Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Discovery and Development of a Class of New Conversion (PDF) in Friedländer Condensation of o-aminonitrile with Carbonyl Compounds

Author(s): Jianyu Duan, Qi Zhang, Ziqi Su, Juan Xu, Junjuan Yang and Jiarong Li*

Volume 27, Issue 9, 2023

Published on: 18 August, 2023

Page: [759 - 771] Pages: 13

DOI: 10.2174/1385272827666230731101156

Price: $65

Abstract

Since the discovery of the new conversion, through intramolecular Pinner to Dimroth rearrangement to form a new skeleton product of dihydroquinazolinone in the normal reaction of Friendländer quinoline synthesis of o-aminonitriles and carbonyl compounds, systematic studies have shown that this conversion is a fast and efficient method for the synthesis of nitrogen-containing heterocyclic compounds, especially pyrimidinone derivatives. In 2008, we named this new transformation as a PDF conversion (a new conversion of dihydroquinolinone skeleton compounds formed from intramolecular Pinner to Dimroth rearrangement in the Friedländer quinoline synthesis). In this review, the research progress of PDF conversion is systematically summarized from the following aspects: the discovery of PDF conversion, the determination of the structure of new conversion products, the mechanism of PDF conversion, a new type of organic bifurcation reaction, controllable PDF conversion, the breakthrough of conventional PDF transformation forms, and the application of PDF conversion.

[1]
Li, J.; Zhang, L.; Shi, D.; Li, Q.; Wang, D.; Wang, C.; Zhang, Q.; Zhang, L.; Fan, Y. Investigation of the reaction of o-aminonitriles with ketones: A new modification of Friedlander reaction and structures of its products. Synlett, 2008, 2008(2), 233-236.
[http://dx.doi.org/10.1055/s-2007-1000841]
[2]
Ferreira, F.V.; De, B.; Da Silva, T.; Pauli, P.F.; Ferreira, G.P.; Da, S.M.; Forezi, L.; De, S.; Lima, G.C.; De, C.; Da Silva, F. Dimroth’s rearrangement as a synthetic strategy towards new heterocyclic compounds. Curr. Org. Chem., 2020, 24(17), 1999-2018.
[http://dx.doi.org/10.2174/1385272824999200805114837]
[3]
Mamedov, V. А.; Zhukova, N.А.; Kadyrova, M.S. The dimroth rearrangement in the synthesis of condensed pyrimidines - structural analogs of antiviral compounds. Chem. Heterocycl. Compd., 2021, 57(4), 342-368.
[http://dx.doi.org/10.1007/s10593-021-02913-7] [PMID: 34024912]
[4]
Krajczyk, A.; Boryski, J. Dimroth rearrangement-old but not outdated. Curr. Org. Chem., 2017, 21(25), 2515-2529.
[http://dx.doi.org/10.2174/1385272821666170427125720]
[5]
Dawood, K.M.; Farghaly, T.A.; Raslan, M.A. Hetero-annulation routes to bioactive pyrazolooxazines. Curr. Org. Chem., 2020, 24(17), 1943-1975.
[http://dx.doi.org/10.2174/1570179417999200628035124]
[6]
Bhat, M.; Belagali, S.L.; Mamatha, S.V.; Sagar, B.K.; Sekhar, E.V. Chapter 7 - Importance of quinazoline and quinazolinone derivatives in medicinal chemistry. In: Studies in Natural Products Chemistry; Elsevier, 2021, 71, pp. 185-219.
[http://dx.doi.org/10.1016/B978-0-323-91095-8.00005-2]
[7]
Badolato, M.; Aiello, F.; Neamati, N. 2,3-Dihydroquinazolin-4(1H-one as a privileged scaffold in drug design. RSC Adv, 2018, 8(37), 20894-20921.
[http://dx.doi.org/10.1039/C8RA02827C] [PMID: 35542353]
[8]
Kumar, S.V.; Muthusubramanian, S.; Perumal, S. Recent progress in the synthesis of pyrazolopyridines and their derivatives. Org. Prep. Proced. Int., 2019, 51(1), 1-89.
[http://dx.doi.org/10.1080/00304948.2018.1542517]
[9]
Friedlaender, P. Ueber o-amidobenzaldehyd. Ber. Dtsch. Chem. Ges., 1882, 15(2), 2572-2575.
[http://dx.doi.org/10.1002/cber.188201502219]
[10]
Cheng, C.C.; Yan, S.J. The Friedländer synthesis of quinolines. In: Organic Reactions; Wiley Online Library, 2005, pp. 37-201.
[11]
Pflum, D. Friedländer quinoline synthesis. In: Name Reactions in Heterocyclic Chemistry; Li, J.J.; Corey, E.J., Eds.; NJ, 2005, pp. 411-415.
[12]
Rajendran, S.; Sivalingam, K.; Karnam Jayarampillai, R.P.; Wang, W.L.; Salas, C.O. Friedlӓnder’s synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem. Biol. Drug Des., 2022, 100(6), 1042-1085.
[http://dx.doi.org/10.1111/cbdd.14044] [PMID: 35322543]
[13]
Ghobadi, N.; Nazari, N.; Gholamzadeh, P. The Friedländer reaction: A powerful strategy for the synthesis of heterocycles. Adv. Heterocycl. Chem., 2020, 132, 85-134.
[http://dx.doi.org/10.1016/bs.aihch.2020.01.001]
[14]
Summers, W.K.; Majovski, L.V.; Marsh, G.M.; Tachiki, K.; Kling, A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N. Engl. J. Med., 1986, 315(20), 1241-1245.
[http://dx.doi.org/10.1056/NEJM198611133152001] [PMID: 2430180]
[15]
Eagger, S.A.; Levy, R.; Sahakian, B.J. Tacrine in Alzheimer’s disease. Lancet, 1991, 337(8748), 989-992.
[http://dx.doi.org/10.1016/0140-6736(91)92656-M] [PMID: 1673209]
[16]
Wilcock, G.K.; Surmon, D.J.; Scott, M.; Boyle, M.; Mulligan, K.; Neubauer, K.A.; O’Neill, D.; Royston, V.H. An evaluation of the efficacy and safety of tetrahydroaminoacridine (THA) without lecithin in the treatment of Alzheimer’s disease. Age Ageing, 1993, 22(5), 316-324.
[http://dx.doi.org/10.1093/ageing/22.5.316] [PMID: 8237620]
[17]
Parnetti, L.; Senin, U.; Mecocci, P. Cognitive enhancement therapy for Alzheimer’s disease. The way forward. Drugs, 1997, 53(5), 752-768.
[http://dx.doi.org/10.2165/00003495-199753050-00003] [PMID: 9129864]
[18]
Wagstaff, A.J.; McTavish, D. Tacrine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer’s disease. Drugs Aging, 1994, 4(6), 510-540.
[http://dx.doi.org/10.2165/00002512-199404060-00006] [PMID: 7521234]
[19]
Cacabelos, R.; Alvarez, A.; Lombardi, V.; Fernández-Novoa, L.; Corzo, L.; Pérez, P.; Laredo, M.; Pichel, V.; Hernández, A.; Varela, M.; Figueroa, J.; Prous, J., Jr; Windisch, M.; Vigo, C. Pharmacological treatment of Alzheimer disease: From psychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today, 2000, 36(7), 415-499.
[http://dx.doi.org/10.1358/dot.2000.36.7.589153] [PMID: 12861345]
[20]
Yang, H.; Jia, H.; Deng, M.; Zhang, K.; Liu, Y.; Liu, Y.; Cheng, M.; Xiao, W. Design, synthesis and evaluation of OA-tacrine hybrids as cholinesterase inhibitors with low neurotoxicity and hepatotoxicity against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2192439.
[http://dx.doi.org/10.1080/14756366.2023.2192439] [PMID: 36950955]
[21]
Li, J.R.; Ma, S.L. A new and efficient synthesis of 2H-3,1-benzoxazine compounds. Chin. Chem. Lett., 2005, 16(11), 1424-1426.
[22]
Li, J.R.; Ma, S.L.; Sun, Y.J.; Zhou, Z.M. Synthesis and crystal structure of 3,1-benzoxazine compounds. Youji Huaxue, 2006, 26(7), 928-932.
[23]
León, R.; García, A.G.; Marco-Contelles, J. Unexpected results in the Friedlander reaction of 4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-[1]benzopyran-3-carbonitriles. J. Chem. Res., 2006, 2006(8), 536-538.
[http://dx.doi.org/10.3184/030823406778256324]
[24]
Ma, S.; Li, J.; Sun, Y.; Zhou, Z.; Zhao, X. A novel facile one-pot synthesis of 3,1-benzoxazine derivatives. J. Chem. Res., 2006, 2006(7), 449-450.
[http://dx.doi.org/10.3184/030823406777980673]
[25]
Bonacorso, H.G.; Silva, L.B.; Rocha, J.B.T.; Nogara, P.A.; Waczuk, E.P.; Silva, F.D.A.; Bueno, D.C.; Kader, Y.N.A.M.; Martins, M.A.P.; Zanatta, N. Synthesis, biological evaluation and molecular docking study of 7-amine-spiro[chromeno[4,3-b]quinoline-6,1'-cycloalkanes] as new tacrine hybrids. Tetrahedron Lett., 2015, 56(50), 7024-7027.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.008]
[26]
León, R.; Marco-Contelles, J. A step further towards multitarget drugs for Alzheimer and neuronal vascular diseases: Targeting the cholinergic system, amyloid-β aggregation and Ca2+ dyshomeostasis. Curr. Med. Chem., 2011, 18(4), 552-576.
[http://dx.doi.org/10.2174/092986711794480186] [PMID: 21143111]
[27]
Li, J.R.; Ma, S.L.; Sun, Y.J.; Wei, X.J.; Zhou, Z.M. Novel synthesis of 2H-3,1-benzoxazine derivatives. J. Heterocycl. Chem., 2006, 43(3), 745-748.
[http://dx.doi.org/10.1002/jhet.5570430332]
[28]
Li, J.R.; Ma, S.L.; Sun, Y.J.; Zhao, J.M.; Zhou, Z.M. New synthesis of 2H-3,1-benzoxazine derivatives: Zinc chloride-catalyzed cyclocondensation of 2-amino-5-nitrobenzonitrile with aldehydes under microwave conditions. Synth. Commun., 2006, 36(11), 1537-1542.
[http://dx.doi.org/10.1080/00397910600588801]
[29]
Ma, S.; Li, J.; Sun, Y.; Zhao, J.; Zhao, X.; Yang, X.; Zhang, L.; Wang, L.; Zhou, Z. Synthesis of 1,2-dihydro-4H-3,1-benzoxazine derivatives via ZnCl2 catalyzed cyclocondensation reaction. Tetrahedron, 2006, 62(34), 7999-8005.
[http://dx.doi.org/10.1016/j.tet.2006.06.033]
[30]
Li, J.R.; Zhang, L.J.; Chen, J.N.; Yang, X.Q.; Wang, L.J.; Zhao, X.F.; Qiu, J.X. Synthesis of 2H-3,1-pyrazolo[3,4-e]oxazines via a new conversion of Friedländer reaction. Chin. Chem. Lett., 2007, 18(6), 636-638.
[http://dx.doi.org/10.1016/j.cclet.2007.04.015]
[31]
Zhang, L.; Li, J.; Shi, D.; Chen, J. Redetermination at 113 K of 2,2-tetramethylene-1,2-dihydroquinazolin-4(3H)-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2008, 64(2), o449.
[http://dx.doi.org/10.1107/S1600536807066706] [PMID: 21201476]
[32]
Zhang, L.; Li, J.; Shi, D.; Zhang, L.; Fan, Y. (S)-2-(3-Nitrophenyl)-1,2-dihydroquinazolin-4(3H)-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2008, 64(2), o448.
[http://dx.doi.org/10.1107/S1600536807066251] [PMID: 21201475]
[33]
Li, J.R.; Zhang, L.J.; Yang, X.Q.; Li, Q.; Wang, D.; Wang, C.X.; Shi, D.X.; Zhang, Q. New conversion of Friendländer reaction of 3-amino-1H-benzo[f]chromene-2-carbonitriles with cyclohexanone. Chin. Chem. Lett., 2008, 19(1), 15-18.
[http://dx.doi.org/10.1016/j.cclet.2007.11.003]
[34]
Zhang, L.; Li, J.; Yang, X.; Shi, D.; Chen, J. 2-Methyl-2-phenyl-1,2-dihydroquinazolin-4(3H)-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2008, 64(2), o450.
[http://dx.doi.org/10.1107/S1600536807065427] [PMID: 21201477]
[35]
Zhang, L.; Shi, D.; Li, J.; Zhang, L.; Fan, Y. 1-Phenyl-6,7,8,9-hexa-hydro-1H,5H-cyclo-hepta-[1'2'2,3]pyrido[6,5-c]pyrazol-4-amine: A new tacrine analogue. Acta Crystallogr. Sect. E Struct. Rep. Online, 2008, 64(Pt 6), o1056.
[http://dx.doi.org/10.1107/S1600536808013366] [PMID: 21202575]
[36]
Tang, J.H.; Shi, D.X.; Zhang, L.J.; Zhang, Q.; Li, J.R. Facile and one-pot synthesis of 1,2-dihydroquinazolin-4(3H)ones via tandem intramolecular pinner/dimroth rearrangement. Synth. Commun., 2010, 40(5), 632-641.
[http://dx.doi.org/10.1080/00397910902908822]
[37]
Tang, J.; Li, J.; Zhang, L.; Ma, S.; Shi, D.; Zhang, Q.; Yang, L.; Wang, X.; Liu, X.; Liu, C. The divergent transformations of aromatic o-aminonitrile with carbonyl compound. J. Heterocycl. Chem., 2012, 49(3), 533-542.
[http://dx.doi.org/10.1002/jhet.804]
[38]
Yang, J.; Shi, D.; Liu, M.; Zhang, L.; Zhang, Q.; Li, J. Structure of the condensed product of aromatic o-aminonitrile with carbonyl compound and its mechanism. Youji Huaxue, 2014, 34(12), 2424-2437.
[http://dx.doi.org/10.6023/cjoc201406007]
[39]
Zhang, L.J. The study on the new conversion of Friedländer reaction and the synthesis of aza-heterocycles. PhD Thesis, Beijing Institute of Technology: Beijing, 2008.
[40]
Gütschow, M.; Neumann, U.; Sieler, J.; Eger, K. Studies on 2-benzyloxy-4H-3,1-benzoxazin-4-ones as serine protease inhibitors. Pharm. Acta Helv., 1998, 73(2), 95-103.
[http://dx.doi.org/10.1016/S0031-6865(98)00003-X] [PMID: 9700938]
[41]
Zhang, L.; Shi, D.; Fan, Y.; Qian, D.; Li, J. 2,2,7-trimethyl-2,3-dihydroquinazolin-4(1H)-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2009, 65(6), o1345.
[http://dx.doi.org/10.1107/S1600536809018480] [PMID: 21583197]
[42]
Dounay, A.B.; Overman, L.E.; Wrobleski, A.D. Sequential catalytic asymmetric Heck-iminium ion cyclization: Enantioselective total synthesis of the Strychnos alkaloid minfiensine. J. Am. Chem. Soc., 2005, 127(29), 10186-10187.
[http://dx.doi.org/10.1021/ja0533895] [PMID: 16028927]
[43]
Wu, X.F.; Oschatz, S.; Block, A.; Spannenberg, A.; Langer, P. Base mediated synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones from 2-aminobenzonitriles and aromatic aldehydes in water. Org. Biomol. Chem., 2014, 12(12), 1865-1870.
[http://dx.doi.org/10.1039/c3ob42434k] [PMID: 24522449]
[44]
Tang, J.H. Controllable divergent reaction of aromatic o-aminonitriles with carbonyl compound. PhD Thesis, Beijing Institute of Technology: Beijing, 2011.
[45]
Angelin, M.; Fischer, A.; Ramström, O. Crystallization-induced secondary selection from a tandem driven dynamic combinatorial resolution process. J. Org. Chem., 2008, 73(9), 3593-3595.
[http://dx.doi.org/10.1021/jo8002453] [PMID: 18363377]
[46]
Angelin, M.; Vongvilai, P.; Fischer, A.; Ramström, O. Tandem driven dynamic combinatorial resolution via Henry–iminolactone rearrangement. Chem. Commun., 2008, (6), 768-770.
[http://dx.doi.org/10.1039/B716521H] [PMID: 18478718]
[47]
Yuan, H.; Zhang, J. [DBU-H]+ and H2O as effective catalyst form for 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones: A DFT study. J. Comput. Chem., 2015, 36(17), 1295-1303.
[http://dx.doi.org/10.1002/jcc.23923] [PMID: 25907078]
[48]
Qiu, F.; Yang, J.; Shi, D.; Zhang, Q.; Li, J. Synthesis of thieno[2,3-b]thiophene fused pyrimidine derivatives via sequential conversion of 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarbonitrile with carbonyl compounds. Tetrahedron Lett., 2016, 57(11), 1210-1214.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.040]
[49]
Khoramdelan, F.; Davoodnia, A.; Bozorgmehr, M.R.; Ebrahimi, M. Synthesis of new functionalized 1,4-dihydroquinolines and pyrimido[4,5-b]quinolines. Russ. J. Gen. Chem., 2017, 87(12), 2961-2965.
[http://dx.doi.org/10.1134/S1070363217120386]
[50]
Trost, B.M.; Rhee, Y.H. A Ru catalyzed divergence: Oxidative cyclization vs cycloisomerization of bis-homopropargylic alcohols. J. Am. Chem. Soc., 2002, 124(11), 2528-2533.
[http://dx.doi.org/10.1021/ja011840w] [PMID: 11890802]
[51]
Zhang, L. Tandem au-catalyzed 3,3-rearrangement-[2 + 2] cycloadditions of propargylic esters: Expeditious access to highly functionalized 2,3-indoline-fused cyclobutanes. J. Am. Chem. Soc., 2005, 127(48), 16804-16805.
[http://dx.doi.org/10.1021/ja056419c] [PMID: 16316224]
[52]
Zhang, G.; Catalano, V.J.; Zhang, L. PtCl2-catalyzed rapid access to tetracyclic 2,3-indoline-fused cyclopentenes: Reactivity divergent from cationic Au(I) catalysis and synthetic potential. J. Am. Chem. Soc., 2007, 129(37), 11358-11359.
[http://dx.doi.org/10.1021/ja074536x] [PMID: 17722932]
[53]
Ye, Y.; Zheng, C.; Fan, R. Solvent-controlled oxidative cyclization for divergent synthesis of highly functionalized oxetanes and cyclopropanes. Org. Lett., 2009, 11(14), 3156-3159.
[http://dx.doi.org/10.1021/ol9012102] [PMID: 19534509]
[54]
Vaidya, T.; Atesin, A.C.; Herrick, I.R.; Frontier, A.J.; Eisenberg, R. A highly reactive dicationic iridium(III) catalyst for the polarized Nazarov cyclization reaction. Angew. Chem. Int. Ed., 2010, 49(19), 3363-3366.
[http://dx.doi.org/10.1002/anie.201000100] [PMID: 20358570]
[55]
Lai, J.J.; Salunke, D.B.; Sun, C.M. Multistep microwave-assisted divergent synthesis of indolo-fused pyrazino-/diazepinoquinoxalinones on PEG support. Org. Lett., 2010, 12(10), 2174-2177.
[http://dx.doi.org/10.1021/ol100436r] [PMID: 20420382]
[56]
Zhao, Y.B.; Mariampillai, B.; Candito, D.A.; Laleu, B.; Li, M.; Lautens, M. Exploiting the divergent reactivity of aryl-palladium intermediates for the rapid assembly of fluorene and phenanthrene derivatives. Angew. Chem. Int. Ed., 2009, 48(10), 1849-1852.
[http://dx.doi.org/10.1002/anie.200805780] [PMID: 19173357]
[57]
Zha, T.; Tong, X.; Deng, Y.; Peng, F.; Shao, Z. Catalytic asymmetric and divergent synthesis of tricyclic and tetracyclic spirooxindoles: Controllable site-selective electrophilic halocyclization of 1,6-enynes. Org. Lett., 2019, 21(15), 6068-6073.
[http://dx.doi.org/10.1021/acs.orglett.9b02202] [PMID: 31318558]
[58]
Ghosh, T.; Mandal, I.; Basak, S.J.; Dash, J. Potassium tert -Butoxide promoted synthesis of dihydroquinazolinones. J. Org. Chem., 2021, 86(21), 14695-14704.
[http://dx.doi.org/10.1021/acs.joc.1c01510] [PMID: 34570509]
[59]
Li, J.R.; Zhang, L.J.; Shi, D.X.; Wang, D.; Li, Q.; Zhang, Q. Method for synthesis of 1,2-dihydroquinazolin-4(3H)-one heterocyclic compound. C.N. Patent 101190899, 2012.
[60]
Chen, S.; Shi, D.; Liu, M.; Li, J. 7'-amino-1'H-spiro[cycloheptane-1,2'-pyrimido[4,5-d]pyrimidin]-4'(3'H)-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68(8), o2546.
[http://dx.doi.org/10.1107/S1600536812031492] [PMID: 22904978]
[61]
Yang, J.; Shi, D.; Zhang, K.; Zhao, Z.; Qiu, F.; Bi, Y.; Li, J. Efficient constructions of the four different thienopyrimidinone skeletons via various cyclo-condensation of o-aminothienonitrile with carbonyl compounds. Heterocycles, 2016, 92(5), 866-885.
[http://dx.doi.org/10.3987/COM-16-13427]
[62]
Liu, C.; Yu, Q.; Tang, J.; Li, J. One-pot synthesis of 4(3H)-quinazolinone under base condition. Youji Huaxue, 2012, 32(3), 532-537.
[http://dx.doi.org/10.6023/cjoc1108102]
[63]
Da Costa, J.S.; Pisoni, D.S.; Da Silva, C.B.; Petzhold, C.L.; Russowsky, D.; Ceschi, M.A. Lewis acid promoted Friedländer condensation reactions between anthranilonitrile and ketones for the synthesis of tacrine and its analogs. J. Braz. Chem. Soc., 2009, 20(8), 1448-1454.
[64]
Chen, T.; Zhang, Y.; Xu, Y. Efficient synthesis of quinazoline-2,4(1H,3H)-dione via simultaneous activated CO2 and 2-aminobenzonitrile by 1-methylhydantoin anion-functionalized ionic liquid through the multiple-site cooperative interactions. ACS Sustain. Chem.& Eng., 2022, 10(32), 10699-10711.
[http://dx.doi.org/10.1021/acssuschemeng.2c03249]
[65]
Chen, Y.; Liu, C.; Duan, Y.; Yu, D.; Liu, Z.; Li, Y.; Shi, R.; Guo, Y.; Mu, T. Room-temperature conversion of CO2 into quinazoline-2,4(1H, 3H)-dione using deep eutectic solvents at atmospheric pressure with high efficiency. React. Chem. Eng., 2022, 7(9), 1968-1977.
[http://dx.doi.org/10.1039/D2RE00137C]
[66]
Chai, H.; Li, J.; Yang, L.; Liu, M.; Yang, D.; Zhang, Q.; Shi, D. N-heterocyclic carbene-catalyzed reactions of o-aminonitriles with carbonyl compounds approach to 2,3-dihydroquinazolin-4(1H)-ones. Chin. J. Chem., 2014, 32(9), 865-870.
[http://dx.doi.org/10.1002/cjoc.201400381]
[67]
Liu, M.; Li, J.; Chen, S.; Huang, D.; Chai, H.; Zhang, Q.; Shi, D. One-pot NHC-assisted access to 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones. RSC Advances, 2014, 4(67), 35629-35634.
[http://dx.doi.org/10.1039/C4RA05346J]
[68]
Liu, M.; Li, J.; Zheng, K.; Yao, H.; Zhang, Q.; Shi, D. Base-catalyzed one-pot tandem reaction: An effective strategy for the synthesis of pyrazolo[3,4-d]pyrimidinone derivatives. Tetrahedron, 2015, 71(40), 7658-7662.
[http://dx.doi.org/10.1016/j.tet.2015.07.065]
[69]
Liu, M.X.; Shi, D.X.; Tang, J.H.; Zhang, Q.; Li, J.R. Synthesis of polysubstituted quinazolinones from the continuous reaction of α-cyano disulfide ketene. Youji Huaxue, 2011, 31(10), 1710-1713.
[70]
Tang, J.; Shi, D.; Yan, L.; Liu, X.; Li, J. 5'-Methyl-4'-oxo-7'-phenyl-3'4'-dihydro-1'H-spiro[cyclohexane-1,2'-quinazoline]-8'-carbonitrile. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(7), o1672.
[http://dx.doi.org/10.1107/S160053681102188X] [PMID: 21837071]
[71]
Davoodi, F.; Dekamin, M.G.; Alirezvani, Z. A practical and highly efficient synthesis of densely functionalized nicotinonitrile derivatives catalyzed by zinc oxide-decorated superparamagnetic silica attached to graphene oxide nanocomposite. Appl. Organomet. Chem., 2019, 33(4), e4735.
[http://dx.doi.org/10.1002/aoc.4735]
[72]
Borase, P.N.; Thale, P.B.; Shankarling, G.S. A choline hydroxide catalyzed synthesis of 2,3-dihydroquinazolin-4(1H)-ones in an aqueous medium. RSC Advances, 2016, 6(67), 63078-63083.
[http://dx.doi.org/10.1039/C6RA15574J]
[73]
Yang, L.; Shi, D.; Chen, S.; Chai, H.; Huang, D.; Zhang, Q.; Li, J. Microwave-assisted synthesis of 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones catalyzed by DBU in aqueous medium. Green Chem., 2012, 14(4), 945-951.
[http://dx.doi.org/10.1039/c2gc16469h]
[74]
Dutta, A.; Sarma, D. Base promoted metal-free approach towards synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones under microwave irradiation. Sustain. Chem. Pharm., 2021, 20, 100402.
[http://dx.doi.org/10.1016/j.scp.2021.100402]
[75]
Yang, L.; Li, J.; Chai, H.; Yuan, H.; Zhang, Q.; Shi, D. Synthesis of 2,3,8,9-Tetrahydropyrido[2,3-d:6,5-d’]dipyrimidine-4,6-diones. Youji Huaxue, 2013, 33(1), 174-177.
[http://dx.doi.org/10.6023/cjoc201208039]
[76]
Yang, L.; Li, J.; Chai, H.; Lu, H.; Zhang, Q.; Shi, D. A divergent synthesis of 1,8-naphthyridines and hydropyridopyrimidinones by the reactions of o-aminonitriles with ketones. Chin. J. Chem., 2013, 31(4), 443-448.
[http://dx.doi.org/10.1002/cjoc.201201247]
[77]
Zhen, B.; Jiao, Q.; Zhang, Y.; Wu, Q.; Li, H.; Shi, D.; Li, J. Fast condensation of cyclohexanone with 2-aminobenzonitrile at room temperature catalysed by an N-heterocyclic carbene. Catal. Commun., 2013, 32, 1-4.
[http://dx.doi.org/10.1016/j.catcom.2012.11.029]
[78]
Zhang, L.J.; Yu, J.L.; Wang, W.L.; Li, H.; Xu, D.D.; Bi, Y.D.; Liu, F.D. Metal modified SSA as a heterogeneous catalyst to promote the cyclocondesation of o-aminobenzonitriles with cycloketones in water. Tetrahedron Lett., 2014, 55(3), 710-712.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.001]
[79]
Nagarajan, S.; Shaikh, T.M.; Kandasamy, E. An ionic liquid catalyzed reusable protocol for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-one under mild conditions. New J. Chem., 2015, 39(12), 9693-9699.
[http://dx.doi.org/10.1039/C5NJ01545F]
[80]
Zhang, Y.; Zhen, B.; Li, H.; Feng, Y. Basic ionic liquid as catalyst and surfactant: Green synthesis of quinazolinone in aqueous media. RSC Advances, 2018, 8(64), 36769-36774.
[http://dx.doi.org/10.1039/C8RA06378H] [PMID: 35558908]
[81]
Toma, S.; Sebesta, R.; Meciarova, M. Organocatalytic reactions under unusual conditions. Curr. Org. Chem., 2011, 15(13), 2257-2281.
[http://dx.doi.org/10.2174/138527211796150723]
[82]
Johnson, A.; Perchyonok, V. Recent advances in free radical chemistry in unconventional media. Ionic liquids, microwaves and solid state to the rescue. Curr. Org. Chem., 2009, 13(17), 1705-1725.
[http://dx.doi.org/10.2174/138527209789578027]
[83]
Martínez-Palou, R. Microwave-assisted synthesis using ionic liquids. Mol. Divers., 2010, 14(1), 3-25.
[http://dx.doi.org/10.1007/s11030-009-9159-3] [PMID: 19507045]
[84]
Chiappe, C.; Pomelli, C.S. Computational studies on organic reactivity in ionic liquids. Phys. Chem. Chem. Phys., 2013, 15(2), 412-423.
[http://dx.doi.org/10.1039/C2CP43074F] [PMID: 23172075]
[85]
Dutta, A.; Damarla, K.; Kumar, A.; Saikia, P.J.; Sarma, D. Gemini basic ionic liquid as bi-functional catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones at room temperature. Tetrahedron Lett., 2020, 61(10), 151587.
[http://dx.doi.org/10.1016/j.tetlet.2019.151587]
[86]
Li, J.R.; Chai, H.X.; Yang, L.P. Method for synthesizing 1,3-benzoxazine- 4-ketone compound. C.N. Patent 106967003, 2017.
[87]
Su, Z.; Chai, H.; Xu, J.; Li, J. ZnCl2-promoted domino reaction of 2-hydroxybenzonitriles with ketones for synthesis of 1,3-benzoxazin-4-ones. RSC Advances, 2021, 11(48), 29906-29911.
[http://dx.doi.org/10.1039/D1RA04194K] [PMID: 35480257]
[88]
Liu, M.; Li, J.; Zhang, Q.; Shi, D. CoCl2 center dot 6H2O-promoted pinner-dimroth tandem reaction: Facile synthesis of 3-substituted isoindolinones. Heterocycles, 2015, 91(7), 1465-1472.
[http://dx.doi.org/10.3987/COM-15-13247]
[89]
Yang, D.; Li, J.; Sun, K.; Lu, H.; Liu, M.; Shi, D. One-pot three components synthesis of β-amido ketones. Youji Huaxue, 2013, 33(11), 2341-2348.
[http://dx.doi.org/10.6023/cjoc201306007]
[90]
Chai, H.; Li, J.; Yang, L.; Lu, H.; Qi, Z.; Shi, D. Copper-catalyzed tandem N-arylation/condensation: Synthesis of quinazolin-4(3H)-ones from 2-halobenzonitriles and amides. RSC Advances, 2014, 4(84), 44811-44814.
[http://dx.doi.org/10.1039/C4RA08031A]
[91]
Liu, M.; Li, J.; Chai, H.; Zhang, K.; Yang, D.; Zhang, Q.; Shi, D. A convenient four-component one-pot strategy toward the synthesis of pyrazolo[3,4-d]pyrimidines. Beilstein J. Org. Chem., 2015, 11, 2125-2131.
[http://dx.doi.org/10.3762/bjoc.11.229] [PMID: 26664633]
[92]
Yang, J.; Shi, D.; Hao, P.; Yang, D.; Zhang, Q.; Li, J. An innovative synthesis of tertiary hydroxyl thieno[2,3-d]pyrimidinone skeleton: Natural-like product from the tandem reaction of o-aminothienonitrile and carbonyl compound. Tetrahedron Lett., 2016, 57(22), 2455-2461.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.088]
[93]
Li, J.; Chen, H.; Shi, D.; Ma, S.; Li, Q.; Zhang, Q.; Tang, J. A new and facile synthesis of quinazoline-2,4(1H,3H)-diones. Org. Lett., 2009, 11(6), 1193-1196.
[http://dx.doi.org/10.1021/ol900093h] [PMID: 19239261]
[94]
Dale, D.J.; Dunn, P.J.; Golightly, C.; Hughes, M.L.; Levett, P.C.; Pearce, A.K.; Searle, P.M.; Ward, G.; Wood, A.S. The chemical development of the commercial route to sildenafil: A case history. Org. Process Res. Dev., 2000, 4(1), 17-22.
[http://dx.doi.org/10.1021/op9900683]
[95]
Xu, M.; Shi, D.; Liu, M.; Zhang, Q.; Li, J. Study of 1-methyl-3-propyl-4-aminopyrazole-5-carbonitrile. Youji Huaxue, 2016, 36(7), 1611-1616.
[http://dx.doi.org/10.6023/cjoc201512042]
[96]
Su, Z.; Zhang, Q.; Zhao, J.; Zhao, T.; Liu, W.; Wang, H.; Xu, J.; Li, J. An efficient and rapid synthesis of 1H-pyrazolo[3,4-d]-pyrimidin-4(5H)-one in water. Youji Huaxue, 2021, 41(9), 3701-3709.
[http://dx.doi.org/10.6023/cjoc202104043]
[97]
Su, Z.Q.; Zhang, Q.; Zhao, Q.Q.; Liu, W.Y.; Zhao, T.; Wang, H.P.; Li, J.R.; Xu, J. Synthesis and properties of sildenafil isostere. Arch. Pharm., 2021, 354(10), e2100145.
[http://dx.doi.org/10.1002/ardp.202100145] [PMID: 34131943]
[98]
Agrawal, J.P. Recent trends in high-energy materials. Pror. Energy Combust. Sci., 1998, 24(1), 1-30.
[http://dx.doi.org/10.1016/S0360-1285(97)00015-4]
[99]
Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M.C.; Soriano, E. Recent advances in the Friedländer reaction. Chem. Rev., 2009, 109(6), 2652-2671.
[http://dx.doi.org/10.1021/cr800482c] [PMID: 19361199]
[100]
Zeman, S.; Friedl, Z. Roháč M. Molecular structure aspects of initiation of some highly thermostable polynitro arenes. Thermochim. Acta, 2006, 451(1-2), 105-114.
[http://dx.doi.org/10.1016/j.tca.2006.09.008]
[101]
Buschmann, H.J.; Schollmeyer, E. Stabilization of dyes against hydrolytic decomposition by the formation of inclusion compounds. J. Incl. Phenom. Mol. Recognit. Chem., 1992, 14(2), 91-99.
[http://dx.doi.org/10.1007/BF01029656]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy