Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

The Prospects of Phytomedicines and Nanomedicines to Treat Leishmaniasis: A Comprehensive Review

Author(s): Rajan Swami* and Keshav Aggarwal

Volume 16, Issue 3, 2024

Published on: 04 August, 2023

Page: [308 - 318] Pages: 11

DOI: 10.2174/2589977515666230725105141

Price: $65

Abstract

The global shift in lifestyle has prompted health agencies to redirect their focus from poverty-related diseases to the emergence of lifestyle diseases prevalent in privileged regions. As a result, these diseases have been labeled as "neglected diseases," receiving limited research attention, funding, and resources. Neglected Tropical Diseases (NTDs) encompass a diverse group of vector-borne protozoal diseases that are prevalent in tropical areas worldwide. Among these NTDs is leishmaniasis, a disease that affects populations globally and manifests as skin abnormalities, internal organ involvement, and mucous-related abnormalities. Due to the lack of effective and safe medicines and vaccines, it is crucial to explore alternative resources. Phytomedicine, which comprises therapeutic herbal constituents with anti-leishmanial properties, holds promise but is limited by its poor physicochemical properties. The emerging field of nanomedicine has shown remarkable potential in revitalizing the anti-leishmanial efficacy of these phytoconstituents. In this investigation, we aim to highlight and discuss key plant constituents in combination with nanotechnology that have been explored in the fight against leishmaniasis.

Graphical Abstract

[1]
Hotez PJ. The poverty-related neglected diseases: Why basic research matters. PLoS Biol 2017; 15(11): e2004186.
[http://dx.doi.org/10.1371/journal.pbio.2004186] [PMID: 29121043]
[2]
Hunt P, Steward R, de Mesquita JB, Oldring L. Neglected diseases: A human rights analysis. World Health Organization 2007.
[3]
Perinoto ÂC, Maki RM, Colhone MC, et al. Biosensors for efficient diagnosis of leishmaniasis: innovations in bioanalytics for a neglected disease. Anal Chem 2010; 82(23): 9763-8.
[http://dx.doi.org/10.1021/ac101920t] [PMID: 21043437]
[4]
Pund S, Joshi A, Eds.
[5]
Yamey GJB. The world’s most neglected diseases. British Medical Journal Publishing Group 2002; pp. 176-7.
[6]
Gutiérrez JM, Warrell DA, Williams DJ, et al. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis 2013; 7(6): e2162.
[http://dx.doi.org/10.1371/journal.pntd.0002162] [PMID: 23785526]
[7]
Organisation WH. Leishmaniasis. WHO 2023.
[8]
Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27(5): 305-18.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[9]
Murray H, Berman J. Advances in leishmaniasis. Lancet 2005; 366: 1561-77.
[10]
Strazzulla A, Cocuzza S, Pinzone MR, Postorino MC, Cosentino S, Serra A. Mucosal leishmaniasis: an underestimated presentation of a neglected disease. BioMed Res Int 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/805108]
[11]
Ready P. Epidemiology of visceral leishmaniasis. Clin Epidemiol 2014; 6: 147-54.
[http://dx.doi.org/10.2147/CLEP.S44267] [PMID: 24833919]
[12]
Reithinger R, Dujardin J-C, Louzir H, Pirmez C, Alexander B. Cutaneous leishmaniasis. Lancet Infect Dis 2007; 7(9): 581-96.
[13]
O’Connell D. Neglected Diseases. Nature 2007; 449(7159): 157.
[http://dx.doi.org/10.1038/449157a]
[14]
Sivayogana R, Krishnakumar A, Kumaravel S, Rajesh R. Treatment of Leishmaniasis. eBio Med 2023; 87: 104440.
[15]
Verdan M, Taveira I, Lima F, Abreu F, Nico D. Drugs and nanoformulations for the management of Leishmania infection: a patent and literature review (2015-2022). Expert Opin Ther Pat 2023; 33(3): 137-50.
[http://dx.doi.org/10.1080/13543776.2023.2201431] [PMID: 37038719]
[16]
Tiuman T, Santos AJIJID. Filho, BPD. Nakamura Int J Infect Dis 2011; 15(8): 525-32.
[http://dx.doi.org/10.1016/j.ijid.2011.03.021] [PMID: 21605997]
[17]
Leishmaniasis - Resources for Health Professionals. Centre of Disease Control and Prevention 2023.
[18]
WHO guideline for the treatment of visceral leishmaniasis in HIV co-infected patients in East Africa and South-East Asia Geneva. Switzerland:: World Health Organisation 2022.
[19]
Copeland NK. Leishmaniasis: treatment updates and clinical practice guidelines review. Aronson NEJCOiID 2015; 28(5): 426-37.
[20]
Nakweya G. Drug combination offers shorter, more effective visceral leishmaniasis treatment. Nature Africa 2022.
[http://dx.doi.org/10.1038/d44148-022-00138-0]
[21]
Garza-Tovar TF, Sacriste-Hernández MI, Juárez-Durán ER, Arenas R. An overview of the treatment of cutaneous leishmaniasis. Fac Rev 2020; 9: 28.
[http://dx.doi.org/10.12703/r/9-28] [PMID: 33659960]
[22]
Zerehsaz F, Salmanpour R, Handjani F, et al. A double-blind randomized clinical trial of a topical herbal extract (Z-HE) vs. systemic meglumine antimoniate for the treatment of cutaneous leishmaniasis in Iran. Int J Dermatol 1999; 38(8): 610-2.
[http://dx.doi.org/10.1046/j.1365-4362.1999.00727.x] [PMID: 10487453]
[23]
Savegnago C, Rodrigues M, Santos B, Hans-Filho G, Paniago AJJTMHJ-D. Leishmaniasis recidiva cutis: Intralesional treatment and surgical aproach. J Trop Med Health 2018; p. 10.
[24]
Machado GU, Prates FV, Machado PRL. Disseminated leishmaniasis: clinical, pathogenic, and therapeutic aspects. An Bras Dermatol 2019; 94(1): 9-16.
[http://dx.doi.org/10.1590/abd1806-4841.20198775] [PMID: 30726457]
[25]
Lockwood DN, Moore EM. Treatment of visceral leishmaniasis. J Glob Infect Dis 2010; 2(2): 151-8.
[http://dx.doi.org/10.4103/0974-777X.62883] [PMID: 20606971]
[26]
Eiras DP, Kirkman LA, Murray HW. Murray HWJCtoiid. Cutaneous leishmaniasis: current treatment practices in the USA for returning travelers. Curr Treat Options Infect Dis 2015; 7(1): 52-62.
[http://dx.doi.org/10.1007/s40506-015-0038-4] [PMID: 25788870]
[27]
De Almeida L, Fujimura AT, Cistia MLD, et al. Nanotechnological strategies for treatment of leishmaniasis—a review. J Biomed Nanotechnol 2017; 13(2): 117-33.
[http://dx.doi.org/10.1166/jbn.2017.2349] [PMID: 29376626]
[28]
Shah MR, Imran M, Ullah S. Lipid-based nanocarriers for drug delivery and diagnosis. In: William Andrew; 2017.
[29]
Sharma N, Mishra S, Sharma S, Deshpande RD, Sharma RKJIJDD. Res. Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Drug Dev Res 2013; 5(4): 37-48.
[30]
Shah P, Bhalodia D. Nanoemulsion: A pharmaceutical review. Syst rev pharm 2010; 1(1): 1-9.
[31]
Prasanna P, Kumar P, Kumar S, et al. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis – A review. Biomed Pharmacother 2021; 141: 111920.
[http://dx.doi.org/10.1016/j.biopha.2021.111920] [PMID: 34328115]
[32]
da Silva MV, Guerra RO, do Carmo Neto JR, et al. Metallic nanoparticles: a new frontier in the fight against leishmaniasis. Curr Med Chem 2022; 29(26): 4547-73.
[http://dx.doi.org/10.2174/0929867329666220225111052] [PMID: 35220932]
[33]
Tuon FF, Dantas LR, de Souza RM, Ribeiro VST, Amato VS. Liposomal drug delivery systems for the treatment of leishmaniasis. Parasitol Res 2022; 121(11): 3073-82.
[http://dx.doi.org/10.1007/s00436-022-07659-5] [PMID: 36112211]
[34]
Echeverría J, Albuquerque R. Nanoemulsions of essential oils: new tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicines (Basel) 2019; 6(2): 42.
[http://dx.doi.org/10.3390/medicines6020042] [PMID: 30934720]
[35]
Saleem K, Khursheed Z, Hano C, Anjum I, Anjum S. Applications of Nanomaterials in Leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel) 2019; 9(12): 1749.
[http://dx.doi.org/10.3390/nano9121749] [PMID: 31818029]
[36]
Ghosh P, Dewan D, Mondal S, Singha R, Jana S, Pani A, et al. A systemic review on treatment of neglected tropical disease using nanoparticulate drug delivery system. J Pharm Negat Results 2022; 1282-91.
[37]
de Santana NS, de Oliveira de Siqueira LB, do Nascimento T, Santos-Oliveira R, dos Santos Matos AP, Ricci-Júnior E. Nanoparticles for the treatment of visceral leishmaniasis: review. J Nanopart Res 2023; 25(2): 24.
[http://dx.doi.org/10.1007/s11051-023-05676-8]
[38]
Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother 2002; 49 (Suppl. 1): 21-30.
[http://dx.doi.org/10.1093/jac/49.suppl_1.21] [PMID: 11801577]
[39]
Hotez PJ. Forgotten people, forgotten diseases: the neglected tropical diseases and their impact on global health and development. John Wiley & Sons 2021.
[http://dx.doi.org/10.1002/9781683673903]
[40]
Goyal A, Kumar S, Nagpal M, Singh I, Arora S. Potential of novel drug delivery systems for herbal drugs. Indian j pharm edu res 2011; 45(3): 225-35.
[41]
Tajbakhsh E, Khamesipour A, Hosseini SR, Kosari N, Shantiae S, Khamesipour F. The effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis: A systematic review. Microb Pathog 2021; 161(Pt A): 105235.
[http://dx.doi.org/10.1016/j.micpath.2021.105235] [PMID: 34648927]
[42]
Rocha LG, Almeida JRGS, Macêdo RO, Barbosa-Filho JM. A review of natural products with antileishmanial activity. Phytomedicine 2005; 12(6-7): 514-35.
[http://dx.doi.org/10.1016/j.phymed.2003.10.006] [PMID: 16008131]
[43]
Najm M, Hadighi R, Heidari-Kharaji M, et al. Anti-Leishmanial activity of artemisia persica, A. spicigera, and A. fragrance against Leishmania major. Iran J Parasitol 2021; 16(3): 464-73.
[http://dx.doi.org/10.18502/ijpa.v16i3.7100] [PMID: 34630592]
[44]
Saberi R, Zadeh AG, Afshar MJA, et al. In vivo anti-leishmanial activity of concocted herbal topical preparation against Leishmania major (MRHO/IR/75/ER). Ann Parasitol 2021; 67(3): 483-8.
[PMID: 34953123]
[45]
Ghosh AK, Bhattacharyya FK, Ghosh DK. Leishmania donovani: Amastigote inhibition and mode of actior of berberine. Exp Parasitol 1985; 60(3): 404-13.
[http://dx.doi.org/10.1016/0014-4894(85)90047-5] [PMID: 4076392]
[46]
Tiwari B, Pahuja R, Kumar P, Rath SK, Gupta KC, Goyal N. Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob Agents Chemother 2017; 61(3): e01169-16.
[http://dx.doi.org/10.1128/AAC.01169-16] [PMID: 28031196]
[47]
Elamin M, Al-Olayan E, Abdel-Gaber R, Yehia RS. Anti-proliferative and apoptosis induction activities of curcumin on Leishmania major. Rev Argent Microbiol 2021; 53(3): 240-7.
[http://dx.doi.org/10.1016/j.ram.2020.08.004] [PMID: 33531168]
[48]
Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J Nat Prod 2013; 76(8): 1505-8.
[http://dx.doi.org/10.1021/np400193m] [PMID: 23876028]
[49]
Sen R, Ganguly S, Saha P, Chatterjee M. Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 2010; 36(1): 43-9.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.03.008] [PMID: 20403680]
[50]
Esavand Heydari F, Ghaffarifar F, Soflaei S, Dalimi A. Comparison between in vitro effects of aqueous extract of artemisia seiberi and artemisinin on leishmania major. Jundishapur J Nat Pharm Prod 2013; 8(2): 70-5.
[http://dx.doi.org/10.17795/jjnpp-9513] [PMID: 24624191]
[51]
Sasidharan S, Saudagar P. Gold and silver nanoparticles functionalized with 4′,7-dihydroxyflavone exhibit activity against Leishmania donovani. Acta Trop 2022; 231: 106448.
[http://dx.doi.org/10.1016/j.actatropica.2022.106448] [PMID: 35395228]
[52]
Islam MM, Nagaraja S, Hafsa NE, Meravanige G, Asdaq SMB, Anwer MK. Polyphenol chrysin for management of skin disorders: Current status and future opportunities. J King Saud Univ Sci 2022; 34(5): 102026.
[http://dx.doi.org/10.1016/j.jksus.2022.102026]
[53]
Raj S, Sasidharan S, Tripathi T, Saudagar P. Biofunctionalized Chrysin-conjugated gold nanoparticles neutralize Leishmania parasites with high efficacy. Int J Biol Macromol 2022; 205: 211-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.047] [PMID: 35183598]
[54]
Ali A, Kiderlen A, Kolodziej H. Antileishmanial mode of action of lapachol and plumbagin. Planta Med 2010; 76(12): 472.
[http://dx.doi.org/10.1055/s-0030-1264770]
[55]
Roy P, Das S, Bera T, Mondol S, Mukherjee A. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine 2010; 5: 1113-21.
[PMID: 21270962]
[56]
Bortoleti BTS, Tomiotto-Pellissier F, Gonçalves MD, et al. Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability. Phytomedicine 2019; 57: 262-70.
[http://dx.doi.org/10.1016/j.phymed.2018.12.035] [PMID: 30802712]
[57]
Come JAAdSS, Zhuang Y, Li T, Brogi S, Gemma S, Liu T, et al. In vitro and in silico analyses of new cinnamid and rosmarinic acid-derived compounds biosynthesized in Escherichia coli as leishmania amazonensis arginase inhibitors. Pathogens 2022; 11(9): 1020.
[58]
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan STJV. Berberine in human oncogenic herpesvirus infections and their linked cancers. Viruses 2021; 13(6): 1014.
[59]
Calvo A, Moreno E, Aldalur I, et al. Effect of topical berberine in murine cutaneous leishmaniasis lesions. J Antimicrob Chemother 2022; 77(4): 1072-81.
[http://dx.doi.org/10.1093/jac/dkac007] [PMID: 35086139]
[60]
Calvo A, Moreno E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Berberine-loaded liposomes for the treatment of Leishmania infantum-infected BALB/c Mice. Pharmaceutics 2020; 12(9): 858.
[http://dx.doi.org/10.3390/pharmaceutics12090858] [PMID: 32916948]
[61]
Rahimi M, Seyyed Tabaei SJ, Ziai SA. Anti-leishmanial effects of chitosan-polyethylene oxide nanofibers containing berberine: an applied model for Leishmania wound dressing. Iran J Med Sci 2020; 45(4): 286-97.
[62]
Bafghi AF, Mirzaei F, Norouzi R, et al. In vitro evaluation of nanoliposomes berberine chloride against Leishmania major promastigotes. Ann Parasitol 2021; 67(4): 637-46.
[PMID: 35247304]
[63]
Choudhury D, Jala A, Murty US, Borkar RM, Banerjee S. In vitro and in vivo evaluations of berberine-loaded microparticles filled in-house 3D printed hollow capsular device for improved oral bioavailability. AAPS PharmSciTech 2022; 23(4): 89.
[http://dx.doi.org/10.1208/s12249-022-02241-9] [PMID: 35296955]
[64]
Nayakula M, Jeengar MK, Naidu VGM, Chella N. Enhanced pharmacokinetics and anti-inflammatory activity of curcumin using dry emulsion as drug delivery vehicle. Eur J Drug Metab Pharmacokinet 2023; 48(2): 189-99.
[http://dx.doi.org/10.1007/s13318-023-00819-7] [PMID: 36800055]
[65]
Chaubey P, Patel RR, Mishra B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opin Drug Deliv 2014; 11(8): 1163-81.
[http://dx.doi.org/10.1517/17425247.2014.917076] [PMID: 24875148]
[66]
Chaubey P, Mishra B, Mudavath SL, et al. Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. Int J Biol Macromol 2018; 111: 109-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.143] [PMID: 29307805]
[67]
Fattahi Bafghi A, Haghirosadat BF, Yazdian F, et al. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol 2021; 51(10): 990-7.
[http://dx.doi.org/10.1080/10826068.2021.1885045] [PMID: 34060984]
[68]
Haddad A, Delavari M, Arbabi M, Gardeshmeydani I, Salmani AJKJ. Evaluation of anti-leishmaniasis activity of curcumin-loaded chitosan nanoparticles on Leishmania major and L. infantum in vitro. KAUMS Journal 2021; 25(4): 1040-6.
[69]
Badirzadeh A, Alipour M, Najm M, et al. Potential therapeutic effects of curcumin coated silver nanoparticle in the treatment of cutaneous leishmaniasis due to Leishmania major in-vitro and in a murine model. J Drug Deliv Sci Technol 2022; 74: 103576.
[http://dx.doi.org/10.1016/j.jddst.2022.103576]
[70]
Amini SM, Hadighi R, Najm M, et al. The therapeutic effects of curcumin-coated gold nanoparticle against leishmania major causative agent of zoonotic cutaneous leishmaniasis (ZCL): An in vitro and in vivo study. Curr Microbiol 2023; 80(4): 104.
[http://dx.doi.org/10.1007/s00284-022-03172-1] [PMID: 36781499]
[71]
Krishna S, Bustamante L, Haynes RK, Staines HM. Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 2008; 29(10): 520-7.
[http://dx.doi.org/10.1016/j.tips.2008.07.004] [PMID: 18752857]
[72]
Wang L, Zhao X, Yang F, et al. Enhanced bioaccessibility in vitro and bioavailability of Ginkgo biloba extract nanoparticles prepared by liquid anti‐solvent precipitation. Int J Food Sci Technol 2019; 54(6): 2266-76.
[http://dx.doi.org/10.1111/ijfs.14141]
[73]
Want MY, Islammudin M, Chouhan G, et al. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int J Nanomedicine 2017; 12: 2189-204.
[http://dx.doi.org/10.2147/IJN.S106548] [PMID: 28356736]
[74]
Ghafarifar F, Molaie S, Abazari R, Hasan ZM, Foroutan M. Fe3O4@Bio-MOF nanoparticles combined with artemisinin, glucantime®, or shark cartilage extract on iranian strain of Leishmania major (MRHO/IR/75/ER): An in-vitro and in-vivo study. Iran J Parasitol 2020; 15(4): 537-48.
[http://dx.doi.org/10.18502/ijpa.v15i4.4859] [PMID: 33884011]
[75]
Alemzadeh E, Karamian M, Abedi F, Hanafi-Bojd MY. Topical treatment of cutaneous leishmaniasis lesions using quercetin/Artemisia-capped silver nanoparticles ointment: Modulation of inflammatory response. Acta Trop 2022; 228: 106325.
[http://dx.doi.org/10.1016/j.actatropica.2022.106325] [PMID: 35093324]
[76]
Cataneo AHD, Tomiotto-Pellissier F, Miranda-Sapla MM, et al. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed Pharmacother 2019; 113: 108745.
[http://dx.doi.org/10.1016/j.biopha.2019.108745] [PMID: 30836276]
[77]
Sen G, Mukhopadhyay S, Ray M, Biswas T. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity. J Antimicrob Chemother 2008; 61(5): 1066-75.
[http://dx.doi.org/10.1093/jac/dkn053] [PMID: 18285311]
[78]
Wadhwa K, Kadian V, Puri V, Bhardwaj BY, Sharma A, Pahwa R, et al. New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus 2022; p. 100257.
[79]
Hanif H, Abdollahi V, Javani Jouni F, Nikoukar M, Rahimi Esboei B, Shams E. Quercetin nano phytosome: as a novel anti-leishmania and anti-malarial natural product. J Parasitic Dis 2023; 2023: 1-8.
[http://dx.doi.org/10.1007/s12639-022-01561-8]
[80]
Yen CC, Liang YK, Cheng CP, Hsu MC, Wu YT. Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion. Int J Mol Sci 2020; 21(7): 2506.
[http://dx.doi.org/10.3390/ijms21072506] [PMID: 32260319]
[81]
Domagalska MA, Barrett MP, Dujardin JC. Drug resistance in Leishmania: does it really matter? Trends Parasitol 2023; 39(4): 251-9.
[http://dx.doi.org/10.1016/j.pt.2023.01.012] [PMID: 36803859]
[82]
Das S, Roy P, Mondal S, Bera T, Mukherjee A, Biointerfaces SB. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B Biointerfaces 2013; 107: 27-34.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.061] [PMID: 23466539]
[83]
Sousa-Batista AJ, Poletto FS, Philipon CIMS, Guterres SS, Pohlmann AR, Rossi-Bergmann B. Lipid-core nanocapsules increase the oral efficacy of quercetin in cutaneous leishmaniasis. Parasitology 2017; 144(13): 1769-74.
[http://dx.doi.org/10.1017/S003118201700097X] [PMID: 28653597]
[84]
Das SS, Dubey AK, Verma PRP, Singh SK, Singh SK. Therapeutic potential of quercetin-loaded nanoemulsion against experimental visceral leishmaniasis: in vitro/ex vivo studies and mechanistic insights. Mol Pharm 2022; 19(9): 3367-84.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00492] [PMID: 35980291]
[85]
Abamor EŞ. A New approach to the treatment of leıshmaniasis: quercetin-loaded polycaprolactone nanoparticles. J Turkish Chem Soc Sect A: Chem 2018; 5(3): 1071-82.
[http://dx.doi.org/10.18596/jotcsa.417831]
[86]
Ebrahimzadeh A, Karamian M, Abedi F, Hanafi-Bojd MY, Ghatee MA, Hemmati M, et al. Topically applied luteolin/quercetin-capped silver nanoparticle ointment as antileishmanial composite: acceleration wound healing in BALB/c Mice. Adv Mater Sci Engin 2023; 2023: 1-11.
[87]
Prasanna P, Kumar P, Mandal S, et al. 7,8-dihydroxyflavone-functionalized gold nanoparticles target the arginase enzyme of Leishmania donovani. Nanomedicine 2021; 16(21): 1887-903.
[http://dx.doi.org/10.2217/nnm-2021-0161] [PMID: 34397295]
[88]
Moreno E, Schwartz J, Larrea E, et al. Assessment of β-lapachone loaded in lecithin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedicine 2015; 11(8): 2003-12.
[http://dx.doi.org/10.1016/j.nano.2015.07.011] [PMID: 26282379]
[89]
Abamor ES. Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pac J Trop Med 2017; 10(1): 25-34.
[http://dx.doi.org/10.1016/j.apjtm.2016.12.006] [PMID: 28107861]
[90]
Shokri A, Saeedi M, Fakhar M, et al. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis essential oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER). Iran J Parasitol 2017; 12(4): 622-31.
[PMID: 29317888]
[91]
Dhorm Pimentel de Moraes AR, Tavares GD, Soares Rocha FJ, de Paula E, Giorgio S. Effects of nanoemulsions prepared with essential oils of copaiba- and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp Parasitol 2018; 187: 12-21.
[http://dx.doi.org/10.1016/j.exppara.2018.03.005] [PMID: 29518448]
[92]
Zarenezhad E, Agholi M, Ghanbariasad A, Ranjbar A, Osanloo M. A nanoemulsion-based nanogel of Citrus limon essential oil with leishmanicidal activity against Leishmania tropica and Leishmania major. J Parasit Dis 2021; 45(2): 441-8.
[http://dx.doi.org/10.1007/s12639-020-01318-1] [PMID: 34295043]
[93]
Ghanbariasad A, Amoozegar F, Rahmani M, Zarenezhad E, Osanloo MJBRAC. Impregnated nanofibrous mat with nanogel of citrus sinensis essential oil as a new type of dressing in cutaneous leishmaniasis. Biointerface Res Appl Chem 2021; 11: 11066-76.
[94]
Ghanbariasad A, Azadi S, Agholi M, Osanloo MJNRJ. The nanoemulsion-based nanogel of Artemisia dracunculus essential oil with proper activity against Leishmania tropica and Leishmania major. Nanomed Res J 2021; 6(1): 89-95.
[95]
Kawakami MYM, Zamora LO, Araújo RS, et al. Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed Pharmacother 2021; 134: 111109.
[http://dx.doi.org/10.1016/j.biopha.2020.111109] [PMID: 33341050]
[96]
Ghanbariasad A, Valizadeh A, Ghadimi SN, Fereidouni Z, Osanloo M. Nanoformulating Cinnamomum zeylanicum essential oil with an extreme effect on Leishmania tropica and Leishmania major. J Drug Deliv Sci Technol 2021; 63: 102436.
[http://dx.doi.org/10.1016/j.jddst.2021.102436]
[97]
Mousavi P, Rahimi Esboei B, Pourhajibagher M, et al. Anti-leishmanial effects of resveratrol and resveratrol nanoemulsion on Leishmania major. BMC Microbiol 2022; 22(1): 56.
[http://dx.doi.org/10.1186/s12866-022-02455-8] [PMID: 35168553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy