Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Research Article

Epigenetics of Autism Spectrum Disorders: A Multi-level Analysis Combining Epi-signature, Age Acceleration, Epigenetic Drift and Rare Epivariations Using Public Datasets

Author(s): Davide Gentilini*, Rebecca Cavagnola, Irene Possenti, Luciano Calzari, Francesco Ranucci, Marta Nola, Miriam Olivola, Natascia Brondino and Pierluigi Politi

Volume 21, Issue 11, 2023

Published on: 25 July, 2023

Page: [2362 - 2373] Pages: 12

DOI: 10.2174/1570159X21666230725142338

Price: $65

Abstract

Background: Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls.

Objective: The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined.

Methods: We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations.

Results: We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation).

Conclusion: Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.

« Previous
Graphical Abstract

[1]
Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A.; Hughes, M.M.; Patrick, M.; Pierce, K.; Poynter, J.N.; Salinas, A.; Shenouda, J.; Vehorn, A.; Warren, Z.; Constantino, J.N.; DiRienzo, M.; Fitzgerald, R.T.; Grzybowski, A.; Spivey, M.H.; Pettygrove, S.; Zahorodny, W.; Ali, A.; Andrews, J.G.; Baroud, T.; Gutierrez, J.; Hewitt, A.; Lee, L.C.; Lopez, M.; Mancilla, K.C.; McArthur, D.; Schwenk, Y.D.; Washington, A.; Williams, S.; Cogswell, M.E. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, united states, 2018. MMWR Surveill. Summ., 2021, 70(11), 1-16.
[http://dx.doi.org/10.15585/mmwr.ss7011a1] [PMID: 34855725]
[2]
Havdahl, A.; Niarchou, M.; Starnawska, A.; Uddin, M.; van der Merwe, C.; Warrier, V. Genetic contributions to autism spectrum disorder. Psychol. Med., 2021, 51(13), 2260-2273.
[http://dx.doi.org/10.1017/S0033291721000192] [PMID: 33634770]
[3]
Schiele, M.A.; Domschke, K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav., 2018, 17(3), e12423.
[http://dx.doi.org/10.1111/gbb.12423] [PMID: 28873274]
[4]
Tseng, C.E.J.; McDougle, C.J.; Hooker, J.M.; Zürcher, N.R. Epigenetics of autism spectrum disorder: histone deacetylases. Biol. Psychiatry, 2022, 91(11), 922-933.
[http://dx.doi.org/10.1016/j.biopsych.2021.11.021] [PMID: 35120709]
[5]
Tremblay, M.W.; Jiang, Y. DNA methylation and susceptibility to autism spectrum disorder. Annu. Rev. Med., 2019, 70(1), 151-166.
[http://dx.doi.org/10.1146/annurev-med-120417-091431] [PMID: 30691368]
[6]
Homs, A.; Codina-Solà, M.; Rodríguez-Santiago, B.; Villanueva, C.M.; Monk, D.; Cuscó, I.; Pérez-Jurado, L.A. Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl. Psychiatry, 2016, 6(7), e855.
[http://dx.doi.org/10.1038/tp.2016.120] [PMID: 27404287]
[7]
Kimura, R.; Nakata, M.; Funabiki, Y.; Suzuki, S.; Awaya, T.; Murai, T.; Hagiwara, M. An epigenetic biomarker for adult high-functioning autism spectrum disorder. Sci. Rep., 2019, 9(1), 13662.
[http://dx.doi.org/10.1038/s41598-019-50250-9] [PMID: 31541176]
[8]
Siu, M.T.; Butcher, D.T.; Turinsky, A.L.; Cytrynbaum, C.; Stavropoulos, D.J.; Walker, S.; Caluseriu, O.; Carter, M.; Lou, Y.; Nicolson, R.; Georgiades, S.; Szatmari, P.; Anagnostou, E.; Scherer, S.W.; Choufani, S.; Brudno, M.; Weksberg, R. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin. Epigenetics, 2019, 11(1), 103.
[http://dx.doi.org/10.1186/s13148-019-0684-3] [PMID: 31311581]
[9]
Ladd-Acosta, C.; Hansen, K.D.; Briem, E.; Fallin, M.D.; Kaufmann, W.E.; Feinberg, A.P. Common DNA methylation alterations in multiple brain regions in autism. Mol. Psychiatry, 2014, 19(8), 862-871.
[http://dx.doi.org/10.1038/mp.2013.114] [PMID: 23999529]
[10]
Corley, M.J.; Vargas-Maya, N.; Pang, A.P.S.; Lum-Jones, A.; Li, D.; Khadka, V.; Sultana, R.; Blanchard, D.C.; Maunakea, A.K. Epigenetic delay in the neurodevelopmental trajectory of DNA methylation states in autism spectrum disorders. Front. Genet., 2019, 10, 907.
[http://dx.doi.org/10.3389/fgene.2019.00907] [PMID: 31681403]
[11]
Nardone, S.; Sharan Sams, D.; Reuveni, E.; Getselter, D.; Oron, O.; Karpuj, M.; Elliott, E. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl. Psychiatry, 2014, 4(9), e433.
[http://dx.doi.org/10.1038/tp.2014.70] [PMID: 25180572]
[12]
Assenov, Y.; Müller, F.; Lutsik, P.; Walter, J.; Lengauer, T.; Bock, C. Comprehensive analysis of DNA methylation data with RnBeads. Nat. Methods, 2014, 11(11), 1138-1140.
[http://dx.doi.org/10.1038/nmeth.3115] [PMID: 25262207]
[13]
Barbosa, M.; Joshi, R.S.; Garg, P.; Martin-Trujillo, A.; Patel, N.; Jadhav, B.; Watson, C.T.; Gibson, W.; Chetnik, K.; Tessereau, C.; Mei, H.; De Rubeis, S.; Reichert, J.; Lopes, F.; Vissers, L.E.L.M.; Kleefstra, T.; Grice, D.E.; Edelmann, L.; Soares, G.; Maciel, P.; Brunner, H.G.; Buxbaum, J.D.; Gelb, B.D.; Sharp, A.J. Identification of rare de novo epigenetic variations in congenital disorders. Nat. Commun., 2018, 9(1), 2064.
[http://dx.doi.org/10.1038/s41467-018-04540-x] [PMID: 29802345]
[14]
Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 2007, 8(1), 118-127.
[http://dx.doi.org/10.1093/biostatistics/kxj037] [PMID: 16632515]
[15]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[16]
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol., 2013, 14(10), R115.
[http://dx.doi.org/10.1186/gb-2013-14-10-r115] [PMID: 24138928]
[17]
Willer, C.J.; Li, Y.; Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics, 2010, 26(17), 2190-2191.
[http://dx.doi.org/10.1093/bioinformatics/btq340] [PMID: 20616382]
[18]
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw., 2010, 36(3), 1-48.
[http://dx.doi.org/10.18637/jss.v036.i03]
[19]
Gentilini, D.; Garagnani, P.; Pisoni, S.; Bacalini, M.G.; Calzari, L.; Mari, D.; Vitale, G.; Franceschi, C.; Di Blasio, A.M. Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females. Aging (Albany NY), 2015, 7(8), 568-578.
[http://dx.doi.org/10.18632/aging.100792] [PMID: 26342808]
[20]
Gentilini, D.; Scala, S.; Gaudenzi, G.; Garagnani, P.; Capri, M.; Cescon, M.; Grazi, G.L.; Bacalini, M.G.; Pisoni, S.; Dicitore, A.; Circelli, L.; Santagata, S.; Izzo, F.; Di Blasio, A.M.; Persani, L.; Franceschi, C.; Vitale, G. Epigenome-wide association study in hepatocellular carcinoma: Identification of stochastic epigenetic mutations through an innovative statistical approach. Oncotarget, 2017, 8(26), 41890-41902.
[http://dx.doi.org/10.18632/oncotarget.17462] [PMID: 28514750]
[21]
Gentilini, D.; Somigliana, E.; Pagliardini, L.; Rabellotti, E.; Garagnani, P.; Bernardinelli, L.; Papaleo, E.; Candiani, M.; Di Blasio, A.M.; Viganò, P. Multifactorial analysis of the stochastic epigenetic variability in cord blood confirmed an impact of common behavioral and environmental factors but not of in vitro conception. Clin. Epigenetics, 2018, 10(1), 77.
[http://dx.doi.org/10.1186/s13148-018-0510-3] [PMID: 29930742]
[22]
Spada, E.; Calzari, L.; Corsaro, L.; Fazia, T.; Mencarelli, M.; Di Blasio, A.M.; Bernardinelli, L.; Zangheri, G.; Vignali, M.; Gentilini, D. Epigenome wide association and stochastic epigenetic mutation analysis on cord blood of preterm birth. Int. J. Mol. Sci., 2020, 21(14), 5044.
[http://dx.doi.org/10.3390/ijms21145044] [PMID: 32708910]
[23]
Guida, V.; Calzari, L.; Fadda, M.T.; Piceci-Sparascio, F.; Digilio, M.C.; Bernardini, L.; Brancati, F.; Mattina, T.; Melis, D.; Forzano, F.; Briuglia, S.; Mazza, T.; Bianca, S.; Valente, E.M.; Salehi, L.B.; Prontera, P.; Pagnoni, M.; Tenconi, R.; Dallapiccola, B.; Iannetti, G.; Corsaro, L.; De Luca, A.; Gentilini, D. Genome-wide DNA methylation analysis of a cohort of 41 patients affected by oculo-auriculo-vertebral spectrum (OAVS). Int. J. Mol. Sci., 2021, 22(3), 1190.
[http://dx.doi.org/10.3390/ijms22031190] [PMID: 33530447]
[24]
Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 2019, 47(W1), W199-W205.
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[25]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[26]
Ciernia, A.V.; LaSalle, J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat. Rev. Neurosci., 2016, 17(7), 411-423.
[http://dx.doi.org/10.1038/nrn.2016.41] [PMID: 27150399]
[27]
Bakulski, K.M.; Dou, J.F.; Feinberg, J.I.; Aung, M.T.; Ladd-Acosta, C.; Volk, H.E.; Newschaffer, C.J.; Croen, L.A.; Hertz-Picciotto, I.; Levy, S.E.; Landa, R.; Feinberg, A.P.; Fallin, M.D. Autism-associated DNA methylation at birth from multiple tissues is enriched for autism genes in the early autism risk longitudinal investigation. Front. Mol. Neurosci., 2021, 14, 775390.
[http://dx.doi.org/10.3389/fnmol.2021.775390] [PMID: 34899183]
[28]
Andrews, S.V.; Sheppard, B.; Windham, G.C.; Schieve, L.A.; Schendel, D.E.; Croen, L.A.; Chopra, P.; Alisch, R.S.; Newschaffer, C.J.; Warren, S.T.; Feinberg, A.P.; Fallin, M.D.; Ladd-Acosta, C. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder. Mol. Autism, 2018, 9(1), 40.
[http://dx.doi.org/10.1186/s13229-018-0224-6] [PMID: 29988321]
[29]
Liu, CY; Maity, A; Lin, X; Wright, RO; Christiani, DC Design and analysis issues in gene and environment studies. Environmental health : a global access science source, 2012, 11(93)
[http://dx.doi.org/10.1186/1476-069X-11-93]
[30]
Jensen, A.R.; Lane, A.L.; Werner, B.A.; McLees, S.E.; Fletcher, T.S.; Frye, R.E. Modern biomarkers for autism spectrum disorder: future directions. Mol. Diagn. Ther., 2022, 26(5), 483-495.
[http://dx.doi.org/10.1007/s40291-022-00600-7] [PMID: 35759118]
[31]
Bahado-Singh, R.O.; Vishweswaraiah, S.; Aydas, B.; Mishra, N.K.; Yilmaz, A.; Guda, C.; Radhakrishna, U. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res., 2019, 1724, 146457.
[http://dx.doi.org/10.1016/j.brainres.2019.146457] [PMID: 31521637]
[32]
Williams, G.; King, J.; Cunningham, M.; Stephan, M.; Kerr, B.; Hersh, J.H. Fetal valproate syndrome and autism: additional evidence of an association. Dev. Med. Child Neurol., 2001, 43(3), 202-206.
[http://dx.doi.org/10.1111/j.1469-8749.2001.tb00188.x] [PMID: 11263692]
[33]
Santos, J.X.; Rasga, C.; Marques, A.R.; Martiniano, H.; Asif, M.; Vilela, J.; Oliveira, G.; Sousa, L.; Nunes, A.; Vicente, A.M. A role for gene-environment interactions in autism spectrum disorder is supported by variants in genes regulating the effects of exposure to xenobiotics. Front. Neurosci., 2022, 16, 862315.
[http://dx.doi.org/10.3389/fnins.2022.862315] [PMID: 35663546]
[34]
De Santis, B.; Brera, C.; Mezzelani, A.; Soricelli, S.; Ciceri, F.; Moretti, G.; Debegnach, F.; Bonaglia, M.C.; Villa, L.; Molteni, M.; Raggi, M.E. Role of mycotoxins in the pathobiology of autism: A first evidence. Nutr. Neurosci., 2019, 22(2), 132-144.
[http://dx.doi.org/10.1080/1028415X.2017.1357793] [PMID: 28795659]
[35]
Mason, D.; Ronald, A.; Ambler, A.; Caspi, A.; Houts, R.; Poulton, R.; Ramrakha, S.; Wertz, J.; Moffitt, T.E.; Happé, F. Autistic traits are associated with faster pace of aging: Evidence from the Dunedin study at age 45. Autism Res., 2021, 14(8), 1684-1694.
[http://dx.doi.org/10.1002/aur.2534] [PMID: 34042279]
[36]
Okazaki, S.; Kimura, R.; Otsuka, I.; Funabiki, Y.; Murai, T.; Hishimoto, A. Epigenetic clock analysis and increased plasminogen activator inhibitor-1 in high-functioning autism spectrum disorder. PLoS One, 2022, 17(2), e0263478.
[http://dx.doi.org/10.1371/journal.pone.0263478] [PMID: 35113965]
[37]
Smith DaWalt, L.; Hong, J.; Greenberg, J.S.; Mailick, M.R. Mortality in individuals with autism spectrum disorder: Predictors over a 20-year period. Autism, 2019, 23(7), 1732-1739.
[http://dx.doi.org/10.1177/1362361319827412] [PMID: 30818975]
[38]
Catalá-López, F.; Hutton, B.; Page, M.J.; Driver, J.A.; Ridao, M.; Alonso-Arroyo, A.; Valencia, A.; Macías Saint-Gerons, D.; Tabarés-Seisdedos, R. Mortality in persons with autism spectrum disorder or attention-deficit/hyperactivity disorder. JAMA Pediatr., 2022, 176(4), e216401.
[http://dx.doi.org/10.1001/jamapediatrics.2021.6401] [PMID: 35157020]
[39]
McCrory, C.; Fiorito, G.; Hernandez, B.; Polidoro, S.; O’Halloran, A.M.; Hever, A.; Ni Cheallaigh, C.; Lu, A.T.; Horvath, S.; Vineis, P.; Kenny, R.A. Grimage outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. A Biol. Sci. Med. Sci., 2021, 76(5), 741-749.
[http://dx.doi.org/10.1093/gerona/glaa286] [PMID: 33211845]
[40]
Li, Y.; Tollefsbol, T.O. Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases. Epigenomics, 2016, 8(12), 1637-1651.
[http://dx.doi.org/10.2217/epi-2016-0078] [PMID: 27882781]
[41]
Aglinskas, A.; Hartshorne, J.K.; Anzellotti, S. Contrastive machine learning reveals the structure of neuroanatomical variation within autism. Science, 2022, 376(6597), 1070-1074.
[http://dx.doi.org/10.1126/science.abm2461] [PMID: 35653486]
[42]
Issa, J.P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest., 2014, 124(1), 24-29.
[http://dx.doi.org/10.1172/JCI69735] [PMID: 24382386]
[43]
Rodin, R.E.; Dou, Y.; Kwon, M.; Sherman, M.A.; D’Gama, A.M.; Doan, R.N.; Rento, L.M.; Girskis, K.M.; Bohrson, C.L.; Kim, S.N.; Nadig, A.; Luquette, L.J.; Gulhan, D.C.; Walsh, C.A.; Ganz, J.; Woodworth, M.B.; Li, P.; Rodin, R.E.; Hill, R.S.; Bizzotto, S.; Zhou, Z.; Lee, E.A.; Barton, A.R.; D’Gama, A.M.; Galor, A.; Bohrson, C.L.; Kwon, D.; Gulhan, D.C.; Lim, E.T.; Cortes, I.C.; Luquette, L.J.; Sherman, M.A.; Coulter, M.E.; Lodato, M.A.; Park, P.J.; Monroy, R.B.; Kim, S.N.; Dou, Y.; Chess, A.; Gulyás-Kovács, A.; Rosenbluh, C.; Akbarian, S.; Ben Langmead; Thorpe, J.; Pevsner, J.; Cho, S.; Jaffe, A.E.; Paquola, A.; Weinberger, D.R.; Erwin, J.A.; Shin, J.H.; Straub, R.E.; Narurkar, R.; Abyzov, A.S.; Bae, T.; Addington, A.; Panchision, D.; Meinecke, D.; Senthil, G.; Bingaman, L.; Dutka, T.; Lehner, T.; Saucedo-Cuevas, L.; Conniff, T.; Daily, K.; Peters, M.; Gage, F.H.; Wang, M.; Reed, P.J.; Linker, S.B.; Urban, A.E.; Zhou, B.; Zhu, X.; Serres, A.; Juan, D.; Povolotskaya, I.; Lobón, I.; Solis-Moruno, M.; García-Pérez, R.; Marquès-Bonet, T.; Mathern, G.W.; Courchesne, E.; Gu, J.; Gleeson, J.G.; Ball, L.L.; George, R.D.; Pramparo, T.; Flasch, D.A.; Frisbie, T.J.; Kidd, J.M.; Moldovan, J.B.; Moran, J.V.; Kwan, K.Y.; Mills, R.E.; Emery, S.B.; Zhou, W.; Wang, Y.; Ratan, A.; McConnell, M.J.; Vaccarino, F.M.; Coppola, G.; Lennington, J.B.; Fasching, L.; Sestan, N.; Pochareddy, S.; Park, P.J.; Walsh, C.A. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci., 2021, 24(2), 176-185.
[http://dx.doi.org/10.1038/s41593-020-00765-6] [PMID: 33432195]
[44]
Garg, P.; Sharp, A.J. Screening for rare epigenetic variations in autism and schizophrenia. Hum. Mutat., 2019, 40(7), humu.23740.
[http://dx.doi.org/10.1002/humu.23740] [PMID: 30900359]
[45]
Masini, E.; Loi, E.; Vega-Benedetti, A.F.; Carta, M.; Doneddu, G.; Fadda, R.; Zavattari, P. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int. J. Mol. Sci., 2020, 21(21), 8290.
[http://dx.doi.org/10.3390/ijms21218290] [PMID: 33167418]
[46]
Manivasagam, T.; Arunadevi, S.; Essa, M.M.; SaravanaBabu, C.; Borah, A.; Thenmozhi, A.J.; Qoronfleh, M.W. Role of oxidative stress and antioxidants in autism. Adv. Neurobiol., 2020, 24, 193-206.
[http://dx.doi.org/10.1007/978-3-030-30402-7_7] [PMID: 32006361]
[47]
Gevezova, M.; Sarafian, V.; Anderson, G.; Maes, M. Inflammation and mitochondrial dysfunction in autism spectrum disorder. CNS Neurol. Disord. Drug Targets, 2020, 19(5), 320-333.
[http://dx.doi.org/10.2174/1871527319666200628015039] [PMID: 32600237]
[48]
Tamiji, J.; Crawford, D.A. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals, 2010, 18(2), 98-112.
[http://dx.doi.org/10.1159/000323189] [PMID: 21346377]
[49]
Fetit, R.; Hillary, R.F.; Price, D.J.; Lawrie, S.M. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci. Biobehav. Rev., 2021, 129, 35-62.
[http://dx.doi.org/10.1016/j.neubiorev.2021.07.014] [PMID: 34273379]
[50]
Quirion, R.; Dumont, Y.; Carvajal, C. Neuropeptide y: role in emotion and alcohol dependence. CNS Neurol. Disord. Drug Targets, 2006, 5(2), 181-195.
[http://dx.doi.org/10.2174/187152706776359592] [PMID: 16611091]
[51]
Dietrich, M.O.; Zimmer, M.R.; Bober, J.; Horvath, T.L. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell, 2015, 160(6), 1222-1232.
[http://dx.doi.org/10.1016/j.cell.2015.02.024] [PMID: 25748653]
[52]
Nahvi, R.J.; Sabban, E.L. Sex Differences in the neuropeptide Y system and implications for stress related disorders. Biomolecules, 2020, 10(9), 1248.
[http://dx.doi.org/10.3390/biom10091248] [PMID: 32867327]
[53]
Sayed, S.; Van Dam, N.T.; Horn, S.R.; Kautz, M.M.; Parides, M.; Costi, S.; Collins, K.A.; Iacoviello, B.; Iosifescu, D.V.; Mathé, A.A.; Southwick, S.M.; Feder, A.; Charney, D.S.; Murrough, J.W. A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder. Int. J. Neuropsychopharmacol., 2018, 21(1), 3-11.
[http://dx.doi.org/10.1093/ijnp/pyx109] [PMID: 29186416]
[54]
Silveira Villarroel, H.; Bompolaki, M.; Mackay, J.P.; Miranda Tapia, A.P.; Michaelson, S.D.; Leitermann, R.J.; Marr, R.A.; Urban, J.H.; Colmers, W.F. NPY induces stress resilience via downregulation of Ih in principal neurons of rat basolateral amygdala. J. Neurosci., 2018, 38(19), 4505-4520.
[http://dx.doi.org/10.1523/JNEUROSCI.3528-17.2018] [PMID: 29650696]
[55]
Nwokafor, C.; Serova, L.I.; Nahvi, R.J.; McCloskey, J.; Sabban, E.L. Activation of NPY receptor subtype 1 by [D-His26]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides, 2020, 80, 102001.
[http://dx.doi.org/10.1016/j.npep.2019.102001] [PMID: 31916978]
[56]
Redrobe, JP; Dumont, Y; Fournier, A; Quirion, R The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology, 2002, 26(5), 615-24.
[57]
Verma, D.; Tasan, R.O.; Herzog, H.; Sperk, G. NPY controls fear conditioning and fear extinction by combined action on Y 1 and Y 2 receptors. Br. J. Pharmacol., 2012, 166(4), 1461-1473.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01872.x] [PMID: 22289084]
[58]
Hollocks, M.J.; Lerh, J.W.; Magiati, I.; Meiser-Stedman, R.; Brugha, T.S. Anxiety and depression in adults with autism spectrum disorder: a systematic review and meta-analysis. Psychol. Med., 2019, 49(4), 559-572.
[http://dx.doi.org/10.1017/S0033291718002283] [PMID: 30178724]
[59]
Hessl, D.; Libero, L.; Schneider, A.; Kerns, C.; Winder-Patel, B.; Heath, B.; Lee, J.; Coleman, C.; Sharma, N.; Solomon, M.; Nordahl, C.W.; Amaral, D.G. Fear potentiated startle in children with autism spectrum disorder: association with anxiety symptoms and amygdala volume. Autism Res., 2021, 14(3), 450-463.
[http://dx.doi.org/10.1002/aur.2460] [PMID: 33372389]
[60]
Lee, E.C.; Hu, V.W. Phenotypic subtyping and re-analysis of existing methylation data from autistic probands in simplex families reveal ASD subtype-associated differentially methylated genes and biological functions. Int. J. Mol. Sci., 2020, 21(18), 6877.
[http://dx.doi.org/10.3390/ijms21186877] [PMID: 32961747]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy