Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Pharmaceutical Design of a Formulation of Enrofloxacin-Alginate and its Strategic Dosage to Achieve Mutant Prevention PK/PD Ratios in Broiler Chickens

Author(s): Lilia Gutiérrez, Minerva Monroy-Barreto, Perla García-Guzmán and Héctor Sumano*

Volume 29, Issue 21, 2023

Published on: 04 August, 2023

Page: [1701 - 1709] Pages: 9

DOI: 10.2174/1381612829666230724145657

Price: $65

Abstract

Introduction: The comparative pharmacokinetics (PK) and PK/pharmacodynamics (PD) ratios of a new pharmaceutical design of enrofloxacin-alginate in dried beads (EADBs) and the reference enrofloxacin 10% solution was determined in broiler chickens. Also, the same parameters were determined after administering enrofloxacin with a double dosing scheme (through drinking water and as an in-feed medication of EADBs). 500 Arbor-Acres broiler chickens were randomly divided into five groups (n=100), adjusting in all cases, a dose of 10 mg/kg based on water and feed intake as follows: group EADBsad-lib receiving enrofloxacin through EADBs added to their feed as dressing; group EADBsbolus forcing the beads into the proventriculus using a semi-rigid gavage; group Enroad-lib dosed through their drinking water; group Enrobolus also administered into the proventriculus by gavage; group Enrow&f administering 5 mg/kg as EADBs in their feed, plus 5 mg/kg of enrofloxacin through their drinking water.

Methods: The PK parameters and the key PK/PD ratios were determined (Cmax/MIC and AUC0-24/MIC). Only group Enrow&f could achieve the PK/PD ratios regarded as mutant-prevention.

Results: This trial is the first one in which an in-feed medication of enrofloxacin, combined with water dosing, can result in PK/PD parameters superior to those obtained after administering the drug through drinking water at a dose of 10 mg/kg.

Conclusion: Contrary to expectations, groups Enroad-lib and Enrobolus failed to achieve the desired PK/PD ratios when the breakpoint was established at 0.5 μg/mL but did so when MIC was set at 0.1 μg/mL. In contrast, EADBsbolus and Enrow&f achieved an adequate AUC0-24/MIC ratio for both MIC levels.

« Previous
[1]
WHO New report calls for urgent action to avert antimicrobial resistance crisis. World Health Organization. 2023. Available from : [https://www.fao.org/food-chain-crisis/resources/news/detail/en/c/1193595
[2]
[3]
Vermeulen B, De Backer P, Remon JP. Drug administration to poultry. Adv Drug Deliv Rev 2002; 54(6): 795-803.
[http://dx.doi.org/10.1016/S0169-409X(02)00069-8] [PMID: 12363431]
[4]
Frimodt-Møller N. How predictive is PK/PD for antibacterial agents? Int J Antimicrob Agents 2002; 19(4): 333-9.
[http://dx.doi.org/10.1016/S0924-8579(02)00029-8] [PMID: 11978504]
[5]
Rodríguez JC, Cebrián L, López M, Ruiz M, Royo G. Usefulness of various antibiotics against Mycobacterium avium-intracellulare, measured by their mutant prevention concentration. Int J Antimicrob Agents 2005; 25(3): 221-5.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.018] [PMID: 15737516]
[6]
Li Q, Bi X, Diao Y, Deng X. Mutant-prevention concentrations of enrofloxacin for Escherichia coli isolates from chickens. Am J Vet Res 2007; 68(8): 812-5.
[http://dx.doi.org/10.2460/ajvr.68.8.812] [PMID: 17669019]
[7]
Drlica K, Zhao X. Mutant selection window hypothesis updated. Clin Infect Dis 2007; 44(5): 681-8.
[http://dx.doi.org/10.1086/511642] [PMID: 17278059]
[8]
Sumano H, Ocampo L. Compositional analysis surveillance ofeleven brands of enrofloxacin including Baytril for veterinary use. J Vet Med A Physiol Pathol Clin Med 1995; 42(1-10): 669-73.
[http://dx.doi.org/10.1111/j.1439-0442.1995.tb00421.x] [PMID: 8822191]
[9]
Sumano LH, Gomez RB, Gracia MI, Ruiz-Ramirez L. The use of ciprofloxacin in veterinary proprietary products of enrofloxacin. Vet Hum Toxicol 1994; 36(5): 476-7.
[PMID: 7839579]
[10]
Sumano LH, Gutiérrez OL, Zamora MA. Bioequivalence of four preparations of enrofloxacin in poultry. J Vet Pharmacol Ther 2001; 24(5): 309-13.
[http://dx.doi.org/10.1046/j.1365-2885.2001.00355.x] [PMID: 11696080]
[11]
Sumano H, Gutierrez L, Ocampo L. Bioequivalence comparison of seventeen commercial oral enrofloxacins against the original preparation in broilers. J Poult Sci 2006; 43(1): 23-8.
[http://dx.doi.org/10.2141/jpsa.43.23]
[12]
Sumano LH, Gutierrez OL, Aguilera R, Rosiles MR, Bernard BMJ, Gracia MJ. Influence of hard water on the bioavailability of enrofloxacin in broilers. Poult Sci 2004; 83(5): 726-31.
[http://dx.doi.org/10.1093/ps/83.5.726] [PMID: 15141828]
[13]
Ledesma C, Rosario C, Gracia-Mora J, Tapia G, Sumano H, Gutiérrez L. Influence of chlorine, iodine, and citrate-based water sanitizers on the oral bioavailability of enrofloxacin in broiler chickens. J Appl Poult Res 2018; 27(1): 71-80.
[http://dx.doi.org/10.3382/japr/pfx044]
[14]
Gutierrez L, Miranda-Calderon JE, Garcia-Gutierrez P, Sumano H. Physicochemical characterization and pharmacokinetics in broiler chickens of a new recrystallized enrofloxacin hydrochloride dihydrate. J Vet Pharmacol Ther 2015; 38(2): 183-9.
[http://dx.doi.org/10.1111/jvp.12153] [PMID: 25224691]
[15]
Gutierrez OL, Sumano LH, Zamora QM. Administration of enrofloxacin and capsaicin to chickens to achieve higher maximal serum concentrations. Vet Rec 2002; 150(11): 350-3.
[http://dx.doi.org/10.1136/vr.150.11.350] [PMID: 11936887]
[16]
Liu HX, Rajapaksha P, Wang ZE, Kramer NJ, Marshall B. An update on the sense of taste in chickens: A better developed system than previously appreciated. J Nutr Food Sci 2018; 8(2): 686.
[http://dx.doi.org/10.4172/2155-9600.1000686] [PMID: 29770259]
[17]
Devreese M, Antonissen G, De Baere S, De Backer P, Croubels S. Effect of administration route and dose escalation on plasma and intestinal concentrations of enrofloxacin and ciprofloxacin in broiler chickens. BMC Vet Res 2014; 10(1): 289.
[http://dx.doi.org/10.1186/s12917-014-0289-1] [PMID: 25440469]
[18]
Papich MG. Antimicrobials, susceptibility testing, and minimum inhibitory concentrations (MIC) in veterinary infection treatment. Vet Clin North Am Small Anim Pract 2013; 43(5): 1079-89.
[http://dx.doi.org/10.1016/j.cvsm.2013.04.005] [PMID: 23890240]
[19]
Trouchon T, Lefebvre S. A review of enrofloxacin for veterinary use. Open J Vet Med 2016; 6(2): 40-58.
[http://dx.doi.org/10.4236/ojvm.2016.62006]
[20]
Karp F, Turino LN, Estenoz D, Castro GR, Islan GA. Encapsulation of florfenicol by in situ crystallization into novel alginate-Eudragit RS® blended matrix for pH modulated release. J Drug Deliv Sci Technol 2019; 54: 101241.
[http://dx.doi.org/10.1016/j.jddst.2019.101241]
[21]
Gutierrez L, Tapia G, Gutierrez E, Sumano H. Evaluation of tasteless enrofloxacin pharmaceutical preparation for cats. Naive Pooles-sample approach to study its pharmacokinetic. Animals (Basel) 2021; 11(8): 2312.
[http://dx.doi.org/10.3390/ani11082312] [PMID: 34438769]
[22]
Luo W, Ju M, Liu J, Algharib SA, Dawood AS, Xie S. Intelligent-responsive enrofloxacin-loaded chitosan oligosaccharides-sodium alginate composite core-shell nanogeles for on-demand release in the intestine. Animals (Basel) 2022; 12(19): 2701.
[http://dx.doi.org/10.3390/ani12192701] [PMID: 36230443]
[23]
Hariyadi DM, Islam N. Current status of alginate in drug delivery. Adv Pharmacol Pharm Sci 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/8886095] [PMID: 32832902]
[24]
Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N. Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol 2020; 153: 1035-46.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.233] [PMID: 31794824]
[25]
Kim EH, Choi HK. Preparation of various solid-lipid beads for drug delivery of enrofloxacin. Drug Deliv 2004; 11(6): 365-70.
[http://dx.doi.org/10.1080/10717540490265414] [PMID: 15736831]
[26]
Jiang T, Li HS, Han GG, et al. Oral delivery of probiotics in poultry using pH-sensitive tablets. J Microbiol Biotechnol 2017; 27(4): 739-46.
[http://dx.doi.org/10.4014/jmb.1606.06071] [PMID: 28081355]
[27]
Güncüm E. Bakırel T, Anlaş C, Ekici H, Işıklan N. Novel amoxicillin nanoparticles formulated as sustained release delivery system for poultry use. J Vet Pharmacol Ther 2018; 41(4): 588-98.
[http://dx.doi.org/10.1111/jvp.12505] [PMID: 29604071]
[28]
Landoni MF, Albarellos G. The use of antimicrobial agents in broiler chickens. Vet J 2015; 205(1): 21-7.
[http://dx.doi.org/10.1016/j.tvjl.2015.04.016] [PMID: 25981931]
[29]
Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation - A comprehensive review. Environ Pollut 2022; 315: 120440.
[http://dx.doi.org/10.1016/j.envpol.2022.120440] [PMID: 36265724]
[30]
Randall L, Ridley A, Lemma F, Hale C, Davies R. In vitro investigations into the use of antimicrobials in combination to maintain efficacy of fluoroquinolones in poultry. Res Vet Sci 2016; 108: 47-53.
[http://dx.doi.org/10.1016/j.rvsc.2016.07.010] [PMID: 27663369]
[31]
Sumano LH, Gutierrez OL. Farmacología Clínica en Aves. (5th ed.), 2017.
[32]
Temmerman R, Pelligand L, Schelstraete W, Antonissen G, Garmyn A, Devreese M. Enrofloxacin dose optimization for the treatment of colibacillosis in broiler chickens using a drinking behaviour pharmacokinetic model. Antibiotics (Basel) 2021; 10(5): 604.
[http://dx.doi.org/10.3390/antibiotics10050604] [PMID: 34069540]
[33]
NCCLS. Clinical and Laboratory Standars Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for Bacteria isolated from animals; second informational supplement CLSI document VET01-S2. Clinical and Laboratory Standards Institute: Wayne, PA. 2018.
[34]
European Committee on Antimicrobial Susceptibility TestingBreakpoint tables for interpretation of MICs and zone diameters Version 12.0. 2022.
[35]
Toutain PL, Ferran A, Bousquet-Mélou A. Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol 2010; 199(199): 19-48.
[http://dx.doi.org/10.1007/978-3-642-10324-7_2] [PMID: 20204582]
[36]
McKellar QA, Sanchez Bruni SF, Jones DG. Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine. J Vet Pharmacol Ther 2004; 27(6): 503-14.
[http://dx.doi.org/10.1111/j.1365-2885.2004.00603.x] [PMID: 15601444]
[37]
Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis 2007; 45(2): S129-36.
[http://dx.doi.org/10.1086/519256] [PMID: 17683017]
[38]
Temmerman R, Ghanbari M, Antonissen G, et al. Dose-dependent impact of enrofloxacin on broiler chicken gut resistome is mitigated by synbiotic application. Front Microbiol 2022; 13: 869538.
[http://dx.doi.org/10.3389/fmicb.2022.869538] [PMID: 35992659]
[39]
Elokil AA, Abouelezz KFM, Ahmad HI, Pan Y, Li S. Investigation of the impact of antibiotics exposure on the diversity of the gut microbioma in chickens. Animals (Basel) 2020; 10(5): 896.
[http://dx.doi.org/10.3390/ani10050896] [PMID: 32455745]
[40]
Pavlova I, Danova S, Naidenski H, Tropcheva R, Milanova A. Effect of probiotics on enrofloxacin disposition in gastrointestinal tract of poultry. J Vet Pharmacol Ther 2015; 38(6): 549-55.
[http://dx.doi.org/10.1111/jvp.12232] [PMID: 25881712]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy