Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

In vitro and In silico Antibacterial Evaluation of N-Methyl-2- phenylmaleimides

Author(s): Carla Fourie, Johannes Jacobus Bezuidenhout, Anél Petzer, Jacobus Petrus Petzer and Theunis Theodorus Cloete*

Volume 21, Issue 13, 2024

Published on: 27 October, 2023

Page: [2497 - 2504] Pages: 8

DOI: 10.2174/1570180820666230731144315

Price: $65

Abstract

Background: Novel antibiotics are needed to stem the rise of antimicrobial resistance. NMethyl- 2-phenylmaleimide (NMP) compounds previously synthesised by our research group are structural analogues of 2,3,5-substituted perhydropyrrolo[3,4-d]isoxazole-4,6-diones found by others to have antibacterial activity.

Objectives: This study aims to explain the significance of NMPs and their antibacterial activity. The antibacterial activity of the NMPs was determined against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The partition coefficient of the NMPs and a pharmacophore model were used to explain their antibacterial activity.

Methods: The Kirby Bauer Disc diffusion method was used to screen the NMPs for activity, while the broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the active NMPs. Using the in vitro antibacterial activity of 2,3,5-substituted perhydropyrrolo[3,4-d]isoxazole-4,6-diones, a common feature pharmacophore model was constructed and validated. The rank score, fit value, enrichment factor (EF20%), and receiver operating characteristic area under the curve (ROC-AUC) were used as validation metrics.

Results: The NMPs were only active against S. aureus, with compound 3 (4 μg/ml) being the most active. The majority of NMPs were bacteriostatic. A common feature pharmacophore model was validated (rank score: 120.5; fit value: 4; EF20%: 4.3; ROC-AUC: 0.9 ± 0.03) and showed that three hydrogen bond acceptors and a ring aromatic region are important for activity. Comparing the partition coefficient of the NMPs to their MIC a statistically significant correlation was found.

Conclusion: NMPs can be used as lead compounds in future studies. The validated pharmacophore model and partition coefficient can be used to develop more active compounds.

[1]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[2]
Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. Lancet, 2022, 399(10325), 606-607.
[http://dx.doi.org/10.1016/S0140-6736(22)00087-3] [PMID: 35065701]
[3]
Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis., 2008, 197(8), 1079-1081.
[http://dx.doi.org/10.1086/533452] [PMID: 18419525]
[4]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[5]
Agirbas, H.; Guner, S.; Budak, F.; Keceli, S.; Kandemirli, F.; Shvets, N.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure–antibacterial activity relationship investigation of isomeric 2,3,5-substituted perhydropyrrolo[3,4-d]isoxazole-4,6-diones. Bioorg. Med. Chem., 2007, 15(6), 2322-2333.
[http://dx.doi.org/10.1016/j.bmc.2007.01.029] [PMID: 17276071]
[6]
Manley-King, C.I.; Terre’Blanche, G.; Castagnoli, N., Jr; Bergh, J.J.; Petzer, J.P. Inhibition of monoamine oxidase B by N-methyl-2-phenylmaleimides. Bioorg. Med. Chem., 2009, 17(8), 3104-3110.
[http://dx.doi.org/10.1016/j.bmc.2009.03.005] [PMID: 19324554]
[7]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[8]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[9]
Lee, C.H.; Huang, H.C.; Juan, H.F. Reviewing ligand-based rational drug design: the search for an ATP synthase inhibitor. Int. J. Mol. Sci., 2011, 12(8), 5304-5318.
[http://dx.doi.org/10.3390/ijms12085304] [PMID: 21954360]
[10]
Vuorinen, A.; Engeli, R.; Meyer, A.; Bachmann, F.; Griesser, U.J.; Schuster, D.; Odermatt, A. Ligand-based pharmacophore modeling and virtual screening for the discovery of novel 17β-hydroxysteroid dehydrogenase 2 inhibitors. J. Med. Chem., 2014, 57(14), 5995-6007.
[http://dx.doi.org/10.1021/jm5004914] [PMID: 24960438]
[11]
Pascual, R.; Almansa, C.; Plata-Salamán, C.; Vela, J.M. A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset. Front. Pharmacol., 2019, 10, 519.
[http://dx.doi.org/10.3389/fphar.2019.00519] [PMID: 31214020]
[12]
Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.P.; Bertrand, H.O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem., 2005, 48(7), 2534-2547.
[http://dx.doi.org/10.1021/jm049092j] [PMID: 15801843]
[13]
Thesnaar, L.; Bezuidenhout, J.J.; Petzer, A.; Petzer, J.P.; Cloete, T.T. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. Eur. J. Pharm. Sci., 2021, 157, 105603-105631.
[http://dx.doi.org/10.1016/j.ejps.2020.105603] [PMID: 33091571]
[14]
Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol., 2009, 2009, 1-23.
[15]
Cockerill, F.R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, M07-A9, 32(2); Clinical and laboratory standards institute: PA, 2012.
[16]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[17]
Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect., 2003, 9(8), ix-xv.
[http://dx.doi.org/10.1046/j.1469-0691.2003.00790.x]
[18]
Hacek, D.M.; Dressel, D.C.; Peterson, L.R. Highly reproducible bactericidal activity test results by using a modified National Committee for Clinical Laboratory Standards broth macrodilution technique. J. Clin. Microbiol., 1999, 37(6), 1881-1884.
[http://dx.doi.org/10.1128/JCM.37.6.1881-1884.1999] [PMID: 10325341]
[19]
Motyl, M.; Dorso, K.; Barrett, J.; Giacobbe, R. Basic microbiological techniques used in antibacterial drug discovery. Curr. Protoc., 2005, 31, 13.
[http://dx.doi.org/10.1002/0471141755.ph13a03s31]
[20]
Chen, H.; Lyne, P.D.; Giordanetto, F.; Lovell, T.; Li, J. On evaluating molecular-docking methods for pose prediction and enrichment factors. J. Chem. Inf. Model., 2006, 46(1), 401-415.
[http://dx.doi.org/10.1021/ci0503255] [PMID: 16426074]
[21]
Wei, B.Q.; Baase, W.A.; Weaver, L.H.; Matthews, B.W.; Shoichet, B.K. A model binding site for testing scoring functions in molecular docking. J. Mol. Biol., 2002, 322(2), 339-355.
[http://dx.doi.org/10.1016/S0022-2836(02)00777-5] [PMID: 12217695]
[22]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]
[23]
Hamza, A.; Wei, N.N.; Zhan, C.G. Ligand-based virtual screening approach using a new scoring function. J. Chem. Inf. Model., 2012, 52(4), 963-974.
[http://dx.doi.org/10.1021/ci200617d] [PMID: 22486340]
[24]
ACD/ChemSketch (Free ware) 2021.1.2; ACD/Labs: Toronto. 2021. Available from: http://www.acdlabs.com/resources/freeware/chemsketch
[25]
Bergazin, T.D.; Tielker, N.; Zhang, Y.; Mao, J.; Gunner, M.R.; Francisco, K.; Ballatore, C.; Kast, S.M.; Mobley, D.L. Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge. J. Comput. Aided Mol. Des., 2021, 35(7), 771-802.
[http://dx.doi.org/10.1007/s10822-021-00397-3] [PMID: 34169394]
[26]
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 2020, 25(6), 1340-1363.
[http://dx.doi.org/10.3390/molecules25061340] [PMID: 32187986]
[27]
Shanholtzer, C.J.; Peterson, L.R.; Mohn, M.L.; Moody, J.A.; Gerding, D.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob. Agents Chemother., 1984, 26(2), 214-219. https://doi.org/10.1128%2Faac.26.2.214
[http://dx.doi.org/10.1128/AAC.26.2.214] [PMID: 6486764]
[28]
Eagle, H.; Musselman, A.D. The slow recovery of bacteria from the toxic effects of penicilin. J. Bacteriol., 1949, 58(4), 475-490.
[http://dx.doi.org/10.1128/jb.58.4.475-490.1949] [PMID: 16561809]
[29]
Jarrad, A.M.; Blaskovich, M.A.T.; Prasetyoputri, A.; Karoli, T.; Hansford, K.A.; Cooper, M.A. Detection and investigation of eagle effect resistance to vancomycin in Clostridium difficile With an ATP-bioluminescence assay. Front. Microbiol., 2018, 9(1420), 1420.
[http://dx.doi.org/10.3389/fmicb.2018.01420] [PMID: 30013531]
[30]
Hu, H.; Xia, J.; Wang, D.; Wang, X.; Wu, S. A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors. Int. J. Mol. Sci., 2017, 18(1), 137.
[http://dx.doi.org/10.3390/ijms18010137] [PMID: 28106794]
[31]
Tromelin, A.; Koensgen, F.; Audouze, K.; Guichard, E.; Thomas-Danguin, T. Exploring the Characteristics of an Aroma-Blending Mixture by Investigating the Network of Shared Odors and the Molecular Features of Their Related Odorants. Molecules, 2020, 25(13), 3032.
[http://dx.doi.org/10.3390/molecules25133032] [PMID: 32630789]
[32]
Sakkiah, S.; Thangapandian, S.; Kim, Y.S.; Lee, K.W. Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B. Bull. Korean Chem. Soc., 2012, 33(3), 869-880.
[http://dx.doi.org/10.5012/bkcs.2012.33.3.869]
[33]
Gao, Y.; Gesenberg, C.; Zheng, W. Oral Formulations for Preclinical Studies.Developing Solid Oral Dosage Forms; Qiu, Y.; Zhang, G.G.; Mantri, R.V.; Chen, Y.; Yu, L., Eds.; Elsevier, 2017, pp. 455-495.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00017-0]
[34]
Mandal, A.; Patel, M.; Sheng, Y.; Mitra, A.K. Design of Lipophilic Prodrugs to Improve Drug Delivery and Efficacy. Curr. Drug Targets, 2016, 17(15), 1773-1798.
[http://dx.doi.org/10.2174/1389450117666151209115431] [PMID: 26648076]
[35]
Tokuyama, R.; Takahashi, Y.; Tomita, Y.; Tsubouchi, M.; Yoshida, T.; Iwasaki, N.; Kado, N.; Okezaki, E.; Nagata, O. Structure-activity relationship (SAR) studies on oxazolidinone antibacterial agents. 2. Relationship between lipophilicity and antibacterial activity in 5-thiocarbonyl oxazolidinones. Chem. Pharm. Bull. (Tokyo), 2001, 49(4), 353-360.
[http://dx.doi.org/10.1248/cpb.49.353] [PMID: 11310657]
[36]
Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora. Molecules, 2017, 22(4), 608.
[http://dx.doi.org/10.3390/molecules22040608] [PMID: 28394271]
[37]
Brown, P.; Abdulle, O.; Boakes, S.; Divall, N.; Duperchy, E.; Ganeshwaran, S.; Lester, R.; Moss, S.; Rivers, D.; Simonovic, M.; Singh, J.; Stanway, S.; Wilson, A.; Dawson, M.J. Influence of Lipophilicity on the Antibacterial Activity of Polymyxin Derivatives and on Their Ability to Act as Potentiators of Rifampicin. ACS Infect. Dis., 2021, 7(4), 894-905.
[http://dx.doi.org/10.1021/acsinfecdis.0c00917] [PMID: 33688718]
[38]
Podunavac-Kuzmanovic, S.O.; Cvetkovic, D.D.; Barna, D.J. The effect of lipophilicity on the antibacterial activity of some 1-benzylbenzimidazole derivatives. J. Serb. Chem. Soc., 2008, 73(10), 967-978.
[http://dx.doi.org/10.2298/JSC0810967P]
[39]
Salewska, N.; Boros-Majewska, J.; Łącka, I.; Chylińska, K.; Sabisz, M.; Milewski, S.; Milewska, M.J. Chemical reactivity and antimicrobial activity of N -substituted maleimides. J. Enzyme Inhib. Med. Chem., 2012, 27(1), 117-124.
[http://dx.doi.org/10.3109/14756366.2011.580455] [PMID: 21612375]
[40]
Sadiq, A.; Mahmood, F.; Ullah, F.; Ayaz, M.; Ahmad, S.; Haq, F.U.; Khan, G.; Jan, M.S. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer’s. Chem. Cent. J., 2015, 9(1), 31.
[http://dx.doi.org/10.1186/s13065-015-0107-2] [PMID: 26064188]

© 2024 Bentham Science Publishers | Privacy Policy