Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Systematic Review Article

Genetic Variants Impacting Angiogenesis Signaling Pathways in Glioblastoma Multiforme: A Systematic Review of Mutations and Polymorphisms

Author(s): Masoumeh Eliyasi Dashtaki, Elham Karimi and Sorayya Ghasemi*

Volume 24, Issue 11, 2024

Published on: 04 October, 2023

Page: [1346 - 1357] Pages: 12

DOI: 10.2174/1566524023666230725115812

Price: $65

Abstract

Background: Several signaling pathways are involved in the process of angiogenesis, which is one of the most important hallmarks of glioblastoma multiforme (GBM). Identifying related gene variants can help researchers work out what causes anti-angiogenesis drug resistance.

Objective: The goal of this systematic analysis was to identify all mutations and polymorphisms involved in angiogenesis pathways in GBM and their impact on clinical outcomes.

Methods: The keywords include glioblastoma, angiogenesis, signaling pathway, mutation, polymorphism, and related terms used to search ISI, PubMed, and Scopus for relevant articles published up to January 2022. The PRISMA protocol was used to conduct our systematic review. The related articles were taken into consideration. The risk of bias in the associated articles was surveyed, as well as the article scoring. Two authors collaborated on data extraction.

Results: The inclusion criteria were included in 32 articles out of a total of 787 articles. VEGF, HIF1a, EGFR, PI3K and MAPK are the pathways that have been studied the most. IDH1, VEGF, VEGFR, EGFR, and HIF1a are the genes with the highest frequency of mutations or polymorphisms.

Conclusion: In conclusion, this study found that angiogenesis in primary or recurrent GBM is linked to gene changes in eleven signaling pathways. However, some of these gene mutations have been researched numerous times in relation to angiogenesis, while others have only been studied once. Understanding these changes will help us employ combination therapies more effectively for GBM patients' survival and personal medicine.

[1]
Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med 2015; 5(4): a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[2]
Hundsberger T, Reardon DA, Wen PY. Angiogenesis inhibitors in tackling recurrent glioblastoma. Expert Rev Anticancer Ther 2017; 17(6): 507-15.
[http://dx.doi.org/10.1080/14737140.2017.1322903] [PMID: 28438066]
[3]
Subramaniyan V, Fuloria S, Gupta G, et al. A review on epidermal growth factor receptor’s role in breast and non-small cell lung cancer. Chem Biol Interact 2022; 351: 109735.
[http://dx.doi.org/10.1016/j.cbi.2021.109735] [PMID: 34742684]
[4]
Ismail AA, Shaker BT, Bajou K. The plasminogen–activator plasmin system in physiological and pathophysiological angiogenesis. Int J Mol Sci 2021; 23(1): 337.
[http://dx.doi.org/10.3390/ijms23010337] [PMID: 35008762]
[5]
Wang J, Hu Y, Zhou X, et al. A radiomics model based on DCE-MRI and DWI may improve the prediction of estimating IDH1 mutation and angiogenesis in gliomas. Eur J Radiol 2022; 147: 110141.
[http://dx.doi.org/10.1016/j.ejrad.2021.110141] [PMID: 34995947]
[6]
Jin J, Wu X, Yin J, et al. Identification of genetic mutations in cancer: Challenge and opportunity in the new era of targeted therapy. Front Oncol 2019; 9: 263.
[http://dx.doi.org/10.3389/fonc.2019.00263] [PMID: 31058077]
[7]
Oliver L, Lalier L, Salaud C, Heymann D, Cartron PF, Vallette F. Drug resistance in glioblastoma: Are persisters the key to therapy? Cancer Drug Resist 2020; 3(3): 287-301.
[http://dx.doi.org/10.20517/cdr.2020.29]
[8]
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020; 77(9): 1745-70.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[9]
Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J Clin 2010; 60(3): 166-93.
[http://dx.doi.org/10.3322/caac.20069] [PMID: 20445000]
[10]
Nicolaidis S. Biomarkers of glioblastoma multiforme. Metabolism 2015; 64(3) (Suppl. 1): S22-7.
[http://dx.doi.org/10.1016/j.metabol.2014.10.031] [PMID: 25468141]
[11]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate health care interventions: Explanation and elaboration. Ann Intern Med 2009; 151(4): W.
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00136] [PMID: 19622512]
[12]
Viswanathan M, Berkman ND, Dryden DM, Hartling L. Assessing risk of bias and confounding in observational studies of interventions or exposures: Further development of the RTI item bank. Rockville: Agency for Healthcare Research and Quality 2013.
[13]
Zaman N, Dass SS, Du Parcq P, et al. The KDR (VEGFR-2) genetic polymorphism Q472H and c-KIT polymorphism M541L are associated with more aggressive behaviour in astrocytic gliomas. Cancer Genomics Proteomics 2020; 17(6): 715-27.
[http://dx.doi.org/10.21873/cgp.20226] [PMID: 33099473]
[14]
Ge J, Li C, Xue F, et al. Apatinib plus temozolomide: An effective salvage treatment for recurrent glioblastoma. Front Oncol 2021; 10: 601175.
[http://dx.doi.org/10.3389/fonc.2020.601175] [PMID: 33634023]
[15]
Gargini R, Segura-Collar B, Herránz B, et al. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci Transl Med 2020; 12(527): eaax1501.
[http://dx.doi.org/10.1126/scitranslmed.aax1501] [PMID: 31969485]
[16]
Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Neuro-oncol 2019; 21(9): 1197-209.
[http://dx.doi.org/10.1093/neuonc/noz095] [PMID: 31127834]
[17]
Vasconcelos VCA, Lourenço GJ, Brito ABC, et al. Associations of VEGFA and KDR single-nucleotide polymorphisms and increased risk and aggressiveness of high-grade gliomas. Tumour Biol 2019; 41(9)
[http://dx.doi.org/10.1177/1010428319872092] [PMID: 31486713]
[18]
Sun C, Zhao Y, Shi J, et al. Isocitrate dehydrogenase1 mutation reduces the pericyte coverage of microvessels in astrocytic tumours. J Neurooncol 2019; 143(2): 187-96.
[http://dx.doi.org/10.1007/s11060-019-03156-5] [PMID: 31004262]
[19]
Hovinga KE, McCrea HJ, Brennan C, et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J Neurooncol 2019; 142(2): 337-45.
[http://dx.doi.org/10.1007/s11060-019-03102-5] [PMID: 30680510]
[20]
Djan I, Lucic S, Bjelan M, Vuckovic N, Vucinic N, Morganti AG, et al. The VEGF gene polymorphism in glioblastoma may be a new prognostic marker of overall survival. J BUON 2019; 24(6): 2475-82.
[21]
Burgenske DM, Yang J, Decker PA, et al. Molecular profiling of long-term IDH-wildtype glioblastoma survivors. Neuro-oncol 2019; 21(11): 1458-69.
[http://dx.doi.org/10.1093/neuonc/noz129] [PMID: 31346613]
[22]
Polívka J Jr, Pešta M, Pitule P, et al. IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget 2018; 9(23): 16462-76.
[http://dx.doi.org/10.18632/oncotarget.24536] [PMID: 29662659]
[23]
Linhares P, Viana-Pereira M, Ferreira M, et al. Genetic variants of vascular endothelial growth factor predict risk and survival of gliomas. Tumour Biol 2018; 40(3)
[http://dx.doi.org/10.1177/1010428318766273] [PMID: 29584591]
[24]
Cheng WY, Shen CC, Chiao MT, et al. High expression of a novel splicing variant of VEGF, L-VEGF144 in glioblastoma multiforme is associated with a poorer prognosis in bevacizumab treatment. J Neurooncol 2018; 140(1): 37-47.
[http://dx.doi.org/10.1007/s11060-018-2928-z] [PMID: 29909500]
[25]
Calastri MCJ, Rodrigues NLTO, Hatori G, et al. Genetic variants related to angiogenesis and apoptosis in patients with glioma. Arq Neuropsiquiatr 2018; 76(6): 393-8.
[http://dx.doi.org/10.1590/0004-282x20180051] [PMID: 29972422]
[26]
Yalaza C, Ak H, Cagli MS, Ozgiray E, Atay S, Aydin HH. R132H mutation in IDH1 gene is associated with increased tumor HIF1-alpha and serum VEGF levels in primary glioblastoma multiforme. Ann Clin Lab Sci 2017; 47(3): 362-4.
[PMID: 28667042]
[27]
Veganzones S, de la Orden V, Requejo L, et al. Genetic alterations of IDH1 and Vegf in brain tumors. Brain Behav 2017; 7(9): e00718.
[http://dx.doi.org/10.1002/brb3.718] [PMID: 28948065]
[28]
Eskilsson E, Rosland GV, Talasila KM, et al. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro-oncol 2016; 18(12): 1644-55.
[http://dx.doi.org/10.1093/neuonc/now113] [PMID: 27286795]
[29]
Pooyan H, Ahmad E, Azadeh R. 4G/5G and A-844G polymorphisms of plasminogen activator Inhibitor-1 Associated with Glioblastoma in Iran-a Case-Control Study. APJCP 2015; 16(15): 6327-30.
[PMID: 26434837]
[30]
Liu H, Mao P, Xie C, Xie W, Wang M, Jiang H. Association between interleukin 8–251 T/A and +781 C/T polymorphisms and glioma risk. Diagn Pathol 2015; 10(1): 138.
[http://dx.doi.org/10.1186/s13000-015-0378-x] [PMID: 26249370]
[31]
Kawasoe T, Takeshima H, Yamashita S, et al. Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme. J Neurosurg 2015; 122(2): 317-23.
[http://dx.doi.org/10.3171/2014.10.JNS132159] [PMID: 25415071]
[32]
da Silva R, Uno M, Marie SKN, Oba-Shinjo SM. LOX expression and functional analysis in astrocytomas and impact of IDH1 mutation. PLoS One 2015; 10(3): e0119781.
[http://dx.doi.org/10.1371/journal.pone.0119781] [PMID: 25790191]
[33]
Arevalo-Perez J, Thomas AA, Kaley T, et al. T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor vIII status. AJNR Am J Neuroradiol 2015; 36(12): 2256-61.
[http://dx.doi.org/10.3174/ajnr.A4484] [PMID: 26338913]
[34]
Ferrarese R, Harsh GR IV, Yadav AK, et al. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. J Clin Invest 2014; 124(7): 2861-76.
[http://dx.doi.org/10.1172/JCI68836] [PMID: 24865424]
[35]
Popov S, Jury A, Laxton R, et al. IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology. PLoS One 2013; 8(2): e56328.
[http://dx.doi.org/10.1371/journal.pone.0056328] [PMID: 23451042]
[36]
Sjöström S, Wibom C, Andersson U, et al. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome. J Neurooncol 2011; 104(2): 523-7.
[http://dx.doi.org/10.1007/s11060-010-0504-2] [PMID: 21191630]
[37]
Hassler M, Seidl S, Fazeny-Doerner B, et al. Diversity of cytogenetic and pathohistologic profiles in glioblastoma. Cancer Genet Cytogenet 2006; 166(1): 46-55.
[http://dx.doi.org/10.1016/j.cancergencyto.2005.08.021] [PMID: 16616111]
[38]
Jiang H, Lian M, Xie J, Li J, Wang M. Three single nucleotide polymorphisms of the vascular endothelial growth factor (VEGF) gene and glioma risk in a Chinese population. J Int Med Res 2013; 41(5): 1484-94.
[http://dx.doi.org/10.1177/0300060513498667] [PMID: 24008569]
[39]
Burford A, Little SE, Jury A, et al. Distinct phenotypic differences associated with differential amplification of receptor tyrosine kinase genes at 4q12 in glioblastoma. PLoS One 2013; 8(8): e71777.
[http://dx.doi.org/10.1371/journal.pone.0071777] [PMID: 23990986]
[40]
Tykocinski ES, Grant RA, Kapoor GS, et al. Use of magnetic perfusion-weighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma. Neuro-oncol 2012; 14(5): 613-23.
[http://dx.doi.org/10.1093/neuonc/nos073] [PMID: 22492960]
[41]
Chen H, Wang W, Xingjie Z, Song X, Fan W, Keke Z, et al. Association between genetic variations of vascular endothelial growth factor receptor 2 and glioma in the Chinese Han population. J Mol Neurosci 2012; 47(3): 448-57.
[http://dx.doi.org/10.1007/s12031-012-9705-9]
[42]
Bao G, Wang M, Guo S, Han Y, Xu G. Vascular endothelial growth factor +936 C/T gene polymorphism and glioma risk in a Chinese Han population. Genet Test Mol Biomarkers 2011; 15(1-2): 103-6.
[http://dx.doi.org/10.1089/gtmb.2010.0141] [PMID: 21117958]
[43]
Galanis E, Anderson SK, Lafky JM, et al. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): A North Central Cancer Treatment Group Trial. Clin Cancer Res 2013; 19(17): 4816-23.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0708] [PMID: 23833308]
[44]
Burim RV, Teixeira SA, Colli BO, et al. ICAM-1 (Lys469Glu) and PECAM-1 (Leu125Val) polymorphisms in diffuse astrocytomas. Clin Exp Med 2009; 9(2): 157-63.
[http://dx.doi.org/10.1007/s10238-009-0040-6] [PMID: 19306055]
[45]
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018; 173(2): 321-37.
[http://dx.doi.org/10.1016/j.cell.2018.03.035]
[46]
Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 2011; 4: 51.
[http://dx.doi.org/10.3389/fnmol.2011.00051] [PMID: 22144946]
[47]
Gupta R, Webb-Myers R, Flanagan S, Buckland ME. Isocitrate dehydrogenase mutations in diffuse gliomas: Clinical and aetiological implications. J Clin Pathol 2011; 64(10): 835-44.
[http://dx.doi.org/10.1136/jclinpath-2011-200227] [PMID: 21752797]
[48]
Ohba S, Hirose Y. Biological significance of mutant isocitrate dehydrogenase 1 and 2 in gliomagenesis. Neurol Med Chir 2016; 56(4): 170-9.
[http://dx.doi.org/10.2176/nmc.ra.2015-0322]
[49]
Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 2010; 16(9): 387-97.
[http://dx.doi.org/10.1016/j.molmed.2010.07.002] [PMID: 20692206]
[50]
Pirozzi C, Carpenter A, Hennika T, Becher O, Yan H. Tumor-Specific Mutations in Gliomas and Their Implications for Immunotherapy Translational Immunotherapy of Brain Tumors. Amsterdam: Elsevier 2017; pp. 83-107.
[http://dx.doi.org/10.1016/B978-0-12-802420-1.00005-3]
[51]
Brandner S, von Deimling A. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol 2015; 41(6): 694-720.
[http://dx.doi.org/10.1111/nan.12246] [PMID: 25944653]
[52]
Yang K, Wu Z, Zhang H, et al. Glioma targeted therapy: Insight into future of molecular approaches. Mol Cancer 2022; 21(1): 39.
[http://dx.doi.org/10.1186/s12943-022-01513-z] [PMID: 35135556]
[53]
Liu Q, Cao P. Clinical and prognostic significance of HIF-1α in glioma patients: A meta-analysis. Int J Clin Exp Med 2015; 8(12): 22073-83.
[PMID: 26885182]
[54]
Weathers SP, de Groot J. VEGF Manipulation in Glioblastoma. Oncology 2015; 29(10): 720-7.
[PMID: 26470893]
[55]
Figueras A, Arbos MA, Quiles MT, Viñals F, Germà JR, Capellà G. The impact of KRAS mutations on VEGF-A production and tumour vascular network. BMC Cancer 2013; 13(1): 125.
[http://dx.doi.org/10.1186/1471-2407-13-125] [PMID: 23506169]
[56]
Rahimi M, Behjati F, Khorram Khorshid HR, Karimlou M, Keyhani E. The relationship between KIT copy number variation, protein expression, and angiogenesis in sporadic breast cancer. Rep Biochem Mol Biol 2020; 9(1): 40-9.
[http://dx.doi.org/10.29252/rbmb.9.1.40] [PMID: 32821750]
[57]
Liu N, Ding D, Hao W, et al. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res 2016; 44(18): 8693-703.
[http://dx.doi.org/10.1093/nar/gkw549] [PMID: 27325744]
[58]
Peyvandi F, Garagiola I, Baronciani L. Role of von Willebrand factor in the haemostasis. Blood Transfus 2011; 9 (Suppl. 2): s3-8.
[59]
Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 2018; 15(6): 353-65.
[http://dx.doi.org/10.1038/s41571-018-0002-6] [PMID: 29599476]
[60]
Chen Z-S, Zhang J-y, Zhang Y, Yan Y-y. Targeted cancer therapies, from small molecules to antibodies, volume II. 2023; 14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy