Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Aortic Intima-Media Thickness is Increased in Neonates of Mothers with Gestational Diabetes Mellitus: The Role of Thioredoxin-Interacting Protein as a Marker of Oxidative Stress

Author(s): Pinelopi Triantafyllidou*, Anna Papadopoulou, Eirini Thymara, Vassiliki Papaevangelou, George Mastorakos, Anastasios Papadimitriou, Sophia Kalantaridou, Constantine A. Stratakis and Efthymia Alexopoulou

Volume 21, Issue 4, 2023

Published on: 28 August, 2023

Page: [234 - 245] Pages: 12

DOI: 10.2174/1570161121666230727150854

Price: $65

Abstract

Background: Offspring exposed in foetal life to gestational diabetes mellitus (GDM) are at increased risk for future metabolic diseases.

Objective: To explore the prognostic role of abdominal aorta intima-media thickness (aIMT) in neonates exposed to GDM as a possible biomarker for later atherogenesis and its possible correlation with thioredoxin- interacting protein (TXNIP), a protein involved in oxidative stress.

Methods: In this prospective, observational study, mother-infant pairs were studied in 2 groups (57 patients with GDM and 51 controls without GDM). TXNIP levels were measured in the placenta, as well as in the umbilical and neonatal blood. The data were correlated with aIMT in neonates.

Results: aIMT was increased in GDM offspring (patients: median [range]=0.39 mm [0.31-0.46] vs controls: median=0.28 mm [0.23-0.33]; p=0.001) and remained significant after adjusting for possible confounders (e.g., triglycerides, blood pressure, vitamin D, birth weight and gender; β coefficient=0.131 p=0.049). TXNIP levels were increased in trophoblasts (p=0.001) and syncytiotrophoblasts (p=0.001) and were decreased in endothelial cells (p=0.022) in GDM offspring vs controls. Moreover, TXNIP levels in trophoblasts positively correlated with aIMT (r=0.369; p=0.001). TXNIP levels in umbilical/ neonatal blood were not associated with GDM.

Conclusion: Increased aIMT was demonstrated in the offspring of mothers with GDM. Non-invasive measurement of aIMT could be used as a biomarker to identify children at increased risk for atherogenesis later in life. This information may encourage early preventive measures. TXNIP may be associated with GDM and/or aIMT.

Graphical Abstract

[1]
International Diabetes Federation. IDF Diabetes Atlas 2021.https://www.diabetesatlas.org
[2]
Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008; 358(19): 1991-2002.
[http://dx.doi.org/10.1056/NEJMoa0707943] [PMID: 18463375]
[3]
Shang M, Lin L. IADPSG criteria for diagnosing gestational diabetes mellitus and predicting adverse pregnancy outcomes. J Perinatol 2014; 34(2): 100-4.
[http://dx.doi.org/10.1038/jp.2013.143] [PMID: 24232664]
[4]
Lappas M, Hiden U, Desoye G, Froehlich J, Mouzon SH, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 2011; 15(12): 3061-100.
[http://dx.doi.org/10.1089/ars.2010.3765] [PMID: 21675877]
[5]
Schliefsteiner C, Hirschmugl B, Kopp S, et al. Maternal gestational diabetes mellitus increases placental and foetal lipoprotein-associated phospholipase A2 which might exert protective functions against oxidative stress. Sci Rep 2017; 7(1): 12628.
[http://dx.doi.org/10.1038/s41598-017-13051-6] [PMID: 28974763]
[6]
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of endothelial dysfunction in pre-eclampsia and gestational diabetes mellitus: Windows into future cardiometabolic health? Front Endocrinol 2020; 11: 655.
[http://dx.doi.org/10.3389/fendo.2020.00655] [PMID: 33042016]
[7]
Plows J, Stanley J, Baker P, Reynolds C, Vickers M. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 2018; 19(11): 3342.
[http://dx.doi.org/10.3390/ijms19113342] [PMID: 30373146]
[8]
Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: Redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 2014; 4: 514.
[http://dx.doi.org/10.3389/fimmu.2013.00514] [PMID: 24409188]
[9]
Zitman-Gal T, Green J, Pasmanik-Chor M, Oron-Karni V, Bernheim J. Endothelial pro-atherosclerotic response to extracellular diabetic-like environment: possible role of thioredoxin-interacting protein. Nephrol Dial Transplant 2010; 25(7): 2141-9.
[http://dx.doi.org/10.1093/ndt/gfp768] [PMID: 20089511]
[10]
Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem 1999; 274(31): 21645-50.
[http://dx.doi.org/10.1074/jbc.274.31.21645] [PMID: 10419473]
[11]
Basnet R, Basnet TB, Basnet BB, Khadka S. Overview on thioredoxin-interacting protein (TXNIP): A potential target for diabetes intervention. Curr Drug Targets 2022; 23(7): 761-7.
[http://dx.doi.org/10.2174/1389450123666220303092324] [PMID: 35240955]
[12]
Parikh H, Carlsson E, Chutkow WA, et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 2007; 4(5): e158.
[http://dx.doi.org/10.1371/journal.pmed.0040158] [PMID: 17472435]
[13]
Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem 2010; 285(6): 3997-4005.
[http://dx.doi.org/10.1074/jbc.M109.034421] [PMID: 19959470]
[14]
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11(2): 136-40.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[15]
Wondafrash DZ, Nire’a AT, Tafere GG, Desta DM, Berhe DA, Zewdie KA. Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. Diabetes Metab Syndr Obes 2020; 13: 43-51.
[http://dx.doi.org/10.2147/DMSO.S232221] [PMID: 32021350]
[16]
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013; 19(9): 1141-6.
[http://dx.doi.org/10.1038/nm.3287] [PMID: 23975026]
[17]
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in metabolic regulation: Physiological role and therapeutic outlook. Curr Drug Targets 2017; 18(9): 1095-103.
[http://dx.doi.org/10.2174/1389450118666179139145514] [PMID: 28137209]
[18]
Dunn LL, Simpson PJL, Prosser HC, et al. A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes 2014; 63(2): 675-87.
[http://dx.doi.org/10.2337/db13-0417] [PMID: 24198286]
[19]
Li X, Kover KL, Heruth DP, et al. Thioredoxin-interacting protein promotes high-glucose-induced macrovascular endothelial dysfunction. Biochem Biophys Res Commun 2017; 493(1): 291-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.028] [PMID: 28890350]
[20]
Wang XQ, Nigro P, World C, Fujiwara K, Yan C, Berk BC. Thioredoxin interacting protein promotes endothelial cell inflammation in response to disturbed flow by increasing leukocyte adhesion and repressing Kruppel-like factor 2. Circ Res 2012; 110(4): 560-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.256362] [PMID: 22267843]
[21]
Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis 2012; 34(4): 290-6.
[http://dx.doi.org/10.1159/000343145] [PMID: 23128470]
[22]
Pettitt DJ, Knowler WC, Bennett PH, Aleck KA, Baird HR. Obesity in offspring of diabetic Pima Indian women despite normal birth weight. Diabetes Care 1987; 10(1): 76-80.
[http://dx.doi.org/10.2337/diacare.10.1.76] [PMID: 3568964]
[23]
Lawlor DA, Lichtenstein P, Långström N. Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood: Sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation 2011; 123(3): 258-65.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.980169]
[24]
Silverman BL, Rizzo T, Green OC, et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991; 40 (Suppl. 2): 121-5.
[http://dx.doi.org/10.2337/diab.40.2.S121] [PMID: 1748240]
[25]
Lawlor DA, Lichtenstein P, Fraser A, Långström N. Does maternal weight gain in pregnancy have long-term effects on offspring adiposity? A sibling study in a prospective cohort of 146,894 men from 136,050 families. Am J Clin Nutr 2011; 94(1): 142-8.
[http://dx.doi.org/10.3945/ajcn.110.009324] [PMID: 21562086]
[26]
Lowe WL Jr, Scholtens DM, Lowe LP, et al. Association of Gestational Diabetes with maternal disorders of glucose metabolism and childhood adiposity. JAMA 2018; 320(10): 1005-16.
[http://dx.doi.org/10.1001/jama.2018.11628] [PMID: 30208453]
[27]
Aguilera J, Semmler J, Anzoategui S, Zhang H, Nicolaides KH, Charakida M. Cardiac function in gestational diabetes mellitus: A longitudinal study from fetal life to infancy. BJOG 2021; 128(2): 272-9.
[http://dx.doi.org/10.1111/1471-0528.16434]
[28]
Matturri L, Lavezzi AM, Ottaviani G, Rossi L. Intimal preatherosclerotic thickening of the coronary arteries in human fetuses of smoker mothers. J Thromb Haemost 2003; 1(10): 2234-8.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00409.x] [PMID: 14521609]
[29]
Giertsen JC. Atherosclerosis in an autopsy series. 2. The lipoid and calcium contents of the aorta in childhood. Acta Pathol Microbiol Scand 1964; 61(2): 233-42.
[http://dx.doi.org/10.1111/apm.1964.61.2.233] [PMID: 14162800]
[30]
Napoli C, Glass CK, Witztum JL, Deutsch R, D’Armiento FP, Palinski W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999; 354(9186): 1234-41.
[http://dx.doi.org/10.1016/S0140-6736(99)02131-5] [PMID: 10520631]
[31]
Sirtori CR. Carotid IMT and atherosclerosis: “Calling things by name”. Atherosclerosis 2021; 317: 67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.11.024] [PMID: 33323243]
[32]
Cheng K, Mikhailidis DP, Hamilton G, Seifalian AM. A review of the carotid and femoral intima-media thickness as an indicator of the presence of peripheral vascular disease and cardiovascular risk factors. Cardiovasc Res 2002; 54(3): 528-38.
[http://dx.doi.org/10.1016/S0008-6363(01)00551-X] [PMID: 12031698]
[33]
Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. The role of ankle brachial index and carotid intima-media thickness in vascular risk stratification. Curr Opin Cardiol 2010; 25(4): 394-8.
[http://dx.doi.org/10.1097/HCO.0b013e328338c109] [PMID: 20549844]
[34]
McCloskey K, Vuillermin P, Ponsonby AL, Cheung M, Skilton MR, Burgner D. Aortic intima-media thickness measured by trans-abdominal ultrasound as an early life marker of subclinical atherosclerosis. Acta Paediatr 2014; 103(2): 124-30.
[http://dx.doi.org/10.1111/apa.12457] [PMID: 24117658]
[35]
Stergiotou I, Crispi F, Valenzuela-Alcaraz B, Cruz-Lemini M, Bijnens B, Gratacos E. Aortic and carotid intima-media thickness in term small-for-gestational-age newborns and relationship with prenatal signs of severity. Ultrasound Obstet Gynecol 2014; 43(6): 625-31.
[http://dx.doi.org/10.1002/uog.13245] [PMID: 24272754]
[36]
Singh Sodhi K, Hondappanavar A, Kumar Saxena A, Dutta S, Khandelwal N. Intima-media complex thickness: Preliminary workup of comparative evaluation of abdominal aorta and carotid artery of small-for-gestation-age term newborns and normal size term newborns. Acta Cardiol 2015; 70(3): 351-7.
[http://dx.doi.org/10.1080/AC.70.3.3080640] [PMID: 26226709]
[37]
Iwashima S, Ishikawa T, Akira O, Itou H. Association of abdominal aortic wall thickness in the newborn with maternal factors. Am J Perinatol 2012; 29(6): 441-8.
[http://dx.doi.org/10.1055/s-0032-1304825] [PMID: 22399211]
[38]
Koklu E, Kurtoglu S, Akcakus M, Yikilmaz A, Gunes T. Serum insulin-like growth factor-I (IGF-I) IGF binding protein-3 (IGFBP-3) and leptin levels are related to abdominal aortic intima-media thickness in macrosomic newborns. Growth Horm IGF Res 2007; 17(1): 26-32.
[http://dx.doi.org/10.1016/j.ghir.2006.10.002] [PMID: 17113804]
[39]
Harrington J, Peña AS, Gent R, Hirte C, Couper J. Aortic intima media thickness is an early marker of atherosclerosis in children with type 1 diabetes mellitus. J Pediatr 2010; 156(2): 237-41.
[http://dx.doi.org/10.1016/j.jpeds.2009.08.036] [PMID: 19853860]
[40]
Oikonomou N, Fouzas S, Gkentzi D, Dimitriou G, Karatza AA. Aortic intima-media thickness in neonates exposed to early-onset preeclampsia. Early Hum Dev 2020; 151: 105166.
[http://dx.doi.org/10.1016/j.earlhumdev.2020.105166] [PMID: 32889166]
[41]
Farladansky-Gershnabel S, Heusler I, Biron-Shental T, et al. Elevated expression of galectin-3, thioredoxin and thioredoxin interacting protein in preeclampsia. Pregnancy Hypertens 2021; 26: 95-101.
[http://dx.doi.org/10.1016/j.preghy.2021.10.003] [PMID: 34700108]
[42]
Yang Y, Li J, Han TL, et al. Endoplasmic reticulum stress may activate NLRP3 inflammasomes via TXNIP in preeclampsia. Cell Tissue Res 2020; 379(3): 589-99.
[http://dx.doi.org/10.1007/s00441-019-03104-9] [PMID: 31637543]
[43]
Dong X, Cai Y, Li Y, et al. Increased expression of thioredoxin-1 binding protein-2 in placentas in preeclampsia. J Reprod Med 2017; 62(1-2): 21-5.
[PMID: 29999276]
[44]
Poredos P, Poredos AV, Gregoric I. Endothelial dysfunction and its clinical implications. Angiology 2021; 72(7): 604-15.
[http://dx.doi.org/10.1177/0003319720987752] [PMID: 33504167]
[45]
Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of maternal obesity and gestational diabetes mellitus on the placenta: Current knowledge and targets for therapeutic interventions. Curr Vasc Pharmacol 2021; 19(2): 176-92.
[http://dx.doi.org/10.2174/18756212MTA3qNDApy] [PMID: 32543363]
[46]
Espinoza C, Fuenzalida B, Leiva A. Increased fetal cardiovascular disease risk: Potential synergy between Gestational Diabetes Mellitus and maternal hypercholesterolemia. Curr Vasc Pharmacol 2021; 19(6): 601-23.
[http://dx.doi.org/10.2174/1570161119666210423085407] [PMID: 33902412]
[47]
Briana DD, Malamitsi-Puchner A. Effect of gestational diabetes mellitus and hypercholesterolemia on fetal cardiovascular disease risk: The role of epigenetics. Curr Vasc Pharmacol 2022; 20(4): 379-80.
[http://dx.doi.org/10.2174/1570161120666220804090725] [PMID: 36123823]
[48]
Leiva A, Espinoza C, Fuenzalida B. Epigenetic changes as a possible mechanism leading to increased fetal cardiovascular disease risk in pregnancies with gestational diabetes mellitus and/or maternal hypercholesterolemia. Curr Vasc Pharmacol 2022; 20(4): 381.
[http://dx.doi.org/10.2174/1570161120666220314090700] [PMID: 35289249]
[49]
Sarkola T, Slorach C, Hui W, Bradley TJ, Redington AN, Jaeggi E. Transcutaneous very-high resolution ultrasound for the quantification of carotid arterial intima-media thickness in children – Feasibility and comparison with conventional high resolution vascular ultrasound imaging. Atherosclerosis 2012; 224(1): 102-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.06.054] [PMID: 22784638]
[50]
McCloskey K, Ponsonby AL, Carlin JB, et al. Reproducibility of aortic intima-media thickness in infants using edge-detection software and manual caliper measurements. Cardiovasc Ultrasound 2014; 12(1): 18.
[http://dx.doi.org/10.1186/1476-7120-12-18] [PMID: 24894574]
[51]
Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the American Heart Association. Circulation 2009; 119(17): 2408-16.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192278] [PMID: 19364974]
[52]
Balagopal PB, de Ferranti SD, Cook S, et al. Nontraditional risk factors and biomarkers for cardiovascular disease: Mechanistic, research, and clinical considerations for youth: A scientific statement from the American Heart Association. Circulation 2011; 123(23): 2749-69.
[http://dx.doi.org/10.1161/CIR.0b013e31821c7c64] [PMID: 21555711]
[53]
Paraskevas KI, Briana DD, Malamitsi-Puchner A, Mikhailidis DP. Fetal/infant origins of adult vascular disease. Curr Vasc Pharmacol 2020; 18(4): 418-20.
[http://dx.doi.org/10.2174/1570161118999200304123040] [PMID: 32129165]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy