Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Red Seaweed-derived Compounds: A Desired Approach for Treating Cancer

Author(s): Shweta Katiyar, Xing-Hai Jin* and Dhananjay Yadav*

Volume 29, Issue 22, 2023

Published on: 04 August, 2023

Page: [1729 - 1740] Pages: 12

DOI: 10.2174/1381612829666230731102634

Price: $65

Abstract

Cancer is a collection of diseases in which aberrant cells grow uncontrolled and invade surrounding tissues. Cancer can be classified as carcinoma, sarcoma, leukemia, or lymphoma. The deadliest cancers are lung, breast, colorectal, pancreatic, and prostate. Chemotherapy, surgery, and radiotherapy are the usual cancer treatments. However, drug resistance poses a significant barrier to cancer treatment. Macroalgae are wellknown producers of bioactive compounds with antimicrobial, antioxidant, anti-inflammatory, and anti-cancer properties. Red algae, in particular, are a prominent source of bioactive substances, such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids. Therefore, molecules from marine resources could be an appealing way to identify new cancer treatment alternatives. This study aimed to provide a brief overview of what is currently known regarding the potential of red macroalgae in cancer treatment by discussing the primary therapeutic targets of the disease and identifying compounds or extracts with bioactive characteristics against them.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Funt SA, Patil S, Feldman DR, et al. Impact of teratoma on the cumulative incidence of disease-related death in patients with advanced germ cell tumors. J Clin Oncol 2019; 37(26): 2329-37.
[http://dx.doi.org/10.1200/JCO.18.01608] [PMID: 31233353]
[3]
Anand P, Kunnumakara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[4]
Athukorala Y, Kim KN, Jeon YJ. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 2006; 44(7): 1065-74.
[http://dx.doi.org/10.1016/j.fct.2006.01.011] [PMID: 16516367]
[5]
Namvar F, Mohamed S, Fard SG, et al. Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem 2012; 130(2): 376-82.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.054]
[6]
Namvar F, Tahir PM, Mohamad R, et al. Biomedical properties of edible seaweed in cancer therapy and chemoprevention trials: A review. Nat Prod Commun 2013; 8(12): 1934578X1300801237.
[http://dx.doi.org/10.1177/1934578X1300801237]
[7]
Hwang J, Yadav D, Lee PCW, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2022; 36(2): 761-77.
[http://dx.doi.org/10.1002/ptr.7348] [PMID: 34962325]
[8]
Jin JO, Chauhan PS, Arukha AP, Chavda V, Dubey A, Yadav D. The therapeutic potential of the anticancer activity of fucoidan: Current advances and hurdles. Mar Drugs 2021; 19(5): 265.
[http://dx.doi.org/10.3390/md19050265] [PMID: 34068561]
[9]
Korivi M, Chen C-T, Yu S-H, et al. Seaweed supplementation enhances maximal muscular strength and attenuates resistance exercise-induced oxidative stress in rats. Evid Based Complement Alternat Med 2019; 2019: 3528932.
[http://dx.doi.org/10.1155/2019/3528932]
[10]
Corsetto PA, Montorfano G, Zava S, et al. Characterization of antioxidant potential of seaweed extracts for enrichment of convenience food. Antioxidants 2020; 9(3): 249.
[http://dx.doi.org/10.3390/antiox9030249] [PMID: 32204441]
[11]
Shin HC, Hwang HJ, Kang KJ, Lee BH. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis fromEcklonia cava. Arch Pharm Res 2006; 29(2): 165-71.
[http://dx.doi.org/10.1007/BF02974279] [PMID: 16526282]
[12]
Chen KJ, Tseng CK, Chang FR, et al. Aqueous extract of the edible gracilaria tenuistipitata inhibits hepatitis c viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation. PLoS One 2013; 8(2): e57704.
[http://dx.doi.org/10.1371/journal.pone.0057704] [PMID: 23469054]
[13]
Lee DS, Park WS, Heo SJ, et al. Polyopes affinis alleviates airway inflammation in a murine model of allergic asthma. J Biosci 2011; 36(5): 869-77.
[http://dx.doi.org/10.1007/s12038-011-9152-8] [PMID: 22116285]
[14]
Moussavou G, Kwak D, Obiang-Obonou B, et al. Anticancer effects of different seaweeds on human colon and breast cancers. Mar Drugs 2014; 12(9): 4898-911.
[http://dx.doi.org/10.3390/md12094898] [PMID: 25255129]
[15]
Gutiérrez-Rodríguez AG, Juárez-Portilla C, Olivares-Bañuelos T, Zepeda RC. Anticancer activity of seaweeds. Drug Discov Today 2018; 23(2): 434-47.
[http://dx.doi.org/10.1016/j.drudis.2017.10.019] [PMID: 29107095]
[16]
Khalid S, Abbas M, Saeed F, Bader-Ul-Ain H, Suleria HAR. Therapeutic potential of seaweed bioactive compounds. London, UK: IntechOpen 2018.
[http://dx.doi.org/10.5772/intechopen.74060]
[17]
Park HY, Choi IW, Kim GY, Kim BW, Kim WJ, Choi YH. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. Rev Bras Farmacogn 2015; 25(3): 246-51.
[http://dx.doi.org/10.1016/j.bjp.2015.03.011]
[18]
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic uses of red macroalgae. Molecules 2020; 25(19): 4411.
[http://dx.doi.org/10.3390/molecules25194411] [PMID: 32992919]
[19]
Rocha D, Seca A, Pinto D. Seaweed secondary metabolites in vitro and in vivo anticancer activity. Mar Drugs 2018; 16(11): 410.
[http://dx.doi.org/10.3390/md16110410] [PMID: 30373208]
[20]
Hoadley K A, Yau C, Hinoue T, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018; 173: 291-304.
[21]
Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation. cell 2011; 144: 646-74.
[22]
Alves C, Silva J, Pinteus S, et al. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front Pharmacol 2018; 9: 777.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738]
[23]
Yun CW, Kim HJ, Lee SH. Therapeutic application of diverse marine-derived natural products in cancer therapy. Anticancer Res 2019; 39(10): 5261-84.
[http://dx.doi.org/10.21873/anticanres.13721] [PMID: 31570422]
[24]
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: An overview. Cancers 2014; 6(3): 1769-92.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[25]
Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2018; 54(2): 407-19.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[26]
Soderdahl DW, Wettlaufer JN, Corn B, Gomella LG. Neoadjuvant hormonal therapy in the management of prostate cancer: A surgical and radiation therapy review. Tech Urol 1996; 2(4): 194-206.
[PMID: 9085540]
[27]
Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10(4): 1367-401.
[http://dx.doi.org/10.1016/j.gendis.2022.02.007] [PMID: 37397557]
[28]
Cotas J, Pacheco D, Gonçalves AMM, Silva P, Carvalho LG, Pereira L. Seaweeds’ nutraceutical and biomedical potential in cancer therapy: A concise review. J Cancer Metastasis Treat 2021; 2021: 13.
[http://dx.doi.org/10.20517/2394-4722.2020.134]
[29]
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 2020; 10(3): 19.
[http://dx.doi.org/10.3390/life10030019] [PMID: 32110890]
[30]
de Jesus Raposo M, de Morais A, de Morais R. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[31]
Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol 2011; 29(36): 4828-36.
[http://dx.doi.org/10.1200/JCO.2011.38.0899] [PMID: 22042955]
[32]
Luo M, Shao B, Nie W, et al. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Sci Rep 2015; 5(1): 11062.
[http://dx.doi.org/10.1038/srep11062] [PMID: 26098663]
[33]
Plouguerné E, da Gama BA, Pereira RC, Barreto-Bergter E. Glycolipids from seaweeds and their potential biotechnological applications. Front Cell Infect Microbiol 2014; 4: 174.
[http://dx.doi.org/10.3389/fcimb.2014.00174] [PMID: 25566511]
[34]
Khan SI, Satam S. Seaweed mariculture: Scope and potential in India. Aquac Asia 2003; 8: 26-9.
[35]
Kubanek J, Prusak AC, Snell TW, et al. Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus. Org Lett 2005; 7(23): 5261-4.
[http://dx.doi.org/10.1021/ol052121f] [PMID: 16268553]
[36]
Lins KOAL, Bezerra DP, Alves APNN, et al. Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol 2009; 29(1): 20-6.
[http://dx.doi.org/10.1002/jat.1374] [PMID: 18651721]
[37]
Alkhalaf MI. Chemical composition, antioxidant, anti-inflammatory and cytotoxic effects of Chondrus crispus species of red algae collected from the Red Sea along the shores of Jeddah city. J King Saud Univ Sci 2021; 33(1): 101210.
[http://dx.doi.org/10.1016/j.jksus.2020.10.007]
[38]
Fukuda Y, Sugahara T, Ueno M, et al. The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo. Anticancer Drugs 2006; 17(8): 943-7.
[http://dx.doi.org/10.1097/01.cad.0000224458.13651.b4] [PMID: 16940804]
[39]
Furuno A, Watari K, Nakamura M, Fukunaga Y, Jung JH, Ono M. A natural anti-inflammatory enone fatty acid inhibits angiogenesis by attenuating nuclear factor-κB signaling in vascular endothelial cells. Int J Oncol 2011; 38(2): 493-501.
[PMID: 21132269]
[40]
Zhang C, Yang F, Zhang XW, et al. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. Br J Pharmacol 2006; 148(6): 741-51.
[http://dx.doi.org/10.1038/sj.bjp.0706741] [PMID: 16715123]
[41]
Yu Q, Yan J, Wang S, et al. Antiangiogenic effects of GFP08, an agaran-type polysaccharide isolated from Grateloupia filicina. Glycobiology 2012; 22(10): 1343-52.
[http://dx.doi.org/10.1093/glycob/cws096] [PMID: 22707571]
[42]
Matloub AA, Aglan HA, Mohamed El Souda SS, Aboutabl ME, Maghraby AS, Ahmed HH. Influence of bioactive sulfated polysaccharide-protein complexes on hepatocarcinogenesis, angiogenesis and immunomodulatory activities. Asian Pac J Trop Med 2016; 9(12): 1200-11.
[http://dx.doi.org/10.1016/j.apjtm.2016.11.004] [PMID: 27955748]
[43]
Pec MK, Aguirre A, Moser-Thier K, et al. Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem Pharmacol 2003; 65(9): 1451-61.
[http://dx.doi.org/10.1016/S0006-2952(03)00123-0] [PMID: 12732357]
[44]
Mohammed KA, Hossain CF, Zhang L, Bruick RK, Zhou YD, Nagle DG. Laurenditerpenol, a new diterpene from the tropical marine alga Laurenciaintricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J Nat Prod 2004; 67(12): 2002-7.
[http://dx.doi.org/10.1021/np049753f] [PMID: 15620241]
[45]
Murad H, Ghannam A, Al-Ktaifani M, Abbas A, Hawat M. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes. Mol Med Rep 2015; 11(3): 2153-8.
[http://dx.doi.org/10.3892/mmr.2014.2915] [PMID: 25384757]
[46]
Du B, Zhong X, Liao X, Xu W, Zhou X, Xu S. A new antitumor arabinopyranoside from laurencia majuscula induces G2/M cell cycle arrest. Phytother Res 2010; 24(10): 1447-50.
[http://dx.doi.org/10.1002/ptr.3153] [PMID: 20878692]
[47]
Campos A, Souza CB, Lhullier C, et al. Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. J Pharm Pharmacol 2012; 64(8): 1146-54.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01493.x] [PMID: 22775218]
[48]
Gross H, Goeger DE, Hills P, et al. Lophocladines, bioactive alkaloids from the red alga Lophocladia sp. J Nat Prod 2006; 69(4): 640-4.
[http://dx.doi.org/10.1021/np050519e] [PMID: 16643042]
[49]
Wang X, Zhang Z. The antitumor activity of a red alga polysaccharide complexes carrying 5-fluorouracil. Int J Biol Macromol 2014; 69: 542-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.017] [PMID: 24954270]
[50]
Zhang L-X, Cai C-E, Guo T-T, et al. Anti-cancer effects of polysaccharide and phycocyanin from Porphyra yezoensis. J Mar Sci Technol 2011; 19: 6.
[51]
Nikolova B, Semkova S, Tsoneva I, et al. Characterization and potential antitumor effect of a heteropolysaccharide produced by the red alga Porphyridium sordidum. Eng Life Sci 2019; 19(12): 978-85.
[http://dx.doi.org/10.1002/elsc.201900019] [PMID: 32624987]
[52]
Wang S, Wang LJ, Jiang B, et al. Anti-angiogenic properties of BDDPM, a bromophenol from marine red alga Rhodomela confervoides, with multi receptor tyrosine kinase inhibition effects. Int J Mol Sci 2015; 16(12): 13548-60.
[http://dx.doi.org/10.3390/ijms160613548] [PMID: 26075871]
[53]
Lee H, Selvaraj B, Lee JW. Anticancer effects of seaweed-derived bioactive compounds. Appl Sci 2021; 11(23): 11261.
[http://dx.doi.org/10.3390/app112311261]
[54]
Fleurence J. The enzymatic degradation of algal cell walls: A useful approach for improving protein accessibility? J Appl Phycol 1999; 11(3): 313-4.
[http://dx.doi.org/10.1023/A:1008183704389]
[55]
Harnedy PA, FitzGerald RJ. Extraction of protein from the macroalga Palmaria palmata. Lebensm Wiss Technol 2013; 51(1): 375-82.
[http://dx.doi.org/10.1016/j.lwt.2012.09.023]
[56]
Barbarino E, Lourenço SO. An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 2005; 17(5): 447-60.
[http://dx.doi.org/10.1007/s10811-005-1641-4]
[57]
Fleurence J, Massiani L, Guyader O, Mabeau S. Use of enzymatic cell wall degradation for improvement of protein extraction from chondrus crispus, gracilaria verrucosa and palmaria palmata. J Appl Phycol 1995; 7(4): 393-7.
[http://dx.doi.org/10.1007/BF00003796]
[58]
Kadam SU, Tiwari BK, O’Donnell CP. Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 2013; 61(20): 4667-75.
[http://dx.doi.org/10.1021/jf400819p] [PMID: 23634989]
[59]
Qu W, Ma H, Wang T, Zheng H. Alternating two-frequency countercurrent ultrasonic-assisted extraction of protein and polysaccharide from Porphyra yezoensis. TCSAE 2013; 29: 285-92.
[60]
Denis C, Massé A, Fleurence J, Jaouen P. Concentration and pre-purification with ultrafiltration of a R-phycoerythrin solution extracted from macro-algae Grateloupia turuturu: Process definition and up-scaling. Separ Purif Tech 2009; 69(1): 37-42.
[http://dx.doi.org/10.1016/j.seppur.2009.06.017]
[61]
Mæhre H, Jensen IJ, Eilertsen KE. Enzymatic pretreatment increases the protein bioaccessibility and extractability in Dulse (Palmaria palmata). Mar Drugs 2016; 14(11): 196.
[http://dx.doi.org/10.3390/md14110196] [PMID: 27792166]
[62]
Liu Z, Gao T, Yang Y, et al. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 2019; 24(23): 4286.
[http://dx.doi.org/10.3390/molecules24234286] [PMID: 31775255]
[63]
Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement Altern Med 2016; 16(1): 270.
[http://dx.doi.org/10.1186/s12906-016-1199-5] [PMID: 27487950]
[64]
Cotas J, Marques V, Afonso MB, Rodrigues CMP, Pereira L. Antitumour potential of Gigartina pistillata carrageenans against colorectal cancer stem cell-enriched tumourspheres. Mar Drugs 2020; 18(1): 50.
[http://dx.doi.org/10.3390/md18010050] [PMID: 31940929]
[65]
Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[66]
El-Sheekh M, Gheda S, Abou-Zeid A. In vitro anticancer activity of polysaccharide extracted from red alga Jania rubens against breast and colon cancer cell lines. Asian Pac J Trop Med 2018; 11(10): 583.
[http://dx.doi.org/10.4103/1995-7645.244523]
[67]
Pham TNA, Le B, Yang SH. Anticancer activity of the potential Pyropia yezoensis galactan fractionated in human prostate cancer cells. Biotechnol Bioprocess Eng; BBE 2021; 26(1): 63-70.
[http://dx.doi.org/10.1007/s12257-020-0157-8]
[68]
Arokiarajan MS, Thirunavukkarasu R, Joseph J, Ekaterina O, Aruni W. Advance research in biomedical applications on marine sulfated polysaccharide. Int J Biol Macromol 2022; 194: 870-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.142] [PMID: 34843816]
[69]
Chauhan PS, Yadav D, Jin JO. Therapeutic potential of algal nanoparticles: A brief review. Comb Chem High Throughput Screen 2021; 25(14): 2443-51.
[PMID: 34477514]
[70]
Singh RS, Walia AK. Lectins from red algae and their biomedical potential. J Appl Phycol 2018; 30(3): 1833-58.
[http://dx.doi.org/10.1007/s10811-017-1338-5] [PMID: 32214665]
[71]
Pinto V, Debray H, Dus D, et al. Lectins from the red marine algal species Bryothamnion seaforthii and Bryothamnion triquetrum as tools to differentiate human colon carcinoma cells. Adv Pharmacol Sci 2009; 2009: 862162.
[72]
Okuyama S, Nakamura-Tsuruta S, Tateno H, Hirabayashi J, Matsubara K, Hori K. Strict binding specificity of small-sized lectins from the red alga Hypnea japonica for core (α1-6) fucosylated N-glycans. Biosci Biotechnol Biochem 2009; 73(4): 912-20.
[http://dx.doi.org/10.1271/bbb.80881] [PMID: 19352030]
[73]
Link MP, Goorin AM, Horowitz M, et al. Adjuvant chemotherapy of high-grade osteosarcoma of the extremity. Updated results of the multi-institutional osteosarcoma study. Clin Orthop Relat Res 1991; (270): 8-14.
[PMID: 1884563]
[74]
Sugahara T, Ohama Y, Fukuda A, Hayashi M, Kawakubo A, Kato K. The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles. Cytotechnology 2001; 36(1/3): 93-9.
[http://dx.doi.org/10.1023/A:1014057407251] [PMID: 19003319]
[75]
Hayashi K, Walde P, Miyazaki T, et al. Active targeting to osteosarcoma cells and apoptotic cell death induction by the novel lectin Eucheuma serra agglutinin isolated from a marine red alga. J Drug Deliv 2012; 2012: 842785.
[http://dx.doi.org/10.1155/2012/842785]
[76]
Conrado M, Furtado LE, Teixeira AH, et al. Erythrina velutina and Bryothamnion seaforthii lectins binding to proteins of primary central nervous system tumors. J Cancer Res Exp 2012; 4(1): 21-6.
[http://dx.doi.org/10.5897/JCREO12.004]
[77]
do Nascimento ASF, Serna S, Beloqui A, et al. Algal lectin binding to core (α1–6) fucosylated N-glycans: Structural basis for specificity and production of recombinant protein. Glycobiology 2015; 25(6): 607-16.
[http://dx.doi.org/10.1093/glycob/cwv002] [PMID: 25573275]
[78]
Perdhana B. Cytotoxicity and antibacterial effects of crude lectin fraction bioactive compound of red macroalgae from the Southern Coast of Java island, Gunungkidul regency 2017.
[79]
Chaves RP, Silva SR, Nascimento Neto LG, et al. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol 2018; 107(Pt A): 1320-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.116] [PMID: 28970169]
[80]
Hung LD, Trinh PTH. Structure and anticancer activity of a new lectin from the cultivated red alga, Kappaphycus striatus. J Nat Med 2021; 75(1): 223-31.
[http://dx.doi.org/10.1007/s11418-020-01455-0] [PMID: 33025357]
[81]
Soraya H, Esfahanian N, Shakiba Y, et al. Anti-angiogenic effects of metformin, an AMPK activator, on human umbilical vein endothelial cells and on granulation tissue in rat. Iran J Basic Med Sci 2012; 15(6): 1202-9.
[PMID: 23653852]
[82]
Singh AK, Patel PK, Choudhary K, Joshi J, Yadav D, Jin JO. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules 2020; 10(2): 207.
[83]
Katare C, Saxena S, Agrawal S, et al. Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia. J Evid Based Complementary Altern Med 2014; 19(2): 112-8.
[http://dx.doi.org/10.1177/2156587214524229] [PMID: 24647091]
[84]
Kuttan G, Hari Kumar K B, Guruvayoorappan C, Kuttan R. Antitumor, anti-invasion, and anti-metastatic effects of curcumin. Adv Exp Med Biol 2007; 595: 173-84.
[85]
Lamoral-Theys D, Pottier L, Dufrasne F, et al. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr Med Chem 2010; 17(9): 812-25.
[http://dx.doi.org/10.2174/092986710790712183] [PMID: 20156174]
[86]
Zhao M, Yang B, Wang J, Liu Y, Yu L, Jiang Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. Int Immunopharmacol 2007; 7(2): 162-6.
[http://dx.doi.org/10.1016/j.intimp.2006.09.003] [PMID: 17178382]
[87]
Yuan YV, Carrington MF, Walsh NA. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 2005; 43(7): 1073-81.
[http://dx.doi.org/10.1016/j.fct.2005.02.012] [PMID: 15833383]
[88]
Vasanthi H, Rajamanickam G, Saraswathy A, Jaswanth A. Tumoricidal effect of the red algae Acanthophora spicifera on Ehrlich’s ascites carcinoma in mice. Seaweed Research and Utilization 2004; 25: 217-24.
[89]
Lee JH, Park SE, Hossain MA, et al. 2,3,6-Tribromo-4,5-dihydroxybenzyl methyl ether induces growth inhibition and apoptosis in MCF-7 human breast cancer cells. Arch Pharm Res 2007; 30(9): 1132-7.
[http://dx.doi.org/10.1007/BF02980248] [PMID: 17958331]
[90]
Ferdous UT, Yusof ZNB. Terpenes and Terpenoids-Recent Advances. IntechOpen 2021.
[91]
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and anticancer effects of microalgal carotenoids. Mar Drugs 2021; 19(10): 531.
[http://dx.doi.org/10.3390/md19100531] [PMID: 34677429]
[92]
Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review. Cancers 2022; 14(5): 1100.
[http://dx.doi.org/10.3390/cancers14051100] [PMID: 35267408]
[93]
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: Natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21(12): 1801-18.
[http://dx.doi.org/10.1517/13543784.2012.727395] [PMID: 23092199]
[94]
Rodrigues D, Alves C, Horta A, et al. Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Mar Drugs 2015; 13(2): 713-26.
[http://dx.doi.org/10.3390/md13020713] [PMID: 25629386]
[95]
Jian B, Zhang H, Han C, Liu J. Anti-cancer activities of diterpenoids derived from euphorbia fischeriana steud. Molecules 2018; 23(2): 387.
[http://dx.doi.org/10.3390/molecules23020387] [PMID: 29439483]
[96]
Inés C, Argandoña VH, Rovirosa J, et al. Cytotoxic activity of halogenated monoterpenes from Plocamium cartilagineum. Z Naturforsch C J Biosci 2004; 59(5-6): 339-44.
[http://dx.doi.org/10.1515/znc-2004-5-609] [PMID: 18998398]
[97]
Kim MM, Mendis E, Kim SK. Laurencia okamurai extract containing laurinterol induces apoptosis in melanoma cells. J Med Food 2008; 11(2): 260-6.
[http://dx.doi.org/10.1089/jmf.2007.575] [PMID: 18598167]
[98]
Alarif WM, Al-Footy KO, Zubair MS, et al. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal–antitumour agents. Nat Prod Res 2016; 30(10): 1150-5.
[http://dx.doi.org/10.1080/14786419.2015.1046378] [PMID: 26181888]
[99]
Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008; 269(2): 363-77.
[http://dx.doi.org/10.1016/j.canlet.2008.03.044] [PMID: 18479809]
[100]
Gerber M. Omega-3 fatty acids and cancers: A systematic update review of epidemiological studies. Br J Nutr 2012; 107(S2): S228-39.
[http://dx.doi.org/10.1017/S0007114512001614] [PMID: 22591896]
[101]
Kendel M, Wielgosz-Collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G. Lipid composition, fatty acids and sterols in the seaweeds ulva armoricana, and solieria chordalis from brittany (france): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Mar Drugs 2015; 13(9): 5606-28.
[http://dx.doi.org/10.3390/md13095606] [PMID: 26404323]
[102]
Wannous R, Bon E, Mahéo K, et al. PPARβ mRNA expression, reduced by n-3 PUFA diet in mammary tumor, controls breast cancer cell growth. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831(11): 1618-25.
[http://dx.doi.org/10.1016/j.bbalip.2013.07.010] [PMID: 23906790]
[103]
Liu J, Abdelmagid SA, Pinelli CJ, et al. Marine fish oil is more potent than plant-based n-3 polyunsaturated fatty acids in the prevention of mammary tumors. J Nutr Biochem 2018; 55: 41-52.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.011] [PMID: 29413488]
[104]
Eitsuka T, Nakagawa K, Igarashi M, Miyazawa T. Telomerase inhibition by sulfoquinovosyldiacylglycerol from edible purple laver (Porphyra yezoensis). Cancer Lett 2004; 212(1): 15-20.
[http://dx.doi.org/10.1016/j.canlet.2004.03.019] [PMID: 15246557]
[105]
Lee JC, Hou MF, Huang HW, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int 2013; 13(1): 55-5.
[http://dx.doi.org/10.1186/1475-2867-13-55] [PMID: 23724847]
[106]
Omar H, Al-Judaibi A, El-Gendy A. Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, Laurencia papillosa. Int J Pharmacol 2018; 14(4): 572-83.
[http://dx.doi.org/10.3923/ijp.2018.572.583]
[107]
Pacheco BS, dos Santos MAZ, Schultze E, et al. Cytotoxic activity of fatty acids from antarctic macroalgae on the growth of human breast cancer cells. Front Bioeng Biotechnol 2018; 6: 185-5.
[http://dx.doi.org/10.3389/fbioe.2018.00185] [PMID: 30560124]
[108]
Sun J, Han LJ, Yang RY, Shi DY, Uan ZH, Shi JG. Studies on chemical constituents of Laurencia tristicha (II). Zhongguo Zhongyao Zazhi 2007; 32(24): 2610-2.
[PMID: 18338599]
[109]
Kannu KD, Rani KS, Jothi RA, Gowsalya GU, Ramakritinan C. In-vivo anticancer activity of red algae (Gelidiela acerosa and Acanthophora spicifera). Int J Pharm Sci Res 2014; 5: 3347.
[110]
Ktari L, Blond A, Guyot M. 16β-Hydroxy-5α-cholestane-3,6- dione, a novel cytotoxic oxysterol from the red alga Jania rubens. Bioorg Med Chem Lett 2000; 10(22): 2563-5.
[http://dx.doi.org/10.1016/S0960-894X(00)00504-7] [PMID: 11086730]
[111]
Kim SK, Van Ta Q. Potential beneficial effects of marine algal sterols on human health. Adv Food Nutr Res 2011; 64: 191-8.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00014-4] [PMID: 22054947]
[112]
Lin AS, Engel S, Smith BA, et al. Structure and biological evaluation of novel cytotoxic sterol glycosides from the marine red alga Peyssonnelia sp. Bioorg Med Chem 2010; 18(23): 8264-9.
[http://dx.doi.org/10.1016/j.bmc.2010.10.010] [PMID: 21036050]
[113]
Liu Y, Morgan JB, Coothankandaswamy V, et al. The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 2009; 72(12): 2104-9.
[http://dx.doi.org/10.1021/np9005794] [PMID: 19921787]
[114]
Mahdi F, Falkenberg M, Ioannou E, Roussis V, Zhou YD, Nagle DG. Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochem Lett 2011; 4(2): 75-8.
[http://dx.doi.org/10.1016/j.phytol.2010.09.003] [PMID: 21785662]
[115]
Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006; 70(5): 1469-80.
[http://dx.doi.org/10.1124/mol.106.027029] [PMID: 16887934]
[116]
Guerra Dore CMP, Faustino Alves MGC, Santos ND, et al. Antiangiogenic activity and direct antitumor effect from a sulfated polysaccharide isolated from seaweed. Microvasc Res 2013; 88: 12-8.
[http://dx.doi.org/10.1016/j.mvr.2013.03.001] [PMID: 23507505]
[117]
Fernández LE, Valiente OG, Mainardi V, Bello JL, Vélez H, Rosado A. Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydr Res 1989; 190(1): 77-83.
[http://dx.doi.org/10.1016/0008-6215(89)84148-5] [PMID: 2790840]
[118]
Bringmann G, Gulder T, Lang G, et al. Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs 2007; 5(2): 23-30.
[http://dx.doi.org/10.3390/md502023] [PMID: 18463724]
[119]
Rickards RW, Rothschild JM, Willis AC, et al. Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 1999; 55(47): 13513-20.
[http://dx.doi.org/10.1016/S0040-4020(99)00833-9]
[120]
Liu H, Zhang L, Chen Y, et al. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat Prod Res 2017; 31(4): 404-10.
[http://dx.doi.org/10.1080/14786419.2016.1169418] [PMID: 27050657]
[121]
Zhang P, Li XM, Mao XX, Mándi A, Kurtán T, Wang BG. Varioloid A, a new indolyl-6,10b-dihydro-5a H-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Beilstein J Org Chem 2016; 12: 2012-8.
[http://dx.doi.org/10.3762/bjoc.12.188] [PMID: 27829905]
[122]
Solanki R, Khanna M, Lal R. Bioactive compounds from marine actinomycetes. Indian J Microbiol 2008; 48(4): 410-31.
[http://dx.doi.org/10.1007/s12088-008-0052-z] [PMID: 23100742]
[123]
Ravikumar S, Gnanadesigan M, Thajuddin N, Chakkaravarthi VD, Banerjee B. Anticancer property of sponge associated actinomycetes along Palk Strait. J Pharm Res 2010; 3: 2415-7.
[124]
Huang KJ, Chen YC, El-Shazly M, et al. 5-Episinuleptolide acetate, a norcembranoidal diterpene from the formosan soft coral Sinularia sp., induces leukemia cell apoptosis through Hsp90 inhibition. Molecules 2013; 18(3): 2924-33.
[http://dx.doi.org/10.3390/molecules18032924] [PMID: 23459302]
[125]
Wang SK, Hsieh MK, Duh CY. New diterpenoids from soft coral sarcophyton ehrenbergi. Mar Drugs 2013; 11(11): 4318-27.
[http://dx.doi.org/10.3390/md11114318] [PMID: 24177676]
[126]
Martínez Andrade K, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs 2018; 16(5): 165.
[http://dx.doi.org/10.3390/md16050165] [PMID: 29762545]
[127]
Lauritano C, Andersen JH, Hansen E, et al. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 2016; 3: 68.
[http://dx.doi.org/10.3389/fmars.2016.00068]
[128]
Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart Res 2008; 10(3): 507-17.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[129]
Ge Y, Zhang Y, Xia J, et al. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf B Biointerfaces 2009; 73(2): 294-301.
[http://dx.doi.org/10.1016/j.colsurfb.2009.05.031] [PMID: 19564099]
[130]
Colin JA, Pech-Pech IE, Oviedo M, Águila SA, Romo-Herrera JM, Contreras OE. Gold nanoparticles synthesis assisted by marine algae extract: Biomolecules shells from a green chemistry approach. Chem Phys Lett 2018; 708: 210-5.
[http://dx.doi.org/10.1016/j.cplett.2018.08.022]
[131]
Viswanathan S, Palaniyandi T, Kannaki P, et al. Biogenic synthesis of gold nanoparticles using red seaweed Champia parvula and its anti-oxidant and anticarcinogenic activity on lung cancer. Particul Sci Technol 2022; 41(3): 1-9.
[132]
Ajarem JS, Maodaa SN, Allam AA, Taher MM, Khalaf M. Benign synthesis of cobalt oxide nanoparticles containing red algae extract: Antioxidant, antimicrobial, anticancer, and anticoagulant activity. J Cluster Sci 2021; 1-12.
[133]
Aboeita NM, Fahmy SA, El-Sayed MMH, Azzazy HMES, Shoeib T. Enhanced anticancer activity of nedaplatin loaded onto copper nanoparticles synthesized using red algae. Pharmaceutics 2022; 14(2): 418.
[http://dx.doi.org/10.3390/pharmaceutics14020418] [PMID: 35214150]
[134]
Viswanathan S, Palaniyandi T, Shanmugam R, M T, Rajendran BK, Sivaji A. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species. Particul Sci Technol 2022; 40(6): 686-96.
[http://dx.doi.org/10.1080/02726351.2021.1992059]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy