi.org/10.1002/chem.201704170] [PMID: 28960610]
[32]
Kharasch MS, Fields EK. Factors determining the course and mechanisms of grignard reactions. IV. The effect of metallic halides on the reaction of aryl grignard reagents and organic halides. J Am Chem Soc 1941; 63(9): 2316-20.
[http://dx.doi.org/10.1021/ja01854a006]
[33]
Carril M, Correa A, Bolm C. Iron-catalyzed Sonogashira reactions. Angew Chem Int Ed 2008; 47(26): 4862-5.
[http://dx.doi.org/10.1002/anie.200801539] [PMID: 18506862]
[34]
Rohit KR, Saranya S, Harry NA, Anilkumar G. A Novel Ligand-free manganese-catalyzed C-O coupling protocol for the synthesis of biaryl ethers. ChemistrySelect 2019; 4(17): 5150-4.
[http://dx.doi.org/10.1002/slct.201901031]
[35]
Rohit KR, Radhika S, Saranya S, Anilkumar G. Manganese-catalysed dehydrogenative coupling - An overview. Adv Synth Catal 2020; 362(8): 1602-50.
[http://dx.doi.org/10.1002/adsc.201901389]
[36]
Dessie Y, Tadesse S, Eswaramoorthy R. Review on manganese oxide based biocatalyst in microbial fuel cell: Nanocomposite approach. Mater Sci Energy Technol 2020; 3: 136-49.
[http://dx.doi.org/10.1016/j.mset.2019.11.001]
[37]
Wang L, Zhu B, Deng Y, et al. Biocatalytic and antioxidant nanostructures for ros scavenging and biotherapeutics. Adv Funct Mater 2021; 31(31)2101804
[http://dx.doi.org/10.1002/adfm.202101804]
[38]
Snider BB, Mohan R, Kates SA. Manganese(III)-based oxidative free-radical cyclization. Synthesis of (.+-.)-podocarpic acid. J Org Chem 1985; 50(19): 3659-61.
[http://dx.doi.org/10.1021/jo00219a054]
[39]
Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J Am Chem Soc 1991; 113(18): 7063-4.
[http://dx.doi.org/10.1021/ja00018a068]
[40]
Donnelly KD, Fristad WE, Gellerman BJ, Peterson JR, Selle BJ. Chlorination of alkenes by manganese(III) chloride species. Tetrahedron Lett 1984; 25(6): 607-10.
[http://dx.doi.org/10.1016/S0040-4039(00)99950-7]
[41]
Waiba S, Maji B. Manganese catalyzed acceptorless dehydrogenative coupling reactions. ChemCatChem 2020; 12(7): 1891-902.
[http://dx.doi.org/10.1002/cctc.201902180]
[42]
Hu Y, Wang C. Manganese-catalyzed C-H olefination reactions. ChemCatChem 2019; 11(4): 1167-74.
[http://dx.doi.org/10.1002/cctc.201801787]
[43]
Sharma K, Shrivastava A, Mehra RN, et al. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch Pharm 2018; 351(1)1700251
[http://dx.doi.org/10.1002/ardp.201700251] [PMID: 29227011]
[44]
Lan Y. Computational Methods in Organometallic Catalysis: From Elementary Reactions to Mechanisms. Wiley 2021; p. 672.
[http://dx.doi.org/10.1002/9783527346028]
[45]
Wang K, He X, Rong C, Zhong A, Liu S, Zhao D. On the origin and nature of internal methyl rotation barriers: An information-theoretic approach study. Theor Chem Acc 2022; 141(11): 68.
[http://dx.doi.org/10.1007/s00214-022-02910-9]
[46]
Cramer CJ, Truhlar DG. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 2009; 11(46): 10757-816.
[http://dx.doi.org/10.1039/b907148b] [PMID: 19924312]
[47]
Niu S, Hall MB. Theoretical studies on reactions of transition-metal complexes. Chem Rev 2000; 100(2): 353-406.
[http://dx.doi.org/10.1021/cr980404y] [PMID: 11749240]
[48]
Cahiez G, Moyeux A, Buendia J, Duplais C. Manganese- or iron-catalyzed homocoupling of Grignard reagents using atmospheric oxygen as an oxidant. J Am Chem Soc 2007; 129(45): 13788-9.
[http://dx.doi.org/10.1021/ja075417k] [PMID: 17944469]
[49]
Bottoni A, Cahiez G, Calvaresi M, Moyeux A, Giacinto P, Miscione GP. A mechanistic insights into manganese-catalyzed oxidative homocoupling reactions of Grignard reagents: A computational DFT investigation. J Organomet Chem 2016; 814: 25-34.
[http://dx.doi.org/10.1016/j.jorganchem.2016.04.029]
[50]
Pearson RG. The HSAB Principle - more quantitative aspects. Inorg Chim Acta 1995; 240(1-2): 93-8.
[http://dx.doi.org/10.1016/0020-1693(95)04648-8]
[51]
Calderazzo F. Synthetic and mechanistic aspects of inorganic insertion reactions. Insertion of carbon monoxide. Angew Chem Int Ed Engl 1977; 16(5): 299-311.
[http://dx.doi.org/10.1002/anie.197702991]
[52]
Weber S, Veiros LF, Kirchner K. Selective manganese-catalyzed dimerization and cross-coupling of terminal alkynes. ACS Catal 2021; 11(11): 6474-83.
[http://dx.doi.org/10.1021/acscatal.1c01137] [PMID: 34123484]
[53]
Troegel D, Stohrer J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 2011; 255(13-14): 1440-59.
[http://dx.doi.org/10.1016/j.ccr.2010.12.025]
[54]
Dong J, Yuan XA, Yan Z, et al. Manganese catalysed divergent silylation of alkenes. Nat Chem 2021; 13(2): 182-90.
[http://dx.doi.org/10.1038/s41557-020-00589-8] [PMID: 33318674]
[55]
Luque-Urrutia J A, Solà M, Milstein D, Poater A. Mechanism of the manganese-pincer-catalyzed acceptorless dehydrogenative coupling of nitriles and alcohols. J Am Chem Soc 2019; 141(6): 2398-403.
[http://dx.doi.org/10.1021/jacs.8b11308]
[56]
Jorner K, Brinck T, Norrby PO, Buttar D. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chem Sci 2021; 12(3): 1163-75.
[http://dx.doi.org/10.1039/D0SC04896H] [PMID: 36299676]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy