Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cardiac Organoids: A 3D Technology for Disease Modeling and Drug Screening

Author(s): Yuxin Zhu, Sheng Yang, Tianyi Zhang, Yiling Ge, Xin Wan and Geyu Liang*

Volume 31, Issue 31, 2024

Published on: 07 August, 2023

Page: [4987 - 5003] Pages: 17

DOI: 10.2174/0929867331666230727104911

Price: $65

Abstract

Cardiovascular diseases remain the leading cause of death worldwide; therefore, there is increasing attention to developing physiological-related in vitro cardiovascular tissue models suitable for personalized healthcare and preclinical test. Recently, more complex and powerful in vitro models have emerged for cardiac research. Human cardiac organoids (HCOs) are three-dimensional (3D) cellular constructs similar to in vivo organs. They are derived from pluripotent stem cells and can replicate the structure, function, and biogenetic information of primitive tissues. High-fidelity HCOs are closer to natural human myocardial tissue than animal and cell models to some extent, which helps to study better the development process of the heart and the occurrence of related diseases. In this review, we introduce the methods for constructing HCOs and the application of them, especially in cardiovascular disease modeling and cardiac drug screening. In addition, we propose the prospects and limitations of HCOs. In summary, we have introduced the research progress of HCOs and described their innovation and practicality of them in the biomedical field.

[1]
Lancaster, M.A.; Knoblich, J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345(6194), 1247125.
[http://dx.doi.org/10.1126/science.1247125] [PMID: 25035496]
[2]
Smith, E.; Cochrane, W.J. Cystic organoid teratoma: (Report of a Case). Can. Med. Assoc. J., 1946, 55(2), 151-152.
[3]
Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459(7244), 262-265.
[http://dx.doi.org/10.1038/nature07935] [PMID: 19329995]
[4]
Velasco, S.; Kedaigle, A.J.; Simmons, S.K.; Nash, A.; Rocha, M.; Quadrato, G.; Paulsen, B.; Nguyen, L.; Adiconis, X.; Regev, A.; Levin, J.Z.; Arlotta, P. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 2019, 570(7762), 523-527.
[http://dx.doi.org/10.1038/s41586-019-1289-x] [PMID: 31168097]
[5]
Kanton, S.; Boyle, M.J.; He, Z.; Santel, M.; Weigert, A.; Sanchís-Calleja, F.; Guijarro, P.; Sidow, L.; Fleck, J.S.; Han, D.; Qian, Z.; Heide, M.; Huttner, W.B.; Khaitovich, P.; Pääbo, S.; Treutlein, B.; Camp, J.G. Organoid single- cell genomic atlas uncovers human-specific features of brain development. Nature, 2019, 574(7778), 418-422.
[http://dx.doi.org/10.1038/s41586-019-1654-9] [PMID: 31619793]
[6]
Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 2012, 10(6), 771-785.
[http://dx.doi.org/10.1016/j.stem.2012.05.009] [PMID: 22704518]
[7]
Sugimoto, S.; Kobayashi, E.; Fujii, M.; Ohta, Y.; Arai, K.; Matano, M.; Ishikawa, K.; Miyamoto, K.; Toshimitsu, K.; Takahashi, S.; Nanki, K.; Hakamata, Y.; Kanai, T.; Sato, T. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature, 2021, 592(7852), 99-104.
[http://dx.doi.org/10.1038/s41586-021-03247-2] [PMID: 33627870]
[8]
Nikolaev, M.; Mitrofanova, O.; Broguiere, N.; Geraldo, S.; Dutta, D.; Tabata, Y.; Elci, B.; Brandenberg, N.; Kolotuev, I.; Gjorevski, N.; Clevers, H.; Lutolf, M.P. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020, 585(7826), 574-578.
[http://dx.doi.org/10.1038/s41586-020-2724-8] [PMID: 32939089]
[9]
Seidlitz, T.; Merker, S.R.; Rothe, A.; Zakrzewski, F.; von Neubeck, C.; Grützmann, K.; Sommer, U.; Schweitzer, C.; Schölch, S.; Uhlemann, H.; Gaebler, A.M.; Werner, K.; Krause, M.; Baretton, G.B.; Welsch, T.; Koo, B.K.; Aust, D.E.; Klink, B.; Weitz, J.; Stange, D.E. Human gastric cancer modelling using organoids. Gut, 2019, 68(2), 207-217.
[http://dx.doi.org/10.1136/gutjnl-2017-314549] [PMID: 29703791]
[10]
Czerniecki, S.M.; Cruz, N.M.; Harder, J.L.; Menon, R.; Annis, J.; Otto, E.A.; Gulieva, R.E.; Islas, L.V.; Kim, Y.K.; Tran, L.M.; Martins, T.J.; Pippin, J.W.; Fu, H.; Kretzler, M.; Shankland, S.J.; Himmelfarb, J.; Moon, R.T.; Paragas, N.; Freedman, B.S. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell. Stem. Cell., 2018, 22(6), 929-940.e4.
[http://dx.doi.org/10.1016/j.stem.2018.04.022] [PMID: 29779890]
[11]
Hu, H.; Gehart, H.; Artegiani, B.; LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; Chuva de, S.L.S.M.; Begthel, H.; Korving, J.; van den Born, M.; Zou, C.; Quirk, C.; Chiriboga, L.; Rice, C.M.; Ma, S.; Rios, A.; Peters, P.J.; de Jong, Y.P.; Clevers, H. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 2018, 175(6), 1591-1606.e1519.
[12]
Peng, W.C.; Logan, C.Y.; Fish, M.; Anbarchian, T.; Aguisanda, F.; Álvarez-Varela, A.; Wu, P.; Jin, Y.; Zhu, J.; Li, B.; Grompe, M.; Wang, B.; Nusse, R. Inflammatory cytokine tnfα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell, 2018, 175(6), 1607-1619.e1615.
[13]
Sachs, N.; Papaspyropoulos, A.; Zomer-van Ommen, D.D.; Heo, I.; Böttinger, L.; Klay, D.; Weeber, F.; Huelsz-Prince, G.; Iakobachvili, N.; Amatngalim, G.D.; de Ligt, J.; van Hoeck, A.; Proost, N.; Viveen, M.C.; Lyubimova, A.; Teeven, L.; Derakhshan, S.; Korving, J.; Begthel, H.; Dekkers, J.F.; Kumawat, K.; Ramos, E.; van Oosterhout, M.F.M.; Offerhaus, G.J.; Wiener, D.J.; Olimpio, E.P.; Dijkstra, K.K.; Smit, E.F.; van der Linden, M.; Jaksani, S.; van de Ven, M.; Jonkers, J.; Rios, A.C.; Voest, E.E.; van Moorsel, C.H.M.; van der Ent, C.K.; Cuppen, E.; van Oudenaarden, A.; Coenjaerts, F.E.; Meyaard, L.; Bont, L.J.; Peters, P.J.; Tans, S.J.; van Zon, J.S.; Boj, S.F.; Vries, R.G.; Beekman, J.M.; Clevers, H. Long-term expanding human airway organoids for disease modeling. EMBO J., 2019, 38(4), e100300.
[http://dx.doi.org/10.15252/embj.2018100300] [PMID: 30643021]
[14]
Mithal, A.; Capilla, A.; Heinze, D.; Berical, A.; Villacorta- Martin, C.; Vedaie, M.; Jacob, A.; Abo, K.; Szymaniak, A.; Peasley, M.; Stuffer, A.; Mahoney, J.; Kotton, D.N.; Hawkins, F.; Mostoslavsky, G. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat. Commun., 2020, 11(1), 215.
[http://dx.doi.org/10.1038/s41467-019-13916-6] [PMID: 31924806]
[15]
Mills, R.J.; Titmarsh, D.M.; Koenig, X.; Parker, B.L.; Ryall, J.G.; Quaife-Ryan, G.A.; Voges, H.K.; Hodson, M.P.; Ferguson, C.; Drowley, L.; Plowright, A.T.; Needham, E.J.; Wang, Q.D.; Gregorevic, P.; Xin, M.; Thomas, W.G.; Parton, R.G.; Nielsen, L.K.; Launikonis, B.S.; James, D.E.; Elliott, D.A.; Porrello, E.R.; Hudson, J.E. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl. Acad. Sci., 2017, 114(40), E8372-E8381.
[http://dx.doi.org/10.1073/pnas.1707316114] [PMID: 28916735]
[16]
Richards, D.J.; Coyle, R.C.; Tan, Y.; Jia, J.; Wong, K.; Toomer, K.; Menick, D.R.; Mei, Y. Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials, 2017, 142, 112-123.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.021] [PMID: 28732246]
[17]
Richards, D.J.; Li, Y.; Kerr, C.M.; Yao, J.; Beeson, G.C.; Coyle, R.C.; Chen, X.; Jia, J.; Damon, B.; Wilson, R.; Starr Hazard, E.; Hardiman, G.; Menick, D.R.; Beeson, C.C.; Yao, H.; Ye, T.; Mei, Y. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat. Biomed. Eng., 2020, 4(4), 446-462.
[http://dx.doi.org/10.1038/s41551-020-0539-4] [PMID: 32284552]
[18]
Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet., 2018, 19(11), 671-687.
[http://dx.doi.org/10.1038/s41576-018-0051-9] [PMID: 30228295]
[19]
Chen, H.; Zhuo, Q.; Ye, Z.; Xu, X.; Ji, S. Organoid model: A new hope for pancreatic cancer treatment? Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188466.
[http://dx.doi.org/10.1016/j.bbcan.2020.188466] [PMID: 33160014]
[20]
Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol., 2016, 18(3), 246-254.
[http://dx.doi.org/10.1038/ncb3312] [PMID: 26911908]
[21]
Horvath, P.; Aulner, N.; Bickle, M.; Davies, A.M.; Nery, E.D.; Ebner, D.; Montoya, M.C.; Östling, P.; Pietiäinen, V.; Price, L.S.; Shorte, S.L.; Turcatti, G.; von Schantz, C.; Carragher, N.O. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov., 2016, 15(11), 751-769.
[http://dx.doi.org/10.1038/nrd.2016.175] [PMID: 27616293]
[22]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[23]
Frommeyer, G.; Eckardt, L. Drug-induced proarrhythmia: Risk factors and electrophysiological mechanisms. Nat. Rev. Cardiol., 2016, 13(1), 36-47.
[http://dx.doi.org/10.1038/nrcardio.2015.110] [PMID: 26194552]
[24]
Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature, 2018, 556(7700), 239-243.
[http://dx.doi.org/10.1038/s41586-018-0016-3] [PMID: 29618819]
[25]
McGranahan, N.; Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer. Cell., 2015, 27(1), 15-26.
[http://dx.doi.org/10.1016/j.ccell.2014.12.001] [PMID: 25584892]
[26]
Wang, Z.; Wang, S.N.; Xu, T.Y.; Miao, Z.W.; Su, D.F.; Miao, C.Y. Organoid technology for brain and therapeutics research. CNS Neurosci. Ther., 2017, 23(10), 771-778.
[http://dx.doi.org/10.1111/cns.12754] [PMID: 28884977]
[27]
Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(8), 2506-2519.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.010] [PMID: 24418517]
[28]
Takebe, T.; Zhang, B.; Radisic, M. Synergistic engineering: Organoids meet organs-on-a-chip. Cell Stem Cell, 2017, 21(3), 297-300.
[http://dx.doi.org/10.1016/j.stem.2017.08.016] [PMID: 28886364]
[29]
Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell., 2017, 168(1-2), 20-36.
[http://dx.doi.org/10.1016/j.cell.2016.10.044] [PMID: 27866654]
[30]
Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug. Dev. Technol., 2014, 12(4), 207-218.
[http://dx.doi.org/10.1089/adt.2014.573] [PMID: 24831787]
[31]
Vargas-Valderrama, A.; Messina, A.; Mitjavila-Garcia, M.T.; Guenou, H. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J. Biomed. Sci., 2020, 27(1), 67.
[http://dx.doi.org/10.1186/s12929-020-00661-y] [PMID: 32443983]
[32]
Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527.
[http://dx.doi.org/10.1016/j.bbcan.2021.188527] [PMID: 33640383]
[33]
Verjans, E.T.; Doijen, J.; Luyten, W.; Landuyt, B.; Schoofs, L. Three-dimensional cell culture models for anticancer drug screening: Worth the effort? J. Cell. Physiol., 2018, 233(4), 2993-3003.
[http://dx.doi.org/10.1002/jcp.26052] [PMID: 28618001]
[34]
Silvestri, V.L.; Henriet, E.; Linville, R.M.; Wong, A.D.; Searson, P.C.; Ewald, A.J. A tissue-engineered 3D microvessel model reveals the dynamics of mosaic vessel formation in breast cancer. Cancer Res., 2020, 80(19), 4288-4301.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1564] [PMID: 32665356]
[35]
Schmidt, C.; Pommerenke, H.; Dürr, F.; Nebe, B.; Rychly, J. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J. Biol. Chem., 1998, 273(9), 5081-5085.
[http://dx.doi.org/10.1074/jbc.273.9.5081] [PMID: 9478959]
[36]
Bissell, M.J.; Rizki, A.; Mian, I.S. Tissue architecture: The ultimate regulator of breast epithelial function. Curr. Opin. Cell Biol., 2003, 15(6), 753-762.
[http://dx.doi.org/10.1016/j.ceb.2003.10.016] [PMID: 14644202]
[37]
Goldfracht, I.; Protze, S.; Shiti, A.; Setter, N.; Gruber, A.; Shaheen, N.; Nartiss, Y.; Keller, G.; Gepstein, L. Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes. Nat. Commun., 2020, 11(1), 75.
[http://dx.doi.org/10.1038/s41467-019-13868-x] [PMID: 31911598]
[38]
Abbas, M.; Moradi, F.; Hu, W.; Regudo, K.L.; Osborne, M.; Pettipas, J.; Atallah, D.S.; Hachem, R.; Ott-Peron, N.; Stuart, J.A. Vertebrate cell culture as an experimental approach – limitations and solutions. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2021, 254, 110570.
[http://dx.doi.org/10.1016/j.cbpb.2021.110570] [PMID: 33516822]
[39]
Anthon, S.G.; Valente, K.P. Vascularization strategies in 3D cell culture models: From scaffold-free models to 3D bioprinting. Int. J. Mol. Sci., 2022, 23(23), 14582.
[http://dx.doi.org/10.3390/ijms232314582] [PMID: 36498908]
[40]
Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol., 2011, 21(12), 745-754.
[http://dx.doi.org/10.1016/j.tcb.2011.09.005] [PMID: 22033488]
[41]
Artegiani, B.; Clevers, H. Use and application of 3D-organoid technology. Hum. Mol. Genet., 2018, 27(R2), R99-R107.
[http://dx.doi.org/10.1093/hmg/ddy187] [PMID: 29796608]
[42]
Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; Abolhassani, H.; Aboyans, V.; Abrams, E.M.; Abreu, L.G.; Abrigo, M.R.M.; Abu-Raddad, L.J.; Abushouk, A.I.; Acebedo, A.; Ackerman, I.N.; Adabi, M.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adelson, J.D.; Adetokunboh, O.O.; Adham, D.; Afshari, M.; Afshin, A.; Agardh, E.E.; Agarwal, G.; Agesa, K.M.; Aghaali, M.; Aghamir, S.M.K.; Agrawal, A.; Ahmad, T.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmadpour, E.; Akalu, T.Y.; Akinyemi, R.O.; Akinyemiju, T.; Akombi, B.; Al-Aly, Z.; Alam, K.; Alam, N.; Alam, S.; Alam, T.; Alanzi, T.M.; Albertson, S.B.; Alcalde-Rabanal, J.E.; Alema, N.M.; Ali, M.; Ali, S.; Alicandro, G.; Alijanzadeh, M.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Alla, F.; Allebeck, P.; Almasi-Hashiani, A.; Alonso, J.; Al-Raddadi, R.M.; Altirkawi, K.A.; Alvis-Guzman, N.; Alvis-Zakzuk, N.J.; Amini, S.; Amini-Rarani, M.; Aminorroaya, A.; Amiri, F.; Amit, A.M.L.; Amugsi, D.A.; Amul, G.G.H.; Anderlini, D.; Andrei, C.L.; Andrei, T.; Anjomshoa, M.; Ansari, F.; Ansari, I.; Ansari-Moghaddam, A.; Antonio, C.A.T.; Antony, C.M.; Antriyandarti, E.; Anvari, D.; Anwer, R.; Arabloo, J.; Arab-Zozani, M.; Aravkin, A.Y.; Ariani, F.; Ärnlöv, J.; Aryal, K.K.; Arzani, A.; Asadi-Aliabadi, M.; Asadi-Pooya, A.A.; Asghari, B.; Ashbaugh, C.; Atnafu, D.D.; Atre, S.R.; Ausloos, F.; Ausloos, M.; Ayala Quintanilla, B.P.; Ayano, G.; Ayanore, M.A.; Aynalem, Y.A.; Azari, S.; Azarian, G.; Azene, Z.N.; Babaee, E.; Badawi, A.; Bagherzadeh, M.; Bakhshaei, M.H.; Bakhtiari, A.; Balakrishnan, S.; Balalla, S.; Balassyano, S.; Banach, M.; Banik, P.C.; Bannick, M.S.; Bante, A.B.; Baraki, A.G.; Barboza, M.A.; Barker-Collo, S.L.; Barthelemy, C.M.; Barua, L.; Barzegar, A.; Basu, S.; Baune, B.T.; Bayati, M.; Bazmandegan, G.; Bedi, N.; Beghi, E.; Béjot, Y.; Bello, A.K.; Bender, R.G.; Bennett, D.A.; Bennitt, F.B.; Bensenor, I.M.; Benziger, C.P.; Berhe, K.; Bernabe, E.; Bertolacci, G.J.; Bhageerathy, R.; Bhala, N.; Bhandari, D.; Bhardwaj, P.; Bhattacharyya, K.; Bhutta, Z.A.; Bibi, S.; Biehl, M.H.; Bikbov, B.; Bin Sayeed, M.S.; Biondi, A.; Birihane, B.M.; Bisanzio, D.; Bisignano, C.; Biswas, R.K.; Bohlouli, S.; Bohluli, M.; Bolla, S.R.R.; Boloor, A.; Boon-Dooley, A.S.; Borges, G.; Borzì, A.M.; Bourne, R.; Brady, O.J.; Brauer, M.; Brayne, C.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, N.I.; Britton, G.B.; Bryazka, D.; Buchbinder, R.; Bumgarner, B.R.; Busse, R.; Butt, Z.A.; Caetano dos Santos, F.L.; Cámera, L.L.A.A.; Campos-Nonato, I.R.; Car, J.; Cárdenas, R.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castaldelli-Maia, J.M.; Castañeda-Orjuela, C.A.; Castelpietra, G.; Castle, C.D.; Castro, F.; Catalá-López, F.; Causey, K.; Cederroth, C.R.; Cercy, K.M.; Cerin, E.; Chandan, J.S.; Chang, A.R.; Charlson, F.J.; Chattu, V.K.; Chaturvedi, S.; Chimed-Ochir, O.; Chin, K.L.; Cho, D.Y.; Christensen, H.; Chu, D-T.; Chung, M.T.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Collins, E.L.; Compton, K.; Conti, S.; Cortesi, P.A.; Costa, V.M.; Cousin, E.; Cowden, R.G.; Cowie, B.C.; Cromwell, E.A.; Cross, D.H.; Crowe, C.S.; Cruz, J.A.; Cunningham, M.; Dahlawi, S.M.A.; Damiani, G.; Dandona, L.; Dandona, R.; Darwesh, A.M.; Daryani, A.; Das, J.K.; Das Gupta, R.; das Neves, J.; Dávila-Cervantes, C.A.; Davletov, K.; De Leo, D.; Dean, F.E.; DeCleene, N.K.; Deen, A.; Degenhardt, L.; Dellavalle, R.P.; Demeke, F.M.; Demsie, D.G.; Denova-Gutiérrez, E.; Dereje, N.D.; Dervenis, N.; Desai, R.; Desalew, A.; Dessie, G.A.; Dharmaratne, S.D.; Dhungana, G.P.; Dianatinasab, M.; Diaz, D.; Dibaji Forooshani, Z.S.; Dingels, Z.V.; Dirac, M.A.; Djalalinia, S.; Do, H.T.; Dokova, K.; Dorostkar, F.; Doshi, C.P.; Doshmangir, L.; Douiri, A.; Doxey, M.C.; Driscoll, T.R.; Dunachie, S.J.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebrahimi Kalan, M.; Edvardsson, D.; Ehrlich, J.R.; El Nahas, N.; El Sayed, I.; El Tantawi, M.; Elbarazi, I.; Elgendy, I.Y.; Elhabashy, H.R.; El-Jaafary, S.I.; Elyazar, I.R.F.; Emamian, M.H.; Emmons-Bell, S.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esmaeilnejad, S.; Esmaeilzadeh, F.; Esteghamati, A.; Estep, K.; Etemadi, A.; Etisso, A.E.; Farahmand, M.; Faraj, A.; Fareed, M.; Faridnia, R.; Farinha, C.S.S.; Farioli, A.; Faro, A.; Faruque, M.; Farzadfar, F.; Fattahi, N.; Fazlzadeh, M.; Feigin, V.L.; Feldman, R.; Fereshtehnejad, S-M.; Fernandes, E.; Ferrari, A.J.; Ferreira, M.L.; Filip, I.; Fischer, F.; Fisher, J.L.; Fitzgerald, R.; Flohr, C.; Flor, L.S.; Foigt, N.A.; Folayan, M.O.; Force, L.M.; Fornari, C.; Foroutan, M.; Fox, J.T.; Freitas, M.; Fu, W.; Fukumoto, T.; Furtado, J.M.; Gad, M.M.; Gakidou, E.; Galles, N.C.; Gallus, S.; Gamkrelidze, A.; Garcia-Basteiro, A.L.; Gardner, W.M.; Geberemariyam, B.S.; Gebrehiwot, A.M.; Gebremedhin, K.B.; Gebreslassie, A.A.A.A.; Gershberg Hayoon, A.; Gething, P.W.; Ghadimi, M.; Ghadiri, K.; Ghafourifard, M.; Ghajar, A.; Ghamari, F.; Ghashghaee, A.; Ghiasvand, H.; Ghith, N.; Gholamian, A.; Gilani, S.A.; Gill, P.S.; Gitimoghaddam, M.; Giussani, G.; Goli, S.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Gorman, T.M.; Gottlich, H.C.; Goudarzi, H.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grivna, M.; Grosso, G.; Gubari, M.I.M.; Gugnani, H.C.; Guimaraes, A.L.S.; Guimarães, R.A.; Guled, R.A.; Guo, G.; Guo, Y.; Gupta, R.; Haagsma, J.A.; Haddock, B.; Hafezi-Nejad, N.; Hafiz, A.; Hagins, H.; Haile, L.M.; Hall, B.J.; Halvaei, I.; Hamadeh, R.R.; Hamagharib Abdullah, K.; Hamilton, E.B.; Han, C.; Han, H.; Hankey, G.J.; Haro, J.M.; Harvey, J.D.; Hasaballah, A.I.; Hasanzadeh, A.; Hashemian, M.; Hassanipour, S.; Hassankhani, H.; Havmoeller, R.J.; Hay, R.J.; Hay, S.I.; Hayat, K.; Heidari, B.; Heidari, G.; Heidari-Soureshjani, R.; Hendrie, D.; Henrikson, H.J.; Henry, N.J.; Herteliu, C.; Heydarpour, F.; Hird, T.R.; Hoek, H.W.; Hole, M.K.; Holla, R.; Hoogar, P.; Hosgood, H.D.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hoy, D.G.; Hsairi, M.; Hsieh, V.C.; Hu, G.; Huda, T.M.; Hugo, F.N.; Huynh, C.K.; Hwang, B-F.; Iannucci, V.C.; Ibitoye, S.E.; Ikuta, K.S.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Inbaraj, L.R.; Ippolito, H.; Irvani, S.S.N.; Islam, M.M.; Islam, M.M.; Islam, S.M.S.; Islami, F.; Iso, H.; Ivers, R.Q.; Iwu, C.C.D.; Iyamu, I.O.; Jaafari, J.; Jacobsen, K.H.; Jadidi-Niaragh, F.; Jafari, H.; Jafarinia, M.; Jahagirdar, D.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; Jalali, A.; Jalilian, F.; James, S.L.; Janjani, H.; Janodia, M.D.; Jayatilleke, A.U.; Jeemon, P.; Jenabi, E.; Jha, R.P.; Jha, V.; Ji, J.S.; Jia, P.; John, O.; John-Akinola, Y.O.; Johnson, C.O.; Johnson, S.C.; Jonas, J.B.; Joo, T.; Joshi, A.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kabir, Z.; Kalani, H.; Kalani, R.; Kalankesh, L.R.; Kalhor, R.; Kamiab, Z.; Kanchan, T.; Karami Matin, B.; Karch, A.; Karim, M.A.; Karimi, S.E.; Kassa, G.M.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Kayode, G.A.; Keddie, S.H.; Keller, C.; Kereselidze, M.; Khafaie, M.A.; Khalid, N.; Khan, M.; Khatab, K.; Khater, M.M.; Khatib, M.N.; Khayamzadeh, M.; Khodayari, M.T.; Khundkar, R.; Kianipour, N.; Kieling, C.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kimokoti, R.W.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Kivimäki, M.; Kneib, C.J.; Knudsen, A.K.S.; Kocarnik, J.M.; Kolola, T.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.A.; Krishan, K.; Krohn, K.J.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kumar, P.; Kumar, V.; Kumaresh, G.; Kurmi, O.P.; Kusuma, D.; Kyu, H.H.; La Vecchia, C.; Lacey, B.; Lal, D.K.; Lalloo, R.; Lam, J.O.; Lami, F.H.; Landires, I.; Lang, J.J.; Lansingh, V.C.; Larson, S.L.; Larsson, A.O.; Lasrado, S.; Lassi, Z.S.; Lau, K.M-M.; Lavados, P.M.; Lazarus, J.V.; Ledesma, J.R.; Lee, P.H.; Lee, S.W.H.; LeGrand, K.E.; Leigh, J.; Leonardi, M.; Lescinsky, H.; Leung, J.; Levi, M.; Lewington, S.; Li, S.; Lim, L-L.; Lin, C.; Lin, R-T.; Linehan, C.; Linn, S.; Liu, H-C.; Liu, S.; Liu, Z.; Looker, K.J.; Lopez, A.D.; Lopukhov, P.D.; Lorkowski, S.; Lotufo, P.A.; Lucas, T.C.D.; Lugo, A.; Lunevicius, R.; Lyons, R.A.; Ma, J.; MacLachlan, J.H.; Maddison, E.R.; Maddison, R.; Madotto, F.; Mahasha, P.W.; Mai, H.T.; Majeed, A.; Maled, V.; Maleki, S.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manafi, A.; Manafi, N.; Manguerra, H.; Mansouri, B.; Mansournia, M.A.; Mantilla Herrera, A.M.; Maravilla, J.C.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; Masoumi, S.Z.; Massano, J.; Massenburg, B.B.; Mathur, M.R.; Maulik, P.K.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehri, F.; Mehta, K.M.; Meitei, W.B.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Mengesha, E.W.; Mengesha, M.B.; Mereke, A.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Mihretie, K.M.; Miller, T.R.; Mills, E.J.; Mirica, A.; Mirrakhimov, E.M.; Mirzaei, H.; Mirzaei, M.; Mirzaei-Alavijeh, M.; Misganaw, A.T.; Mithra, P.; Moazen, B.; Moghadaszadeh, M.; Mohamadi, E.; Mohammad, D.K.; Mohammad, Y.; Mohammad Gholi Mezerji, N.; Mohammadian-Hafshejani, A.; Mohammadifard, N.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Molokhia, M.; Momen, N.C.; Monasta, L.; Mondello, S.; Mooney, M.D.; Moosazadeh, M.; Moradi, G.; Moradi, M.; Moradi-Lakeh, M.; Moradzadeh, R.; Moraga, P.; Morales, L.; Morawska, L.; Moreno Velásquez, I.; Morgado-da-Costa, J.; Morrison, S.D.; Mosser, J.F.; Mouodi, S.; Mousavi, S.M.; Mousavi Khaneghah, A.; Mueller, U.O.; Munro, S.B.; Muriithi, M.K.; Musa, K.I.; Muthupandian, S.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Naghshtabrizi, B.; Nair, S.; Nandi, A.K.; Nangia, V.; Nansseu, J.R.; Nayak, V.C.; Nazari, J.; Negoi, I.; Negoi, R.I.; Netsere, H.B.N.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, J.; Nguyen, M.; Nguyen, M.; Nichols, E.; Nigatu, D.; Nigatu, Y.T.; Nikbakhsh, R.; Nixon, M.R.; Nnaji, C.A.; Nomura, S.; Norrving, B.; Noubiap, J.J.; Nowak, C.; Nunez-Samudio, V.; Oţoiu, A.; Oancea, B.; Odell, C.M.; Ogbo, F.A.; Oh, I-H.; Okunga, E.W.; Oladnabi, M.; Olagunju, A.T.; Olusanya, B.O.; Olusanya, J.O.; Oluwasanu, M.M.; Omar Bali, A.; Omer, M.O.; Ong, K.L.; Onwujekwe, O.E.; Orji, A.U.; Orpana, H.M.; Ortiz, A.; Ostroff, S.M.; Otstavnov, N.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhare, A.P.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Pandey, A.; Park, E-K.; Parmar, P.G.K.; Pasupula, D.K.; Patel, S.K.; Paternina-Caicedo, A.J.; Pathak, A.; Pathak, M.; Patten, S.B.; Patton, G.C.; Paudel, D.; Pazoki Toroudi, H.; Peden, A.E.; Pennini, A.; Pepito, V.C.F.; Peprah, E.K.; Pereira, A.; Pereira, D.M.; Perico, N.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pilgrim, T.; Pilz, T.M.; Pirsaheb, M.; Plana-Ripoll, O.; Plass, D.; Pokhrel, K.N.; Polibin, R.V.; Polinder, S.; Polkinghorne, K.R.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourmirza Kalhori, R.; Pourshams, A.; Poznańska, A.; Prada, S.I.; Prakash, V.; Pribadi, D.R.A.; Pupillo, E.; Quazi Syed, Z.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiee, A.; Rafiei, A.; Raggi, A.; Rahimi-Movaghar, A.; Rahman, M.A.; Rajabpour-Sanati, A.; Rajati, F.; Ramezanzadeh, K.; Ranabhat, C.L.; Rao, P.C.; Rao, S.J.; Rasella, D.; Rastogi, P.; Rathi, P.; Rawaf, D.L.; Rawaf, S.; Rawal, L.; Razo, C.; Redford, S.B.; Reiner, R.C., Jr; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renjith, V.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, N.; Rezai, M.; Rezapour, A.; Rhinehart, P-A.; Riahi, S.M.; Ribeiro, A.L.P.; Ribeiro, D.C.; Ribeiro, D.; Rickard, J.; Roberts, N.L.S.; Roberts, S.; Robinson, S.R.; Roever, L.; Rolfe, S.; Ronfani, L.; Roshandel, G.; Roth, G.A.; Rubagotti, E.; Rumisha, S.F.; Sabour, S.; Sachdev, P.S.; Saddik, B.; Sadeghi, E.; Sadeghi, M.; Saeidi, S.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, S.M.; Salahshoor, M.R.; Salamati, P.; Salehi Zahabi, S.; Salem, H.; Salem, M.R.R.; Salimzadeh, H.; Salomon, J.A.; Salz, I.; Samad, Z.; Samy, A.M.; Sanabria, J.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric-Milicevic, M.M.; Saraswathy, S.Y.I.; Sarmiento-Suárez, R.; Sarrafzadegan, N.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Sathish, T.; Sattin, D.; Sbarra, A.N.; Schaeffer, L.E.; Schiavolin, S.; Schmidt, M.I.; Schutte, A.E.; Schwebel, D.C.; Schwendicke, F.; Senbeta, A.M.; Senthilkumaran, S.; Sepanlou, S.G.; Shackelford, K.A.; Shadid, J.; Shahabi, S.; Shaheen, A.A.; Shaikh, M.A.; Shalash, A.S.; Shams-Beyranvand, M.; Shamsizadeh, M.; Shannawaz, M.; Sharafi, K.; Sharara, F.; Sheena, B.S.; Sheikhtaheri, A.; Shetty, R.S.; Shibuya, K.; Shiferaw, W.S.; Shigematsu, M.; Shin, J.I.; Shiri, R.; Shirkoohi, R.; Shrime, M.G.; Shuval, K.; Siabani, S.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Simpson, K.E.; Singh, A.; Singh, J.A.; Skiadaresi, E.; Skou, S.T.; Skryabin, V.Y.; Sobngwi, E.; Sokhan, A.; Soltani, S.; Sorensen, R.J.D.; Soriano, J.B.; Sorrie, M.B.; Soyiri, I.N.; Sreeramareddy, C.T.; Stanaway, J.D.; Stark, B.A.; Ştefan, S.C.; Stein, C.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Stubbs, J.L.; Sudaryanto, A.; Sufiyan, M.B.; Sulo, G.; Sultan, I.; Sykes, B.L.; Sylte, D.O.; Szócska, M.; Tabarés-Seisdedos, R.; Tabb, K.M.; Tadakamadla, S.K.; Taherkhani, A.; Tajdini, M.; Takahashi, K.; Taveira, N.; Teagle, W.L.; Teame, H.; Tehrani-Banihashemi, A.; Teklehaimanot, B.F.; Terrason, S.; Tessema, Z.T.; Thankappan, K.R.; Thomson, A.M.; Tohidinik, H.R.; Tonelli, M.; Topor-Madry, R.; Torre, A.E.; Touvier, M.; Tovani-Palone, M.R.R.; Tran, B.X.; Travillian, R.; Troeger, C.E.; Truelsen, T.C.; Tsai, A.C.; Tsatsakis, A.; Tudor Car, L.; Tyrovolas, S.; Uddin, R.; Ullah, S.; Undurraga, E.A.; Unnikrishnan, B.; Vacante, M.; Vakilian, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Vasseghian, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vongpradith, A.; Vukovic, A.; Vukovic, R.; Waheed, Y.; Walters, M.K.; Wang, J.; Wang, Y.; Wang, Y-P.; Ward, J.L.; Watson, A.; Wei, J.; Weintraub, R.G.; Weiss, D.J.; Weiss, J.; Westerman, R.; Whisnant, J.L.; Whiteford, H.A.; Wiangkham, T.; Wiens, K.E.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Wojtyniak, B.; Wolfe, C.D.A.; Wool, E.E.; Wu, A-M.; Wulf Hanson, S.; Wunrow, H.Y.; Xu, G.; Xu, R.; Yadgir, S.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yaminfirooz, M.; Yano, Y.; Yaya, S.; Yazdi-Feyzabadi, V.; Yearwood, J.A.; Yeheyis, T.Y.; Yeshitila, Y.G.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Yoosefi Lebni, J.; Younis, M.Z.; Younker, T.P.; Yousefi, Z.; Yousefifard, M.; Yousefinezhadi, T.; Yousuf, A.Y.; Yu, C.; Yusefzadeh, H.; Zahirian Moghadam, T.; Zaki, L.; Zaman, S.B.; Zamani, M.; Zamanian, M.; Zandian, H.; Zangeneh, A.; Zastrozhin, M.S.; Zewdie, K.A.; Zhang, Y.; Zhang, Z-J.; Zhao, J.T.; Zhao, Y.; Zheng, P.; Zhou, M.; Ziapour, A.; Zimsen, S.R.M.; Naghavi, M.; Murray, C.J.L. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258), 1204-1222.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[43]
Mc Namara, K.; Alzubaidi, H.; Jackson, J.K. Cardiovascular disease as a leading cause of death: How are pharmacists getting involved? Integr. Pharm. Res. Pract., 2019, 8, 1-11.
[http://dx.doi.org/10.2147/IPRP.S133088] [PMID: 30788283]
[44]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S.; B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[45]
Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; Nichol, G.; Pham, M.; Piña, I.L.; Trogdon, J.G. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ. Heart Fail., 2013, 6(3), 606-619.
[http://dx.doi.org/10.1161/HHF.0b013e318291329a] [PMID: 23616602]
[46]
Gong, F.F.; Vaitenas, I.; Malaisrie, S.C.; Maganti, K. Mechanical complications of acute myocardial infarction. JAMA Cardiol., 2021, 6(3), 341-349.
[http://dx.doi.org/10.1001/jamacardio.2020.3690] [PMID: 33295949]
[47]
Sinnenberg, L.; Givertz, M.M. Acute heart failure. Trends. Cardiovasc. Med., 2020, 30(2), 104-112.
[http://dx.doi.org/10.1016/j.tcm.2019.03.007] [PMID: 31006522]
[48]
Kannankeril, P.J.; Roden, D.M. Drug-induced long QT and torsade de pointes: Recent advances. Curr. Opin. Cardiol., 2007, 22(1), 39-43.
[http://dx.doi.org/10.1097/HCO.0b013e32801129eb] [PMID: 17143043]
[49]
Andrysiak, K.; Stępniewski, J.; Dulak, J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers. Arch., 2021, 473(7), 1061-1085.
[http://dx.doi.org/10.1007/s00424-021-02536-z] [PMID: 33629131]
[50]
Liu, C.; Feng, X.; Li, G.; Gokulnath, P.; Xiao, J. Generating 3D human cardiac constructs from pluripotent stem cells. EBioMedicine., 2022, 76, 103813.
[http://dx.doi.org/10.1016/j.ebiom.2022.103813] [PMID: 35093634]
[51]
Chen, V.C.; Ye, J.; Shukla, P.; Hua, G.; Chen, D.; Lin, Z.; Liu, J.; Chai, J.; Gold, J.; Wu, J.; Hsu, D.; Couture, L.A. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res., 2015, 15(2), 365-375.
[http://dx.doi.org/10.1016/j.scr.2015.08.002] [PMID: 26318718]
[52]
Shkumatov, A.; Baek, K.; Kong, H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies. PLoS. One., 2014, 9(4), e94764.
[http://dx.doi.org/10.1371/journal.pone.0094764] [PMID: 24732893]
[53]
Moorman, A.F.M.; Christoffels, V.M.; Anderson, R.H.; van den Hoff, M.J.B. The heart-forming fields: One or multiple? Philos. Trans. R. Soc. Lond. B Biol. Sci., 2007, 362(1484), 1257-1265.
[http://dx.doi.org/10.1098/rstb.2007.2113] [PMID: 17581808]
[54]
Sizarov, A.; Ya, J.; de Boer, B.A.; Lamers, W.H.; Christoffels, V.M.; Moorman, A.F.M. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation., 2011, 123(10), 1125-1135.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.980607] [PMID: 21403123]
[55]
Harvey, R.P. Patterning the vertebrate heart. Nat. Rev. Genet., 2002, 3(7), 544-556.
[http://dx.doi.org/10.1038/nrg843] [PMID: 12094232]
[56]
Lescroart, F.; Kelly, R.G.; Le Garrec, J.F.; Nicolas, J.F.; Meilhac, S.M.; Buckingham, M. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development, 2010, 137(19), 3269-3279.
[http://dx.doi.org/10.1242/dev.050674] [PMID: 20823066]
[57]
Cohen-Gould, L.; Mikawa, T. The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev. Biol., 1996, 177(1), 265-273.
[http://dx.doi.org/10.1006/dbio.1996.0161] [PMID: 8660893]
[58]
Harris, I.S.; Black, B.L. Development of the endocardium. Pediatr. Cardiol., 2010, 31(3), 391-399.
[http://dx.doi.org/10.1007/s00246-010-9642-8] [PMID: 20135106]
[59]
Bulatovic, I.; Månsson-Broberg, A.; Sylvén, C.; Grinnemo, K.H. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart. Best Pract. Res. Clin. Obstet. Gynaecol., 2016, 31, 58-68.
[http://dx.doi.org/10.1016/j.bpobgyn.2015.08.008] [PMID: 26421632]
[60]
Finnemore, A.; Groves, A. Physiology of the fetal and transitional circulation. Semin. Fetal Neonatal Med., 2015, 20(4), 210-216.
[http://dx.doi.org/10.1016/j.siny.2015.04.003] [PMID: 25921445]
[61]
Morton, S.U.; Brodsky, D. Fetal physiology and the transition to extrauterine life. Clin. Perinatol., 2016, 43(3), 395-407.
[http://dx.doi.org/10.1016/j.clp.2016.04.001] [PMID: 27524443]
[62]
Banerjee, I.; Fuseler, J.W.; Price, R.L.; Borg, T.K.; Baudino, T.A. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(3), H1883-H1891.
[http://dx.doi.org/10.1152/ajpheart.00514.2007] [PMID: 17604329]
[63]
Drakhlis, L.; Biswanath, S.; Farr, C.M.; Lupanow, V.; Teske, J.; Ritzenhoff, K.; Franke, A.; Manstein, F.; Bolesani, E.; Kempf, H.; Liebscher, S.; Schenke-Layland, K.; Hegermann, J.; Nolte, L.; Meyer, H.; de la Roche, J.; Thiemann, S.; Wahl-Schott, C.; Martin, U.; Zweigerdt, R. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol., 2021, 39(6), 737-746.
[http://dx.doi.org/10.1038/s41587-021-00815-9] [PMID: 33558697]
[64]
Hofbauer, P.; Jahnel, S.M.; Papai, N.; Giesshammer, M.; Deyett, A.; Schmidt, C.; Penc, M.; Tavernini, K.; Grdseloff, N.; Meledeth, C.; Ginistrelli, L.C.; Ctortecka, C.; Šalic, Š.; Novatchkova, M.; Mendjan, S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell., 2021, 184(12), 3299-3317.e22.
[http://dx.doi.org/10.1016/j.cell.2021.04.034] [PMID: 34019794]
[65]
Giacomelli, E.; Meraviglia, V.; Campostrini, G.; Cochrane, A.; Cao, X.; van Helden, R.W.J.; Krotenberg Garcia, A.; Mircea, M.; Kostidis, S.; Davis, R.P.; van Meer, B.J.; Jost, C.R.; Koster, A.J.; Mei, H.; Míguez, D.G.; Mulder, A.A.; Ledesma-Terrón, M.; Pompilio, G.; Sala, L.; Salvatori, D.C.F.; Slieker, R.C.; Sommariva, E.; de Vries, A.A.F.; Giera, M.; Semrau, S.; Tertoolen, L.G.J.; Orlova, V.V.; Bellin, M.; Mummery, C.L. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell. Stem. Cell., 2020, 26(6), 862-879.e11.
[http://dx.doi.org/10.1016/j.stem.2020.05.004] [PMID: 32459996]
[66]
Arslan, U.; Moruzzi, A.; Nowacka, J.; Mummery, C.L.; Eckardt, D.; Loskill, P.; Orlova, V.V. Microphysiological stem cell models of the human heart. Mater. Today. Bio., 2022, 14, 100259.
[http://dx.doi.org/10.1016/j.mtbio.2022.100259] [PMID: 35514437]
[67]
Beauchamp, P.; Jackson, C.B.; Ozhathil, L.C.; Agarkova, I.; Galindo, C.L.; Sawyer, D.B.; Suter, T.M.; Zuppinger, C. 3D Co-culture of hiPSC-derived cardiomyocytes with cardiac fibroblasts improves tissue-like features of cardiac spheroids. Front. Mol. Biosci., 2020, 7, 14.
[http://dx.doi.org/10.3389/fmolb.2020.00014] [PMID: 32118040]
[68]
Hoang, P.; Wang, J.; Conklin, B.R.; Healy, K.E.; Ma, Z. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat. Protoc., 2018, 13(4), 723-737.
[http://dx.doi.org/10.1038/nprot.2018.006] [PMID: 29543795]
[69]
Kupfer, M.E.; Lin, W.H.; Ravikumar, V.; Qiu, K.; Wang, L.; Gao, L.; Bhuiyan, D.B.; Lenz, M.; Ai, J.; Mahutga, R.R.; Townsend, D.; Zhang, J.; McAlpine, M.C.; Tolkacheva, E.G.; Ogle, B.M. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3d bioprinted, chambered organoid. Circ. Res., 2020, 127(2), 207-224.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316155] [PMID: 32228120]
[70]
Ma, Z.; Wang, J.; Loskill, P.; Huebsch, N.; Koo, S.; Svedlund, F.L.; Marks, N.C.; Hua, E.W.; Grigoropoulos, C.P.; Conklin, B.R.; Healy, K.E. Self-organizing human cardiac microchambers mediated by geometric confinement. Nat. Commun., 2015, 6(1), 7413.
[http://dx.doi.org/10.1038/ncomms8413] [PMID: 26172574]
[71]
Mensah, G.A.; Roth, G.A.; Fuster, V. The global burden of cardiovascular diseases and risk factors. J. Am. Coll. Cardiol., 2019, 74(20), 2529-2532.
[http://dx.doi.org/10.1016/j.jacc.2019.10.009] [PMID: 31727292]
[72]
Huch, M.; Knoblich, J.A.; Lutolf, M.P.; Martinez-Arias, A. The hope and the hype of organoid research. Development., 2017, 144(6), 938-941.
[http://dx.doi.org/10.1242/dev.150201] [PMID: 28292837]
[73]
Hulot, J.S. Modeling cardiac arrhythmias with organoids. J. Am. Coll. Cardiol., 2019, 73(18), 2325-2327.
[http://dx.doi.org/10.1016/j.jacc.2019.01.076] [PMID: 31072577]
[74]
Liu, C.; Oikonomopoulos, A.; Sayed, N.; Wu, J.C. Modeling human diseases with induced pluripotent stem cells: From 2D to 3D and beyond. Development., 2018, 145(5), dev156166.
[http://dx.doi.org/10.1242/dev.156166] [PMID: 29519889]
[75]
Voges, H.K.; Mills, R.J.; Elliott, D.A.; Parton, R.G.; Porrello, E.R.; Hudson, J.E. Development of a human cardiac organoid injury model reveals innate regenerative potential. Development., 2017, 144(6), dev.143966.
[http://dx.doi.org/10.1242/dev.143966] [PMID: 28174241]
[76]
Tiburcy, M.; Hudson, J.E.; Balfanz, P.; Schlick, S.; Meyer, T.; Chang Liao, M.L.; Levent, E.; Raad, F.; Zeidler, S.; Wingender, E.; Riegler, J.; Wang, M.; Gold, J.D.; Kehat, I.; Wettwer, E.; Ravens, U.; Dierickx, P.; van Laake, L.W.; Goumans, M.J.; Khadjeh, S.; Toischer, K.; Hasenfuss, G.; Couture, L.A.; Unger, A.; Linke, W.A.; Araki, T.; Neel, B.; Keller, G.; Gepstein, L.; Wu, J.C.; Zimmermann, W.H. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation., 2017, 135(19), 1832-1847.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024145] [PMID: 28167635]
[77]
Long, C.; Li, H.; Tiburcy, M.; Rodriguez-Caycedo, C.; Kyrychenko, V.; Zhou, H.; Zhang, Y.; Min, Y.L.; Shelton, J.M.; Mammen, P.P.A.; Liaw, N.Y.; Zimmermann, W.H.; Bassel-Duby, R.; Schneider, J.W.; Olson, E.N. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv., 2018, 4(1), eaap9004.
[http://dx.doi.org/10.1126/sciadv.aap9004] [PMID: 29404407]
[78]
Nugraha, B.; Buono, M.F.; Emmert, M.Y. Modelling human cardiac diseases with 3D organoid. Eur. Heart J., 2018, 39(48), 4234-4237.
[http://dx.doi.org/10.1093/eurheartj/ehy765] [PMID: 30576473]
[79]
Tzatzalos, E.; Abilez, O.J.; Shukla, P.; Wu, J.C. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Adv. Drug Deliv. Rev., 2016, 96, 234-244.
[http://dx.doi.org/10.1016/j.addr.2015.09.010] [PMID: 26428619]
[80]
Walsh, R.; Adler, A.; Amin, A.S.; Abiusi, E.; Care, M.; Bikker, H.; Amenta, S.; Feilotter, H.; Nannenberg, E.A.; Mazzarotto, F.; Trevisan, V.; Garcia, J.; Hershberger, R.E.; Perez, M.V.; Sturm, A.C.; Ware, J.S.; Zareba, W.; Novelli, V.; Wilde, A.A.M.; Gollob, M.H. Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death. Eur. Heart J., 2022, 43(15), 1500-1510.
[http://dx.doi.org/10.1093/eurheartj/ehab687] [PMID: 34557911]
[81]
Shinnawi, R.; Shaheen, N.; Huber, I.; Shiti, A.; Arbel, G.; Gepstein, A.; Ballan, N.; Setter, N.; Tijsen, A.J.; Borggrefe, M.; Gepstein, L. Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell–derived cardiac cell sheets. J. Am. Coll. Cardiol., 2019, 73(18), 2310-2324.
[http://dx.doi.org/10.1016/j.jacc.2019.02.055] [PMID: 31072576]
[82]
Lan, F.; Lee, A.S.; Liang, P.; Sanchez-Freire, V.; Nguyen, P.K.; Wang, L.; Han, L.; Yen, M.; Wang, Y.; Sun, N.; Abilez, O.J.; Hu, S.; Ebert, A.D.; Navarrete, E.G.; Simmons, C.S.; Wheeler, M.; Pruitt, B.; Lewis, R.; Yamaguchi, Y.; Ashley, E.A.; Bers, D.M.; Robbins, R.C.; Longaker, M.T.; Wu, J.C. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell. Stem. Cell., 2013, 12(1), 101-113.
[http://dx.doi.org/10.1016/j.stem.2012.10.010] [PMID: 23290139]
[83]
Filippo Buono, M.; von Boehmer, L.; Strang, J.; Hoerstrup, S.P.; Emmert, M.Y.; Nugraha, B. Human cardiac organoids for modeling genetic cardiomyopathy. Cells., 2020, 9(7), 1733.
[http://dx.doi.org/10.3390/cells9071733] [PMID: 32698471]
[84]
Lee, J.; Sutani, A.; Kaneko, R.; Takeuchi, J.; Sasano, T.; Kohda, T.; Ihara, K.; Takahashi, K.; Yamazoe, M.; Morio, T.; Furukawa, T.; Ishino, F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat. Commun., 2020, 11(1), 4283.
[http://dx.doi.org/10.1038/s41467-020-18031-5] [PMID: 32883967]
[85]
Vanderburgh, J.; Sterling, J.A.; Guelcher, S.A. 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann. Biomed. Eng., 2017, 45(1), 164-179.
[http://dx.doi.org/10.1007/s10439-016-1640-4] [PMID: 27169894]
[86]
Eglen, R.M.; Randle, D.H. Drug discovery goes three-dimensional: Goodbye to flat high-throughput screening? Assay Drug Dev. Technol., 2015, 13(5), 262-265.
[http://dx.doi.org/10.1089/adt.2015.647] [PMID: 26121065]
[87]
Martin, U. Pluripotent stem cells for disease modeling and drug screening: New perspectives for treatment of cystic fibrosis? Mol. Cell Pediatr., 2015, 2(1), 15.
[http://dx.doi.org/10.1186/s40348-015-0023-5] [PMID: 26666881]
[88]
Forsythe, S.D.; Devarasetty, M.; Shupe, T.; Bishop, C.; Atala, A.; Soker, S.; Skardal, A. Environmental toxin screening using human-derived 3D bioengineered liver and cardiac organoids. Front. Public. Health., 2018, 6, 103.
[http://dx.doi.org/10.3389/fpubh.2018.00103] [PMID: 29755963]
[89]
Skardal, A.; Aleman, J.; Forsythe, S.; Rajan, S.; Murphy, S.; Devarasetty, M.; Pourhabibi Zarandi, N.; Nzou, G.; Wicks, R.; Sadri-Ardekani, H.; Bishop, C.; Soker, S.; Hall, A.; Shupe, T.; Atala, A. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication., 2020, 12(2), 025017.
[http://dx.doi.org/10.1088/1758-5090/ab6d36] [PMID: 32101533]
[90]
Hynds, R.E.; Giangreco, A. Concise review: The relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem. Cells., 2013, 31(3), 417-422.
[http://dx.doi.org/10.1002/stem.1290] [PMID: 23203919]
[91]
Walsh, A.J.; Cook, R.S.; Sanders, M.E.; Arteaga, C.L.; Skala, M.C. Drug response in organoids generated from frozen primary tumor tissues. Sci. Rep., 2016, 6(1), 18889.
[http://dx.doi.org/10.1038/srep18889] [PMID: 26738962]
[92]
Mills, R.J.; Parker, B.L.; Quaife-Ryan, G.A.; Voges, H.K.; Needham, E.J.; Bornot, A.; Ding, M.; Andersson, H.; Polla, M.; Elliott, D.A.; Drowley, L.; Clausen, M.; Plowright, A.T.; Barrett, I.P.; Wang, Q.D.; James, D.E.; Porrello, E.R.; Hudson, J.E. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell. Stem. Cell., 2019, 24(6), 895-907.e6.
[http://dx.doi.org/10.1016/j.stem.2019.03.009] [PMID: 30930147]
[93]
Archer, C.R.; Sargeant, R.; Basak, J.; Pilling, J.; Barnes, J.R.; Pointon, A. Characterization and validation of a human 3D cardiac microtissue for the assessment of changes in cardiac pathology. Sci. Rep., 2018, 8(1), 10160.
[http://dx.doi.org/10.1038/s41598-018-28393-y] [PMID: 29976997]
[94]
Ergir, E.; Oliver-De La Cruz, J.; Fernandes, S.; Cassani, M.; Niro, F.; Pereira-Sousa, D.; Vrbský, J.; Vinarský, V.; Perestrelo, A.R.; Debellis, D.; Vadovičová, N.; Uldrijan, S.; Cavalieri, F.; Pagliari, S.; Redl, H.; Ertl, P.; Forte, G. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci. Rep., 2022, 12(1), 17409.
[http://dx.doi.org/10.1038/s41598-022-22225-w] [PMID: 36257968]
[95]
Takeda, M.; Miyagawa, S.; Fukushima, S.; Saito, A.; Ito, E.; Harada, A.; Matsuura, R.; Iseoka, H.; Sougawa, N.; Mochizuki-Oda, N.; Matsusaki, M.; Akashi, M.; Sawa, Y. Development of in vitro drug-induced cardiotoxicity assay by using three-dimensional cardiac tissues derived from human induced pluripotent stem cells. Tissue Eng. Part. C Methods., 2018, 24(1), 56-67.
[http://dx.doi.org/10.1089/ten.tec.2017.0247] [PMID: 28967302]
[96]
Lewis-Israeli, Y.R.; Wasserman, A.H.; Gabalski, M.A.; Volmert, B.D.; Ming, Y.; Ball, K.A.; Yang, W.; Zou, J.; Ni, G.; Pajares, N.; Chatzistavrou, X.; Li, W.; Zhou, C.; Aguirre, A. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat. Commun., 2021, 12(1), 5142.
[http://dx.doi.org/10.1038/s41467-021-25329-5] [PMID: 34446706]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy