Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Characterization, DPPH Radical Scavenging, Urease Enzyme Inhibition, Molecular Docking Simulation, and DFT Analysis of Imine Derivatives of 4-formylpyridine with Selective Detection of Cu+2 Ions

Author(s): Ambreen Zia, Syed Nawazish Ali*, Erum Hasan, Mehreen Lateef, Syeda Rehana Zia, Sana Gul, Syeda Farah Bukhari and Nazish Dildar

Volume 21, Issue 6, 2024

Published on: 04 September, 2023

Page: [796 - 809] Pages: 14

DOI: 10.2174/1570179420666230724102756

Price: $65

Abstract

Background: Three imine derivatives (1, 2 & 3) have been prepared via condensation reaction of phenyl hydrazine, 2-hydrazino pyridine and 4-methoxy aniline with 4-formyl pyridine.

Materials and Methods: Electron impact mass spectrometry (EIMS), proton nuclear magnetic resonance (1H-NMR), ultra violet- visible (UV-Vis) and fourier transform infrared (FTIR) spectroscopy have been utilized for the characterization. The chemosensing properties of [4((2-phenyl hydrazono)methyl) pyridine] (1), [2-(2-(pyridin-4-ylmethylene)hydrazinyl) pyridine] (2) & [4-methoxy-N-yl methylene) aniline] (3) imino bases are explored for the first time in aqueous media. The photophysical properties of chemosensors (1, 2 and 3) were examined by various cations (Na+, NH4+, Ba+2, Ni+2, Ca+2, Hg+2, Cu+2, Mg+2, Mn+2 and Pd+2).

Results and Discussion: The chemosensor (1) has shown very selective binding capability with copper ions at low concentration (20 μM) without influence of any other mentioned ions. The maximum complexation was noted with Cu+2 and 1 at pH (7-7.5). The stoichiometry binding ratio between chemosensor (1) and Cu+2 was determined by Job’s plot and it is found to be (1:2).

Conclusion: Current study explores the use of these Schiff bases for the first time as heterocyclic chemosensors. DPPH radical scavenging, urease enzyme inhibition activities along with molecular docking simulation and density functional theory (DFT) analysis of compounds 1, 2 and 3 were also explored.

Graphical Abstract

[1]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem., 2015, 1(1), 1-11.
[2]
Gribble, G.W.; Saulnier, M.G.; Pelkey, E.T.; Kishbaugh, T.L.S.; Liu, Y.; Jiang, J. Measuring beyond content: A rubric bank for assessing skills in authentic research assignments in the sciences. Chem. Educ. Res. Pract., 2012, 13(3), 268-276.
[http://dx.doi.org/10.1039/C2RP00023G]
[3]
Ejidike, I.P.; Ajibade, P.A. Synthesis, characterization, antioxidant, and antibacterial studies of some metal (II) complexes of tetradentate schiff base ligand:(4E)-4-[(2-(E)-[1-(2, 4-dihydroxyphenyl) ethylidene] aminoethyl) imino] pentan-2-one. Bioinorg. Chem. Appl., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/890734] [PMID: 26074738]
[4]
Schlosser, M.; Mongin, F. Pyridine elaboration through organometallic intermediates: Regiochemical control and completeness. Chem. Soc. Rev., 2007, 36(7), 1161-1172.
[http://dx.doi.org/10.1039/b706241a] [PMID: 17576483]
[5]
Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A. Structural, spectroscopic and molecular docking studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A potential bioactive agent. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 175, 51-60.
[http://dx.doi.org/10.1016/j.saa.2016.11.037] [PMID: 28012392]
[6]
Pierrat, P.; Gros, P.C.; Fort, Y. Solid phase synthesis of pyridine-based derivatives from a 2-chloro-5-bromopyridine scaffold. J. Comb. Chem., 2005, 7(6), 879-886.
[http://dx.doi.org/10.1021/cc050054a] [PMID: 16283796]
[7]
Bogdanowicz-Szwed, K.; Krasodomska, M. Synthesis of aryl-and pyridinyl-substituted 2-amino-6-thioxopyridine-3-carbonitrile derivatives by tandem Michael addition and cyclization reactions. Monatsh. Chem., 2006, 137, 347-355.
[8]
Kumar, N.; Chauhan, L.S.; Dashora, N.; Sharma, C.S. Anticonvulant potential of hydrazone derivatives: A Review. Sch. Acad. J. Pharm., 2014, 3(5), 366-373.
[9]
Valcárcel, M.; De Castro, M.L. Flow–through (Bio) chemical sensors; Elsevier, 1994.
[10]
Spichiger-Keller, U.E. Chemical sensors and biosensors for medical and biological applications; John Wiley & Sons, 2008.
[11]
Metzler, C.M.; Cahill, A.; Metzler, D.E. Equilibriums and absorption spectra of Schiff bases. J. Am. Chem. Soc., 1980, 102(19), 6075-6082.
[http://dx.doi.org/10.1021/ja00539a017]
[12]
Abbaspour, A.; Esmaeilbeig, A.R.; Jarrahpour, A.A.; Khajeh, B.; Kia, R. Aluminium(III)-selective electrode based on a newly synthesized tetradentate Schiff base. Talanta, 2002, 58(2), 397-403.
[http://dx.doi.org/10.1016/S0039-9140(02)00290-4] [PMID: 18968765]
[13]
Jain, A.K.; Gupta, V.K.; Ganeshpure, P.A.; Raisoni, J.R. Ni(II)-selective ion sensors of salen type Schiff base chelates. Anal. Chim. Acta, 2005, 553(1-2), 177-184.
[http://dx.doi.org/10.1016/j.aca.2005.08.016]
[14]
Jeong, T.; Lee, H.; Jeong, D.; Jeon, S. A lead(II)-selective PVC membrane based on a Schiff base complex of? -bis(salicylidene)-2,6-pyridinediamine. Talanta, 2005, 65(2), 543-548.
[http://dx.doi.org/10.1016/j.talanta.2004.07.016] [PMID: 18969833]
[15]
Baytak, S.; Balaban, A.; Türker, A.R.; Erk, B. Atomic absorption spectrometric determination of Fe(III) and Cr(III) in various samples after preconcentration by solid-phase extraction with pyridine-2-carbaldehyde thiosemicarbazone. J. Anal. Chem., 2006, 61(5), 476-482.
[http://dx.doi.org/10.1134/S106193480605008X]
[16]
Pizarro, F.; Olivares, M.; Uauy, R.; Contreras, P.; Rebelo, A.; Gidi, V. Acute gastrointestinal effects of graded levels of copper in drinking water. Environ. Health Perspect., 1999, 107(2), 117-121.
[http://dx.doi.org/10.1289/ehp.99107117] [PMID: 9924006]
[17]
Olivares, M.; Uauy, R. Limits of metabolic tolerance to copper and biological basis for present recommendations and regulations. Am. J. Clin. Nutr., 1996, 63(5), 846S-852S.
[http://dx.doi.org/10.1093/ajcn/63.5.846] [PMID: 8615373]
[18]
Guo, M.; Dong, P.; Feng, Y.; Xi, X.; Shao, R.; Tian, X.; Zhang, B.; Zhu, M.; Meng, X. A two-photon fluorescent probe for biological Cu (II) and PPi detection in aqueous solution and in vivo. Biosens. Bioelectron., 2017, 90, 276-282.
[http://dx.doi.org/10.1016/j.bios.2016.11.069] [PMID: 27923190]
[19]
Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Sacchi, D. An anthracene‐based fluorescent sensor for transition metal ions. Angew. Chem. Int. Ed. Engl., 1994, 33(19), 1975-1977.
[http://dx.doi.org/10.1002/anie.199419751]
[20]
Kaur, S.; Kumar, S. Photoactive chemosensors 4: A Cu2+ protein cavity mimicking fluorescent chemosensor for selective Cu2+ recognition. Tetrahedron Lett., 2004, 45(26), 5081-5085.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.185]
[21]
Ghaedi, M.; Niknam, K.; Taheri, K.; Hossainian, H.; Soylak, M. Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16. Food Chem. Toxicol., 2010, 48(3), 891-897.
[http://dx.doi.org/10.1016/j.fct.2009.12.029] [PMID: 20060028]
[22]
Shoaee, H.; Roshdi, M.; Khanlarzadeh, N.; Beiraghi, A. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 98, 70-75.
[http://dx.doi.org/10.1016/j.saa.2012.08.027] [PMID: 22983201]
[23]
Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens. Actuators B Chem., 2014, 190, 516-522.
[http://dx.doi.org/10.1016/j.snb.2013.09.009]
[24]
Liu, J.M.; Lin, L.; Wang, X.X.; Lin, S.Q.; Cai, W.L.; Zhang, L.H.; Zheng, Z.Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst, 2012, 137(11), 2637-2642.
[http://dx.doi.org/10.1039/c2an35130g] [PMID: 22531278]
[25]
Hou, L.; Kong, X.; Wang, Y.; Chao, J.; Li, C.; Dong, C.; Wang, Y.; Shuang, S. An anthraquinone-based highly selective colorimetric and fluorometric sensor for sequential detection of Cu 2+ and S 2− with intracellular application. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(45), 8957-8966.
[http://dx.doi.org/10.1039/C7TB01596H] [PMID: 32264122]
[26]
Tang, W.; Chase, D.B.; Sparks, D.L.; Rabolt, J.F. Selective and quantitative detection of trace amounts of mercury(II) Ion (Hg2+) and copper(II) Ion (Cu2+) using surface-enhanced raman scattering (SERS). Appl. Spectrosc., 2015, 69(7), 843-849.
[http://dx.doi.org/10.1366/14-07815] [PMID: 26037773]
[27]
Lian, W.N.; Shiue, J.; Wang, H.H.; Hong, W.C.; Shih, P.H.; Hsu, C.K.; Huang, C.Y.; Hsing, C.R.; Wei, C.M.; Wang, J.K.; Wang, Y.L. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2015, 32(5), 627-634.
[PMID: 25822695]
[28]
Gedda, G.; Lee, C.Y.; Lin, Y.C.; Wu, H. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sens. Actuators B Chem., 2016, 224, 396-403.
[http://dx.doi.org/10.1016/j.snb.2015.09.065]
[29]
Hussain, Z.; Yousif, E.; Ahmed, A.; Altaie, A. Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Org. Med. Chem. Lett., 2014, 4(1), 1-4.
[http://dx.doi.org/10.1186/2191-2858-4-1] [PMID: 24576663]
[30]
Duhovny, D.; Nussinov, R.; Wolfson, H.J. Efficient unbound docking of rigid molecules. Second International Workshop, WABI 2002 Rome, Italy 17–21 September2002, pp. 185-200.
[31]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33(Web Server issue), W363-W367.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[32]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[35]
Gasteiger, J.; Marsili, M. A new model for calculating atomic charges in molecules. Tetrahedron Lett., 1978, 19(34), 3181-3184.
[http://dx.doi.org/10.1016/S0040-4039(01)94977-9]
[36]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X. Gaussian 16 Rev. C. 01;Wallingford, CT,, 2016.
[37]
Giannetto, A.; Guglielmo, G.; Ricevuto, V.; Giuffrida, A.; Campagna, S. Absorption spectra and luminescence properties of a series of pyridine carboxaldehyde phenylhydrazone ligands and their palladium(II) complexes. J. Photochem. Photobiol. Chem., 1990, 53(1), 23-30.
[http://dx.doi.org/10.1016/1010-6030(90)87109-O]
[38]
Frolova, N.A.; Vatsadze, S.Z.; Vetokhina, N.Y.; Zavodnik, V.E.; Zyk, N.V. New C-arylation reaction found during a study on the interaction of aldohydrazones and arenediazonium chlorides. Mendeleev Commun., 2006, 16(5), 251-254.
[http://dx.doi.org/10.1070/MC2006v016n05ABEH002397]
[39]
Coimbra, E.S.; Antinarelli, L.M.R.; de A Crispi, M.; Nogueira, T.C.M.; Pinheiro, A.C.; de Souza, M.V.N. Synthesis, biological activity, and mechanism of action of 2-pyrazyl and pyridylhydrazone derivatives, new classes of antileishmanial agents. ChemMedChem, 2018, 13(14), 1387-1394.
[http://dx.doi.org/10.1002/cmdc.201800328] [PMID: 29790287]
[40]
Wong, W.Y.; Wong, W.T. Synthesis, structural characterization and solvatochromic studies of a series of Schiff base-containing triosmium alkylidyne carbonyl clusters. J. Organomet. Chem., 1999, 584(1), 48-57.
[http://dx.doi.org/10.1016/S0022-328X(99)00091-1]
[41]
Gülçin, İ.; Alici, H.A.; Cesur, M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem. Pharm. Bull., 2005, 53(3), 281-285.
[http://dx.doi.org/10.1248/cpb.53.281] [PMID: 15744098]
[42]
Tappel, A.L. Lipoxidase. Methods Enzymol., 1962, 5, 539-542.
[http://dx.doi.org/10.1016/S0076-6879(62)05272-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy