Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Review Article

Biopolymers and their Nanocomposites: Current Status and Future Prospects

Author(s): Neha Aggarwal*, Dipti Dhiman, Navalpreet Kaur, Harjinder Kaur and Sonika Arti

Volume 14, Issue 2, 2024

Published on: 12 October, 2023

Page: [85 - 92] Pages: 8

DOI: 10.2174/1877946813666230726125759

Price: $65

Abstract

For many years, petroleum-based polymers have been successfully enhanced by the addition of nanoparticles as additives. Carbon nanotubes, graphene, nanoclays, 2-D layered materials, and cellulose nano whiskers are a few of the several nanoreinforcements that are currently being researched. In comparison to unmodified polymer resin, the use of these nanofillers with bio-based polymers could improve a wide range of physical properties, including barrier, flame resistance, thermal stability, solvent uptake, and rate of biodegradability. This nano-reinforcement is a very appealing method to create new functional biomaterials for a variety of applications because these enhancements are typically achieved at minimal filler content.

« Previous
Graphical Abstract

[1]
George, J.; Ishida, H. A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Prog. Polym. Sci., 2018, 86, 1-39.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.07.006]
[2]
Taib, M.N.A.M.; Julkapli, N.M. Dimensional stability of natural fiber-based and hybrid composites.Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2019, pp. 61-79.
[http://dx.doi.org/10.1016/B978-0-08-102292-4.00004-7]
[3]
Basavegowda, N.; Baek, K.H. Advances in functional biopolymer-based nanocomposites for active food packaging applications. Polymers, 2021, 13(23), 4198.
[http://dx.doi.org/10.3390/polym13234198] [PMID: 34883701]
[4]
Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and challenges of biopolymer‐based nanocomposites in food packaging. Compr. Rev. Food Sci. Food Saf., 2021, 20(6), 5321-5344.
[http://dx.doi.org/10.1111/1541-4337.12832] [PMID: 34611989]
[5]
De Silva, R.T.; Soheilmoghaddam, M.; Goh, K.L.; Wahit, M.U.; Bee, S.A.H.; Chai, S.P.; Pasbakhsh, P. Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polym. Compos., 2016, 37(3), 861-869.
[http://dx.doi.org/10.1002/pc.23244]
[6]
Alhusaiki-Alghamdi, H.M.; Elashmaw, I.S. Definition, preparation, processing and characterization strategies of polymer nanocomposites containing nanocomposites. Pharma Chem., 2019, 11(4), 1-15.
[7]
Cotta, M.A. Quantum dots and their applications: What lies ahead? ACS Appl. Nano Mater., 2020, 3(6), 4920-4924.
[http://dx.doi.org/10.1021/acsanm.0c01386]
[8]
Yu, Z.; Alsammarraie, F.K.; Nayigiziki, F.X.; Wang, W.; Vardhanabhuti, B.; Mustapha, A.; Lin, M. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Res. Int., 2017, 99(Pt 1), 166-172.
[http://dx.doi.org/10.1016/j.foodres.2017.05.009] [PMID: 28784473]
[9]
Xiong, R.; Grant, A.M.; Ma, R.; Zhang, S.; Tsukruk, V.V. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Mater. Sci. Eng. Rep., 2018, 125, 1-41.
[http://dx.doi.org/10.1016/j.mser.2018.01.002]
[10]
Habibi, Y.; Lucia, L.A. Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: Fabrications and applications in the textile industry and nanofibers. Applied. Clay Science., 2014, 206, 106054.
[11]
Mallakpour, S.; Radfar, Z.; Hussain, C.M. Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: Fabrications and applications in the textile industry and nanofibers. Appl. Clay Sci., 2021, 206, 106054.
[http://dx.doi.org/10.1016/j.clay.2021.106054]
[12]
Adrar, S.; Habi, A.; Ajji, A.; Grohens, Y. Combined effect of epoxy functionalized graphene and organomontmorillonites on the morphology, rheological and thermal properties of poly (butylenes adipate-co-terephtalate) with or without a compatibilizer. Appl. Clay Sci., 2017, 146, 306-315.
[http://dx.doi.org/10.1016/j.clay.2017.06.009]
[13]
Akbar, M.U.; Rehman, F-U.; Ibrahim, M.; Barikani, M.; Mohammadi, M.; Sobhani, H.; Mohammadi, A.; Farrukh, M.A. Processing methods of bionanocomposites.Bionanocomposites; Mahmood Zia, K.; Jabeen, F.; Anjum, M.N.; Ikram, S., Eds.; Elsevier, 2020, pp. 87-104.
[http://dx.doi.org/10.1016/B978-0-12-816751-9.00004-0]
[14]
Aloui, H.; Khwaldia, K. Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr. Rev. Food Sci. Food Saf., 2016, 15(6), 1080-1103.
[http://dx.doi.org/10.1111/1541-4337.12226] [PMID: 33401837]
[15]
Vera, M.; Mella, C.; Urbano, B.F. Smart polymer nanocomposites: Recent advances and perspectives. J. Chil. Chem. Soc., 2020, 65(4), 4973-4981.
[http://dx.doi.org/10.4067/S0717-97072020000404973]
[16]
Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart packaging systems for food applications: A review. J. Food Sci. Technol., 2015, 52(10), 6125-6135.
[http://dx.doi.org/10.1007/s13197-015-1766-7] [PMID: 26396360]
[17]
Burmistrov, V.A.; Lipatova, I.M.; Rodicheva, J.A.; Losev, N.V.; Trifonova, I.P.; Koifman, O.I. Rheological, dynamic mechanical and transport properties of compatibilized starch/synthetic copolymer blends. Eur. Polym. J., 2019, 120, 109209.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.036]
[18]
Lavorgna, M.; Piscitelli, F.; Mangiacapra, P.; Buonocore, G.G. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr. Polym., 2010, 82(2), 291-298.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.054]
[19]
Rachtanapun, P.; Klunklin, W.; Jantrawut, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T.; Ruksiriwanich, W.; Phongthai, S.; Sommano, S.R.; Punyodom, W.; Reungsang, A.; Ngo, T.M.P. Characterization of chitosan film incorporated with curcumin extract. Polymers, 2021, 13(6), 963.
[http://dx.doi.org/10.3390/polym13060963] [PMID: 33801132]
[20]
Ebrahimifar, M.; Taherimehr, M. Evaluation of in-vitro drug release of polyvinylcyclohexane carbonate as a CO2-derived degradable polymer blended with PLA and PCL as drug carriers. J. Drug Deliv. Sci. Technol., 2021, 63, 102491.
[http://dx.doi.org/10.1016/j.jddst.2021.102491]
[21]
Tjong, S.C.; Chen, Haydn Nanocrystalline materials and coatings. Mater. Sci. Eng., 2004, 4, 1-88.
[22]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[23]
Liu, X.; Antonietti, M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon, 2014, 69, 460-466.
[http://dx.doi.org/10.1016/j.carbon.2013.12.049]
[24]
De Oliveira, A.D.; Beatrice, C.A.G. Polymer nanocomposites with different types of nanofiller. IntechOpen; Nanocomposites-Recent Evolution Sivasankaran, S., Ed.; London, UK, 2018, pp. 103-128.
[25]
Tsai, S.W.; Hahn, H.T. Introduction to Composite Materials; Routledge: Boca Raton, FL, USA, 2018.
[http://dx.doi.org/10.1201/9780203750148]
[26]
Mokhena, T.C.; Sadiku, E.R.; Mochane, M.J.; Ray, S.S.; John, M.J.; Mtibe, A. Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr. Polym., 2021, 273, 118507.
[http://dx.doi.org/10.1016/j.carbpol.2021.118507] [PMID: 34560938]
[27]
Nasrollahzadeh, M.; Issaabadi, Z.; Sajjadi, M.; Sajadi, S.M.; Atarod, M. Types of nanostructures. Interface Science and Technology, 2019, 28, 29-80.
[http://dx.doi.org/10.1016/B978-0-12-813586-0.00002-X]
[28]
Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced antibacterial effect of chitosan film using montmorillonite/cuo nanocomposite. Int. J. Biol. Macromol., 2018, 109, 1219-1231.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.119] [PMID: 29169945]
[29]
Lin, Y.; Hu, S.; Wu, G. Structure, dynamics, and mechanical properties of polyimide-grafted silica nanocomposites. J. Phys. Chem. C, 2019, 123(11), 6616-6626.
[http://dx.doi.org/10.1021/acs.jpcc.8b12519]
[30]
Starch-based polymeric materials and nanocomposites: Chemistry. In: Ahmed, J.; Tiwari, B.K.; Imam, S.H.; Rao, M.A., Eds.; Processing, and Applications; CRC Press, 2012.
[http://dx.doi.org/10.1201/b11848]
[31]
Visakh, P.M.; Mathew, A.P.; Oksman, K.; Thomas, S. Starch-based bionanocomposites: Processing and properties; Wiley, 2012.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy