Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Recent Developed Nitrogen/Sulfur Heterocyclic Compounds with Marked and Selective Antiviral Activities (Microreview)

Author(s): Fathiy Mutalabisin, Mahta Ghafarikhaligh, Peyman Mihankhah and Nader Ghaffari Khaligh*

Volume 27, Issue 9, 2023

Published on: 18 August, 2023

Page: [741 - 746] Pages: 6

DOI: 10.2174/1385272827666230726144613

Price: $65

Abstract

Millions of deaths have been reported due to viral infections in medical history, and various viral infections are mentioned as the main cause of death. Although different types of research have been conducted to develop effective medication, there is a high demand to truly cure various viral infections. The resistance to the existence of antiviral drugs on the market is the main threat to human health, and an intrinsic demand to develop and synthesize new scaffolds is highly required to find less toxicity and high antiviral activity. Nitrogen-sulfur heterocyclic compounds have extensively exhibited efficient biological and pharmacological activity against viral species, and physicochemical and pharmacokinetic properties. In this microreview, recently developed nitrogen-sulfur heterocyclics and their performance with marked and selective antiviral activities are summarized. We hope this micro-review will help early scientists interested in the design of new compounds with selective and pronounced antiviral activities to identify and satisfy the necessary criteria for the further development of nitrogen-sulfur heterocyclic compounds.

Graphical Abstract

[1]
Serban, G. Synthetic compounds with 2-amino-1,3,4-thiadiazole moiety against viral infections. Molecules, 2020, 25(4), 942.
[http://dx.doi.org/10.3390/molecules25040942] [PMID: 32093125]
[2]
Rohwer, F.; Barott, K. Viral information. Biol. Philos., 2013, 28(2), 283-297.
[http://dx.doi.org/10.1007/s10539-012-9344-0] [PMID: 23482918]
[3]
Woster, P.M. Antiviral agents and protease inhibitors. In: In Foye’s Principles of Medicinal Chemistry; Lemke, T.L.; Williams, D.A.; Roche, V.F.; Zito, S.W. Lippincott Williams and Wilkins, Wolters Kluwer: Baltimore, MD, USA, 2013, pp. 1274-1302.
[4]
Berzofsky, J.A.; Ahlers, J.D.; Janik, J.; Morris, J.; Oh, S.K.; Terabe, M.; Belyakov, I.M. Progress on new vaccine strategies against chronic viral infections. J. Clin. Invest., 2004, 114, 450-462.
[http://dx.doi.org/10.1172/JCI22674]
[5]
World Health Organization. Human papillomavirus vaccines: WHO position paper, May 2017, Weekly epidemiological record. 2020. Available from: http://www.who.int/wer [Accessed on: Jan 11, 2020].
[6]
WHO Director-General’s opening remarks at the media briefing on COVID- 19. 2020. Available from: https://www.who.int/dg/speeches/detail/who-directorgeneral-s-opening-remarks-atthe-
[7]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[8]
Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Yen, M.Y.; Ko, W.C.; Hsueh, P.R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect., 2020, 53(3), 404-412.
[http://dx.doi.org/10.1016/j.jmii.2020.02.012] [PMID: 32173241]
[9]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[10]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[11]
CDC. COVID-19 and your health. Centers for Disease Control and Prevention., 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/your-health/treatments-for-severe-illness.html
[12]
Aly, A.A.A.; Hassan, A.; Makhlouf, M.M.; Bräse, S. Chemistry and biological activities of 1,2,4-triazolethiones-Antiviral and anti-infective drugs. Molecules, 2020, 25(13), 3036.
[http://dx.doi.org/10.3390/molecules25133036] [PMID: 32635156]
[13]
Simurova, N.V.; Maiboroda, O.I. Antiviral activity of 1,2,4-triazole derivatives (microreview). Chem. Heterocycl. Compd., 2021, 57(4), 420-422.
[http://dx.doi.org/10.1007/s10593-021-02919-1] [PMID: 34007087]
[14]
Malik, M.S.; Ahmed, S.A.; Althagafi, I.I.; Ansari, M.A.; Kamal, A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC. Medicinal. Chemistry., 2020, 11(3), 327-348.
[http://dx.doi.org/10.1039/C9MD00458K] [PMID: 33479639]
[15]
Kumar, S.; Khokra, S.L.; Yadav, A. Triazole analogues as potential pharmacological agents: a brief review. Future J. Pharm. Sci., 2021, 7(1), 106.
[http://dx.doi.org/10.1186/s43094-021-00241-3] [PMID: 34056014]
[16]
Aggarwal, R.; Sumran, G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem., 2020, 205, 112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[17]
Sathyanarayana, R.; Poojary, B. Exploring recent developments on 1,2,4-triazole: Synthesis and biological applications. J. Chin. Chem. Soc., 2020, 67(4), 459-477.
[http://dx.doi.org/10.1002/jccs.201900304]
[18]
Vagish, C.B.; Sudeep, P.; Jayadevappa, H.P.; Kumar, A.K. 1,2,4-Triazoles: synthetic and medicinal perspectives. Int. J. Curr. Res., 2020, 12, 12950.
[http://dx.doi.org/10.24941/ijcr.39386.08.2020]
[19]
Gonnet, L.; Baron, M.; Baltas, M. Synthesis of biologically relevant 1,2,3- and 1,3,4-triazoles: From classical pathway to green chemistry. Molecules, 2021, 26(18), 5667.
[http://dx.doi.org/10.3390/molecules26185667] [PMID: 34577138]
[20]
Zeidler, J.; Baraniak, D.; Ostrowski, T. Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. Eur. J. Med. Chem., 2015, 97, 409-418.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.057]
[21]
Galli, A.; Mens, H.; Gottwein, J.M.; Gerstoft, J.; Bukh, J. Antiviral effect of Ribavirin against HCV associated with Increased frequency of G-to-A and C-to-U transitions in infectious cell culture model. Sci. Rep., 2018, 8(1), 4619.
[http://dx.doi.org/10.1038/s41598-018-22620-2] [PMID: 29545599]
[22]
Brocato, R.L.; Hooper, J.W. Progress on the prevention and treatment of hantavirus disease. Viruses, 2019, 11(7), 610.
[http://dx.doi.org/10.3390/v11070610] [PMID: 31277410]
[23]
De Clercq, E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J., 2019, 14(22), 3962-3968.
[http://dx.doi.org/10.1002/asia.201900841] [PMID: 31389664]
[24]
Broder, C.C. Henipavirus outbreaks to antivirals: The current status of potential therapeutics. Curr. Opin. Virol., 2012, 2(2), 176-187.
[http://dx.doi.org/10.1016/j.coviro.2012.02.016] [PMID: 22482714]
[25]
Chung, R.T.; Gale, M., Jr; Polyak, S.J.; Lemon, S.M.; Liang, T.J.; Hoofnagle, J.H. Mechanisms of action of interferon and ribavirin in chronic hepatitis C: Summary of a workshop. Hepatology, 2008, 47(1), 306-320.
[http://dx.doi.org/10.1002/hep.22070] [PMID: 18161743]
[26]
Khalili, J.S.; Zhu, H.; Mak, N.S.A.; Yan, Y.; Zhu, Y.; Zhu, Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J. Med. Virol., 2020, 92(7), 740-746.
[http://dx.doi.org/10.1002/jmv.25798] [PMID: 32227493]
[27]
Liu, W.Y.; Li, H.Y.; Zhao, B.X.; Shin, D.S.; Lian, S.; Miao, J.Y. Synthesis of novel ribavirin hydrazone derivatives and anti-proliferative activity against A549 lung cancer cells. Carbohydr. Res., 2009, 344(11), 1270-1275.
[http://dx.doi.org/10.1016/j.carres.2009.05.017] [PMID: 19527904]
[28]
Li, Y.S.; Zhang, J.J.; Mei, L.Q.; Tan, C.X. An improved procedure for the preparation of Ribavirin. Org. Prep. Proced. Int., 2012, 44(4), 387-391.
[http://dx.doi.org/10.1080/00304948.2012.697741]
[29]
Bookser, B.C.; Raffaele, N.B. High-throughput five minute microwave accelerated glycosylation approach to the synthesis of nucleoside libraries. J. Org. Chem., 2007, 72(1), 173-179.
[http://dx.doi.org/10.1021/jo061885l] [PMID: 17194096]
[30]
Rabuffetti, M.; Bavaro, T.; Semproli, R.; Cattaneo, G.; Massone, M.; Morelli, C.F.; Speranza, G.; Ubiali, D. Synthesis of ribavirin, tecadenoson, and cladribine by enzymatic transglycosylation. Catalysts, 2019, 9(4), 355.
[http://dx.doi.org/10.3390/catal9040355]
[31]
De Benedetti, E.C.; Rivero, C.W.; Trelles, J.A. Development of a nanostabilized biocatalyst using an extremophilic microorganism for ribavirin biosynthesis. J. Mol. Catal., B Enzym., 2015, 121, 90-95.
[http://dx.doi.org/10.1016/j.molcatb.2015.08.006]
[32]
Rivero, C.W.; De Benedetti, E.C.; Lozano, M.E.; Trelles, J.A. Bioproduction of ribavirin by green microbial biotransformation. Process Biochem., 2015, 50(6), 935-940.
[http://dx.doi.org/10.1016/j.procbio.2015.03.015] [PMID: 32288593]
[33]
Nóbile, M.; Terreni, M.; Lewkowicz, E.; Iribarren, A.M. Aeromonas hydrophila strains as biocatalysts for transglycosylation. Biocatal. Biotransform., 2010, 28(5-6), 395-402.
[http://dx.doi.org/10.3109/10242422.2010.538949]
[34]
Ding, Q.; Ou, L.; Wei, D.; Wei, X.; Xu, Y.; Zhang, C. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli. J. Zhejiang Univ. Sci. B, 2010, 11(11), 880-888.
[http://dx.doi.org/10.1631/jzus.B1000193] [PMID: 21043057]
[35]
Zhang, K.; Zhang, Y.; Zhou, J.; Xu, L.; Zhou, C.; Chen, G.; Huang, X. Comparison of the efficacy and safety of a Doravirine-based, three-drug Regimen in treatment-Naïve HIV-1 positive adults: A bayesian network meta-analysis. Front. Pharmacol., 2022, 13, 676831.
[http://dx.doi.org/10.3389/fphar.2022.676831] [PMID: 35517782]
[36]
Cani, E.; Park, T.E.; Kavanagh, R. Antiviral drugs. Side Eff. Drugs. Annu., 2019, 41, 301-319.
[http://dx.doi.org/10.1016/bs.seda.2019.10.005]
[37]
Gauthier, D.R., Jr; Sherry, B.D.; Cao, Y.; Journet, M.; Humphrey, G.; Itoh, T.; Mangion, I.; Tschaen, D.M. Highly efficient synthesis of HIV NNRTI doravirine. Org. Lett., 2015, 17(6), 1353-1356.
[http://dx.doi.org/10.1021/ol503625z] [PMID: 25751537]
[38]
O'Brien, J.J.; Campoli-Richards. D.M. Acyclovir. Drugs, 1989, 37(3), 233-309.
[http://dx.doi.org/10.2165/00003495-198937030-00002] [PMID: 2653790]
[39]
Aciclovir.Aronson, J.K., Ed.; Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions, 6th ed.; Elsevier, 2016, pp. 53-57.
[http://dx.doi.org/10.1016/B978-0-444-53717-1.00219-5]
[40]
Alhede, B.; Clausen, F.P.; Juhl-Christensen, J.; McCluskey, K.K.; Preikschat, H.F. A simple and efficient synthesis of 9-substituted guanines. Cyclodesulfurization of 1-substituted 5-[(thiocarbamoyl)amino]imidazole-4-carboxamides under aqueous basic conditions. J. Org. Chem., 1991, 56(6), 2139-2143.
[http://dx.doi.org/10.1021/jo00006a033]
[41]
Qian, M.; Glaser, R. 5-Cyanoamino-4-imidazolecarboxamide and nitrosative guanine deamination: Experimental evidence for pyrimidine ring-opening during deamination. J. Am. Chem. Soc., 2004, 126(8), 2274-2275.
[http://dx.doi.org/10.1021/ja0389523] [PMID: 14982409]
[42]
Wei, Y.P.; Yao, L.Y.; Wu, Y.Y.; Liu, X.; Peng, L.H.; Tian, Y.L.; Ding, J.H.; Li, K.H.; He, Q.G. Critical review of synthesis, toxicology and detection of acyclovir. Molecules, 2021, 26(21), 6566.
[http://dx.doi.org/10.3390/molecules26216566] [PMID: 34770975]
[43]
Wang, J.; Ji, X.; Zhu, Q.; Yang, H. Synthesis of antiviral drug acyclovir. Carol. J. Pharm., 1992, 23, 289-290.
[http://dx.doi.org/10.16522/j.cnki.cjph.1992.07.001]
[44]
Wang, Z.; Yu, Z.; Kang, D.; Zhang, J.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIs. Bioorg. Med. Chem., 2019, 27(3), 447-456.
[http://dx.doi.org/10.1016/j.bmc.2018.12.039] [PMID: 30606670]
[45]
Goma’a, H.A.M.; Ghaly, M.A.; Abou-zeid, L.A.; Badria, F.A.; Shehata, I.A.; El-Kerdawy, M.M. Synthesis, biological evaluation and in silico studies of 1,2,4-triazole and 1,3,4-thiadiazole derivatives as antiherpetic agents. ChemistrySelect, 2019, 4(21), 6421-6428.
[http://dx.doi.org/10.1002/slct.201900814]
[46]
Zaher, N.H.; Mostafa, M.I.; Altaher, A.Y. Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Acta Pharm., 2020, 70(2), 145-159.
[http://dx.doi.org/10.2478/acph-2020-0024] [PMID: 31955138]
[47]
Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R.; Gerasimova, E.L.; Zarubaev, V.V.; Rusinov, V.L. Synthesis and biological evaluation of 6-nitro-1,2,4-triazoloazines containing polyphenol fragments possessing antioxidant and antiviral activity. Bioorg. Med. Chem. Lett., 2020, 30(13), 127216.
[http://dx.doi.org/10.1016/j.bmcl.2020.127216] [PMID: 32360104]
[48]
Zhuang, J.; Ma, S. Recent development of pyrimidine-containing antimicrobial agents. ChemMedChem, 2020, 15(20), 1875-1886.
[http://dx.doi.org/10.1002/cmdc.202000378] [PMID: 32797654]
[49]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[50]
N, J.B.; Goudgaon, N.M. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J. Mol. Struct., 2021, 1246, 131168.
[http://dx.doi.org/10.1016/j.molstruc.2021.131168]
[51]
Roozbahani, M.; Hammersmith, K.M. Management of herpes simplex virus epithelial keratitis. Curr. Opin. Ophthalmol., 2018, 29(4), 360-364.
[http://dx.doi.org/10.1097/ICU.0000000000000483] [PMID: 29697435]
[52]
Heaton, S.M. Harnessing host–virus evolution in antiviral therapy and immunotherapy. Clin. Transl. Immunology, 2019, 8(7), e1067.
[http://dx.doi.org/10.1002/cti2.1067] [PMID: 31312450]
[53]
Kumar, S.; Deep, A.; Narasimhan, B. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Curr. Bioact. Compd., 2019, 15(3), 289-303.
[http://dx.doi.org/10.2174/1573407214666180124160405]
[54]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R. K. 1,3,4- Thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81, 557- 576.
[http://dx.doi.org/10.1111/cbdd.12125]
[55]
Karcz, D.; Matwijczuk, A. Kamiński, D.; Creaven, B.; Ciszkowicz, E.; Lecka-Szlachta, K.; Starzak, K. Structural features of 1,3,4-thiadiazole-derived ligands and their Zn(II) and Cu(II) complexes which demonstrate synergistic antibacterial effects with Kanamycin. Int. J. Mol. Sci., 2020, 21(16), 5735.
[http://dx.doi.org/10.3390/ijms21165735] [PMID: 32785125]
[56]
Anthwal, T.; Paliwal, S.; Nain, S. Diverse biological activities of 1,3,4-thiadiazole scaffold. Chemistry, 2022, 4(4), 1654-1671.
[http://dx.doi.org/10.3390/chemistry4040107]
[57]
Hamad, N.S.; Al-Haidery, N.H.; Al-Masoudi, I.A.; Sabri, M.; Sabri, L.; Al-Masoudi, N.A. Amino acid derivatives, part 4: synthesis and anti-HIV activity of new naphthalene derivatives. Arch. Pharm., 2010, 343(7), 397-403.
[http://dx.doi.org/10.1002/ardp.200900293] [PMID: 20379971]
[58]
Chen, Z.; Xu, W.; Liu, K.; Yang, S.; Fan, H.; Bhadury, P.S. Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules, 2010, 15, 9046-9056.
[http://dx.doi.org/10.3390/molecules15129046]
[59]
Dawood, K.M. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2016, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575]
[60]
Rane, J.S.; Pandey, P.; Chatterjee, A.; Khan, R.; Kumar, A.; Prakash, A.; Ray, S. Targeting virus–host interaction by novel pyrimidine derivative: An in silico approach towards discovery of potential drug against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(15), 5768-5778.
[http://dx.doi.org/10.1080/07391102.2020.1794969] [PMID: 32684109]
[61]
Sahu, S.; Sahu, T.; Kalyani, G.; Gidwani, B. Synthesis and evaluation of antimicrobial activity of 1, 3, 4-thiadiazole analogues for potential scaffold. J. Pharmacopuncture, 2021, 24(1), 32-40.
[http://dx.doi.org/10.3831/KPI.2021.24.1.32] [PMID: 33833898]
[62]
Chen, M.; Zhang, X.; Lu, D.; Luo, H.; Zhou, Z.; Qin, X.; Wu, W.; Zhang, G. Synthesis and bioactivities of novel 1,3,4-thiadiazole derivatives of glucosides. Front Chem., 2021, 9, 645876.
[http://dx.doi.org/10.3389/fchem.2021.645876] [PMID: 33842434]
[63]
Serban, G.; Stanasel, O.; Serban, E.; Bota, S. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des. Devel. Ther., 2018, 12, 1545-1566.
[http://dx.doi.org/10.2147/DDDT.S155958] [PMID: 29910602]
[64]
Xu, W.M.; Li, S.Z.; He, M.; Yang, S.; Li, X.Y.; Li, P. Synthesis and bioactivities of novel thioether/sulfone derivatives containing 1,2,3-thiadiazole and 1,3,4-oxadiazole/thiadiazole moiety. Bioorg. Med. Chem. Lett., 2013, 23(21), 5821-5824.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.107] [PMID: 24070781]
[65]
Yu, L.; Gan, X.; Zhou, D.; He, F.; Zeng, S.; Hu, D. Synthesis and antiviral activity of novel 1,4-pentadien-3-one derivatives containing a 1,3,4-thiadiazole moiety. Molecules, 2017, 22(4), 658.
[http://dx.doi.org/10.3390/molecules22040658] [PMID: 28430149]
[66]
Guo, S.; Zhao, W.; Wang, Y.; Zhang, W.; Chen, S.; Wei, P.; Wu, J. Design, synthesis, and mechanism of antiviral acylurea derivatives containing a trifluoromethylpyridine moiety. J. Agric. Food Chem., 2021, 69(43), 12891-12899.
[http://dx.doi.org/10.1021/acs.jafc.1c03586] [PMID: 34694786]
[67]
Xiao, J.J.; Liao, M.; Chu, M.J.; Ren, Z.L.; Zhang, X.; Lv, X.H.; Cao, H.Q. Design, synthesis and anti-tobacco mosaic virus (TMV) activity of 5-chloro-N-(4-cyano-1-aryl-1H-pyrazol-5-yl)-1-aryl-3-methyl-1H-pyrazole-4-carboxamide derivatives. Molecules, 2015, 20(1), 807-821.
[http://dx.doi.org/10.3390/molecules20010807] [PMID: 25574822]
[68]
Brai, A.; Ronzini, S.; Riva, V.; Botta, L.; Zamperini, C.; Borgini, M.; Trivisani, C.I.; Garbelli, A.; Pennisi, C.; Boccuto, A.; Saladini, F.; Zazzi, M.; Maga, G.; Botta, M. Synthesis and antiviral activity of novel 1,3,4-thiadiazole inhibitors of DDX3X. Molecules, 2019, 24(21), 3988.
[http://dx.doi.org/10.3390/molecules24213988] [PMID: 31690062]
[69]
Thorata, B.R.; Purohitb, V.P.; Yamgarc, R.S.; Bhagatd, D.; Wavhalb, S.D.; Malie, S. Structural insight into 2-Aryl-4-Quinoline carboxylic acid-based dihydroorotate dehydrogenase (DHODH) and its potential anti-SARS-CoV-2 activity through pharmacophore modeling, multidimensional QSAR, ADME, and docking studies. Phys. Chem. Res., 2023, 11, 783-800.
[http://dx.doi.org/10.22036/PCR.2022.365408.2218]
[70]
Sechi, M.; Rizzi, G.; Bacchi, A.; Carcelli, M.; Rogolino, D.; Pala, N.; Sanchez, T.W.; Taheri, L.; Dayam, R.; Neamati, N. Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2009, 17(7), 2925-2935.
[http://dx.doi.org/10.1016/j.bmc.2008.10.088] [PMID: 19026554]
[71]
Uhljar, L.É.; Kan, S.Y.; Radacsi, N.; Koutsos, V.; Szabó-Révész, P.; Ambrus, R. In vitro drug release, permeability, and structural test of Ciprofloxacin-loaded nanofibers. Pharmaceutics, 2021, 13(4), 556.
[http://dx.doi.org/10.3390/pharmaceutics13040556] [PMID: 33921031]
[72]
Papich, M.G.; Martinez, M.N. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: Challenges and pitfalls. AAPS J., 2015, 17(4), 948-964.
[http://dx.doi.org/10.1208/s12248-015-9743-7] [PMID: 25916691]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy