Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

COVID-19 Research, Public Health and Biomedical Basis

Author(s): Da-Yong Lu* and Ting-Ren Lu

Volume 19, Issue 4, 2024

Published on: 09 August, 2023

Page: [367 - 375] Pages: 9

DOI: 10.2174/1574885518666230801091246

Price: $65

Abstract

The coronavirus outbreak (COVID-19, SARS-CoV-2) greatly impacts the world. Despite great biomedical efforts, approximately 30-50% global population was at least once infected with COVID. Human life expectancy is reduced by COVID-19 epidemics worldwide.

It is indispensable to prevent and treat COVID-19 as effectively as possible. In order to well prevent and treat the coronavirus infection, clinical diagnostic or therapeutic paradigms should be updated. Since the outside condition of COVID-19 prevention is imbalanced among regions and countries, global prevention and treatment action should be aimed.

Despite global vaccination for COVID, a significant proportion of humans still constantly exposes and infected with viruses. Advanced viral biological knowledge and vaccine techniques can alleviate viral spread and promote therapeutics. Universal and specific preventive and treatment paradigms should be designed, integrated, and introduced.

The origin and hidden nature of COVID-19 biology and pathogenesis are broadly understood now. Viral vaccines, pathogenesis, diagnosis, treatment, and personalized medicine are progressing rapidly. Many viral vaccines and personalized medicine should be especially emphasized.

To speed up global efforts against COVID-19, new knowledge and breakthroughs of viral transmissibility, vaccine technique innovation, diagnostic widening, and therapeutic variability worldwide are discussed. Different strategic platforms and landscapes can reach different outcomes. By facilitating global machinery against different variants of COVID, viral-induced socioeconomic burden and imbalance could be reduced.

Next »
Graphical Abstract

[1]
Schöley J, Aburto JM, Kashnitsky I, et al. Life expectancy changes since COVID-19. Nat Hum Behav 2022; 6(12): 1649-59.
[http://dx.doi.org/10.1038/s41562-022-01450-3] [PMID: 36253520]
[2]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Ciotti M, Angeletti S, Minieri M, et al. COVID-19 outbreak: An overview. Chemotherapy 2019; 64(5-6): 215-23.
[http://dx.doi.org/10.1159/000507423] [PMID: 32259829]
[4]
Lu DY, Che JY, Lu TR, Wu HY. Coronavirus (COVID-19), origin, infectivity, epidemics, therapeutics and global impacts. EC Pharmacol Toxicol 2021; 9(3): 100-7.
[5]
Perlman S, Peiris M. Coronavirus research: knowledge gaps and research priorities. Nat Rev Microbiol 2023; 21(3): 125-6.
[http://dx.doi.org/10.1038/s41579-022-00837-3] [PMID: 36792727]
[6]
Momtaz YA. The COVID-19 and ageism in social media. Coronaviruses 2020; 1(1): 7-8.
[http://dx.doi.org/10.2174/2666796701999200621203144]
[7]
Larson HJ. Blocking information on COVID-19 can fuel the spread of misinformation. Nature 2020; 580(7803): 306.
[http://dx.doi.org/10.1038/d41586-020-00920-w] [PMID: 32231320]
[8]
Kim YK. RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med 2022; 54(4): 455-65.
[http://dx.doi.org/10.1038/s12276-022-00757-5] [PMID: 35440755]
[9]
Barupal T, Tak PK, Meena M. COVID-19: morphology, characteristics, symptoms, prevention, clinical diagnosis and current scenario. Coronaviruses 2020; 1(1): 82-9.
[http://dx.doi.org/10.2174/2666796701999200617161348]
[10]
Katta M, Rapaka S, Adireddi R, Emandi JR. A preliminary review on novel coronavirus diseases: COVID-19. Coronaviruses 2020; 1(1): 90-7.
[http://dx.doi.org/10.2174/2666796701999200615155630]
[11]
Lu DY, Lu TR. Covid-19 study, diagnostic and therapeutic transition. Rec Adv Anti-Infect Drug Disc 2023. 18 Online ahead of print.
[http://dx.doi.org/10.2174/2772434418666230331115936]
[12]
Naqvi IH, Rizvi SNZ. The comprehensive appresal of COVID-19: its clinical panorama from virology till management and beyond. Coronaviruses 2020; 1(1): 57-72.
[http://dx.doi.org/10.2174/2666796701999200701132336]
[13]
Raj S, Chandel V, Rathi B, Kumar D. Understanding the molecular mechanisms of SARS-CoV2 infection and propagation in human to discover potential preventive and therapeutic approach. Coronaviruses 2020; 1(1): 73-81.
[http://dx.doi.org/10.2174/2666796701999200617155013]
[14]
Mitra M. Coronavirus vaccination advancement. EC Emergency Medicine & Critical Care 2021; 5(7): 89-96.
[15]
Liu T, Tian Y, Zheng A, Cui C. Design strategies for and stability of mRNA-lipid nanoparticle COVID-19 vaccines. Polymers (Basel) 2022; 14(19): 4195.
[http://dx.doi.org/10.3390/polym14194195] [PMID: 36236141]
[16]
Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33(1): 1-22.
[http://dx.doi.org/10.1007/s13337-022-00755-1] [PMID: 35127995]
[17]
Tian Y, Deng Z, Yang P. mRNA vaccines: A novel weapon to control infectious diseases. Front Microbiol 2022; 13: 1008684.
[http://dx.doi.org/10.3389/fmicb.2022.1008684]
[18]
Carvalho T. Intranasal COVID-19 vaccine fails to induce mucosal immunity. Nat Med 2022; 28(12): 2439-40.
[http://dx.doi.org/10.1038/d41591-022-00106-z] [PMID: 36329319]
[19]
Houston S. SARS-CoV-2 mucosal vaccine. Nat Immunol 2023; 24(1): 1.
[http://dx.doi.org/10.1038/s41590-022-01405-w] [PMID: 36596900]
[20]
Lu DY, Lu TR. Covid-19 vaccine development, emergency workflow. EC Emergency Medicine & Critical Care 2021; 5(9): 23-5.
[21]
Hotez PJ. SARS-CoV-2 variants offer a second chance to fix vaccine inequities. Nat Rev Microbiol 2023; 21(3): 127-8.
[PMID: 36324031]
[22]
Sytar O, Brestic M, Hajihashemi S, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021; 26(3): 727.
[http://dx.doi.org/10.3390/molecules26030727] [PMID: 33573318]
[23]
Crowe D. SARS-steroid and ribavirin scandal. The Infectious Myth 2020.
[24]
Ledford H. How does COVID-19 kill? Uncertainty is hampering doctors’ ability to choose treatments. Nature 2020; 580(7803): 311-2.
[http://dx.doi.org/10.1038/d41586-020-01056-7] [PMID: 32273618]
[25]
Kebede T, Kumar D, Sharma PK. Potential drug option for treatment of COVID-19: A review. Coronaviruses 2020; 1(1): 42-8.
[http://dx.doi.org/10.2174/2666796701999200701131604]
[26]
Banday AH, Shah SA, Ajaz SJ. Potential immunotherapy against SARS-Cov-2, strategy and status. Coronaviruses 2020; 1(1): 23-31.
[http://dx.doi.org/10.2174/2666796701999200625212040]
[27]
Maxmen A. How blood from coronavirus survivors might save lives. Nature 2020; 580(7801): 16-7.
[http://dx.doi.org/10.1038/d41586-020-00895-8] [PMID: 32214238]
[28]
Liu W, Zhu HL, Duan Y. Effective chemicals against novel coronavirus (COVID-19) in China. Curr Top Med Chem 2020; 20(8): 603-5.
[http://dx.doi.org/10.2174/18734294MTA16MDQBx] [PMID: 32133962]
[29]
Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res 2014; 107: 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[30]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[31]
Silveira D, Prieto-Garcia JM, Boylan F, et al. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 2020; 11: 581840.
[http://dx.doi.org/10.3389/fphar.2020.581840] [PMID: 33071794]
[32]
Behl T, Rocchetti G, Chadha S, et al. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals (Basel) 2021; 14(4): 381.
[http://dx.doi.org/10.3390/ph14040381] [PMID: 33921724]
[33]
Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284: 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[34]
Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K. Młynarz P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J Funct Foods 2020; 73: 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[35]
Mazzaedoost S, Behhudi G, Mousavi SM, Hashemi SA. Covid-19 treatment plant compounds. J Adv Appl NanoBio Tech 2020; 2(1): 23-33.
[36]
Lu DY, Lu TR, Lu Y, Sastry N, Wu HY. Discover natural chemical drugs in modern medicines. Metabolomics 2016; 6(3): 181.
[37]
Omotayo AO, Otekunrin OA, Fasina FO, Otekunrin O, Akram M. COVID-19 in Nigeria: Why continuous spike in cases? Asian Pac J Trop Med 2021; 14(1): 1-4.
[http://dx.doi.org/10.4103/1995-7645.304292]
[38]
Pattanayak S. Alternative to antibiotics from herbal origin—outline of a comprehensive research project. Curr Pharmacogenomics Person Med 2018; 16(1): 9-62.
[http://dx.doi.org/10.2174/1875692116666180419154033]
[39]
Wang YX, Ma JR, Wang SQ, et al. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19. Eur Rev Med Pharmacol Sci 2020; 24(6): 3360-84.
[PMID: 32271454]
[40]
Lu DY, Lu TR. Herbal medicine in new era. HPMIJ 2019; 3(4): 125-30.
[http://dx.doi.org/10.15406/hpmij.2019.03.00165]
[41]
Lu DY, Lu TR, Wu HY. Avian flu, pathogenesis and therapy. Antiinfect Agents 2012; 10(2): 124-9.
[http://dx.doi.org/10.2174/2211362611208020124]
[42]
Ping X, Weiyang Y, Jianwei C, Xiang L. Antiviral activities against influenza virus (FM1) of bioactive fractions and representative compounds extracted from Banlangen (Radix Isatidis). J Tradit Chin Med 2016; 36(3): 369-76.
[http://dx.doi.org/10.1016/S0254-6272(16)30051-6] [PMID: 27468553]
[43]
Lu DY, Wu HY, Yarla NS, Xu B, Ding J, Lu TR. HAART in HIV/AIDS treatments, future trends. Infect Disord Drug Targets 2018; 18(1): 15-22.
[http://dx.doi.org/10.2174/1871526517666170505122800] [PMID: 28474549]
[44]
Lu DY, Lu TR. HIV/AIDS curability study, different approaches and drug combination. Infect Disord Drug Targets 2023; 23(4): e170123212803.
[PMID: 36650650]
[45]
Sberna G, Biagi M, Marafini G, et al. In vitro evaluation of antiviral efficacy of a standardized hydroalcoholic extract of poplar type propolis against SARS-CoV-2. Front Microbiol 2022; 13: 799546.
[http://dx.doi.org/10.3389/fmicb.2022.799546] [PMID: 35350622]
[46]
Ripari N, Sartori AA, da Silva Honorio M, et al. Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol 2021; 73(3): 281-99.
[http://dx.doi.org/10.1093/jpp/rgaa067] [PMID: 33793885]
[47]
Carvalho APA, Conte-Junior CA. Recent advances on nanomaterials to COVID-19 management; A systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation. Glob Chall 2021; 5(5): 2000115.
[http://dx.doi.org/10.1002/gch2.202000115] [PMID: 33786199]
[48]
Raghav N, Sharma MR, Kennedy JF. Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydr Polym Technol Appl 2021; 2: 100031.
[http://dx.doi.org/10.1016/j.carpta.2020.100031]
[49]
Chen PX, Wang S, Nie S, Marcone M. Properties of Cordyceps Sinensis: A review. J Funct Foods 2013; 5(2): 550-69.
[http://dx.doi.org/10.1016/j.jff.2013.01.034] [PMID: 32288794]
[50]
Lu DY, Che JY. Holistic covid-19 emergency practice. EC Emergency Medicine & Critical Care 2022; 6(6): 2-4.
[51]
Ferreira LLG, Andricopulo AD. COVID-19: small-molecule clinical trial landscape. Curr Top Med Chem 2020; 20(18): 1577-80.
[http://dx.doi.org/10.2174/156802662018200703154334] [PMID: 32862824]
[52]
Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography. J Med Chem 2021; 64(8): 4991-5000.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00058] [PMID: 33755450]
[53]
Zhao Y, Du X, Duan Y, et al. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein Cell 2021; 12(11): 877-88.
[http://dx.doi.org/10.1007/s13238-021-00836-9] [PMID: 33864621]
[54]
Kalirajan R. Activity of some novel chalcone-substituted 9-anilinoacridines against coronavirus (COVID-19): A computational approach. Coronaviruses 2020; 1(1): 13-22.
[http://dx.doi.org/10.2174/2666796701999200625210746]
[55]
Bhatia R, Narang RK, Rawal RK. Repurposing of RdRp inhibitors against SARS-Cov-2 through molecular docking tools. Coronaviruses 2020; 1(1): 108-16.
[http://dx.doi.org/10.2174/2666796701999200617155629]
[56]
Atnaf A, Shiferaw AA, Tamir W, et al. Hematological profiles and clinical outcome of COVID-19 among patient’s admitted at Debre Markos isolation and treatment center: 2020L a prospective cohort study. J Blood Med 2022; 13: 631-41.
[http://dx.doi.org/10.2147/JBM.S380539] [PMID: 36405428]
[57]
Mpiana PT, Ngbolua KTN, Tshibangu DST, et al. Aloe vera (L.) Burm F as a potential of anti-COVID-19 plant: A mini-review of its antiviral activity. European J Med Plants 2020; 31(8): 86-93.
[http://dx.doi.org/10.9734/ejmp/2020/v31i830261]
[58]
Hafez Ghoran S, El-Shazly M, Sekeroglu N, Kijjoa A. Natural products from medicinal plants with anti-human coronavirus activities. Molecules 2021; 26(6): 1754.
[http://dx.doi.org/10.3390/molecules26061754] [PMID: 33800977]
[59]
Akram M, Michael S, Saeed M, et al. Ethnopharmacological properties of Asian medicinal plants during conflict-related blockades Phytochemistry, the Military and Health. Elsevier 2021; pp. 53-68.
[60]
Clever S, Volz A. Mouse models in COVID-19 research: analyzing the adaptive immune response. Med Microbiol Immunol (Berl) 2022; 212(2): 1-19.
[http://dx.doi.org/10.1007/s00430-022-00735-8] [PMID: 35661253]
[61]
Brenbdler T, Al-Harrasi A, Bauer R, et al. Batanical drugs and supplements affecting the immune response in the time of COVID-19: implication for research and clinical practice. Phytother Res 2020; 1: 19.
[http://dx.doi.org/10.1002/ptr.7008]
[62]
Inkoto CL, Ngbolua KTN, Kilembe JT, et al. A mini review on the phytochemistry and pharmacology of Aframomum alboviolaceum (zingiberaceae). South Asian Res J Natural Products 2021; 4(3): 24-35.
[63]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. In: Springer International Publisher 2018; Vol. 419: pp. 1-42.
[64]
Freedman DH. Hunting for new drugs with AI. Nature 2019; 576(7787): S49-53.
[http://dx.doi.org/10.1038/d41586-019-03846-0] [PMID: 31853074]
[65]
Parlak C, Alver Ö, Ouma CNM, Rhyman L, Ramasami P. Can the antivirals remdesivir and favipiravir work jointly? In silico insights. Drug Res (Stuttg) 2022; 72(1): 34-40.
[http://dx.doi.org/10.1055/a-1585-1323] [PMID: 34535038]
[66]
Downes DJ, Cross AR, Hua P, et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet 2021; 53(11): 1606-15.
[http://dx.doi.org/10.1038/s41588-021-00955-3] [PMID: 34737427]
[67]
Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity 2020; 52(5): 737-41.
[http://dx.doi.org/10.1016/j.immuni.2020.04.012] [PMID: 32433946]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy