Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Follicular Helper T Cells in Peyer's Patches and Galactose- Deficient Iga1 Contribute to Iga Nephropathy

Author(s): Yuye Huang, Xunling Sun, Guoming Nie, Hongtao Xu and Minshu Zou*

Volume 24, Issue 8, 2024

Published on: 12 September, 2023

Page: [1033 - 1044] Pages: 12

DOI: 10.2174/1566524023666230720112215

Price: $65

Abstract

Background: Common primary glomerulonephritis with aberrant mucosal immunity is IgA nephropathy (IgAN). T follicular helper (TFH) cells are essential in regulating B cell differentiation. Peyer’s patches (PPs) are the main site where IgA+ plasmablasts differentiate.

Objective: Our study aimed to investigate the TFH cell's potential contribution to the etiology of IgA nephropathy.

Methods: In PPs from IgAN mouse models, the ratio of the TFH cell, B220+IgA+, B220+IgM+, and B220-IgA+ lymphocytes were assessed. Then, we used Western blot to assess the expression of Bcl-6, Blimp- 1, and IL-21 proteins in PPs and used RTPCR to assess the expression of IL-21 and TGF-β1 mRNA. TFH cells coculture with spleen cells to measure the degree of IL-21 and the ratio of activation marker CD69 on the TFH cells. Naive B cells (CD27-IgD+) from children suffering from IgAN were cultured with TFH cell-related cytokines. The supernatant was detected to assess the excretion of galactose-deficient IgA1 (Gd-IgA1).

Results: IgAN mice developed noticeably increased degrees of IL-21 and CD69 on TFH cells than controls did, as well as higher percentages of B220+IgA+, B220+IgM+, B220+IgA+, TGF- β1, and IL-21 mRNA and Bcl-6, IL-21 proteins in PPs. The Gd-IgA1 level in the supernatant and IgAN- positive children's serum were noticeably higher than those of the healthy controls (P < 0.05). PPs provide the microenvironment to induce the production of IgA-secreting plasmablasts.

Conclusion: TFH cells may be a key moderator to induce B cell differentiation into IgAsecreting plasmablasts and produce Gd-IgA1, which plays a significant part in IgAN’s pathogenesis. It could be a new therapeutic target in the future.

[1]
Suzuki H. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis. Clin Exp Nephrol 2019; 23(1): 26-31.
[http://dx.doi.org/10.1007/s10157-018-1582-2] [PMID: 29740706]
[2]
Perše M. Večerić-Haler Ž. The role of IgA in the pathogenesis of IgA nephropathy. Int J Mol Sci 2019; 20(24): 6199.
[http://dx.doi.org/10.3390/ijms20246199] [PMID: 31818032]
[3]
Julian BA, Novak J. IgA nephropathy: An update. Curr Opin Nephrol Hypertens 2004; 13(2): 171-9.
[http://dx.doi.org/10.1097/00041552-200403000-00005] [PMID: 15202611]
[4]
Segarra A. Progress in understanding the pathogenesis of IgA nephropathy: New perspectives for the near future? Nefrologia 2010; 30(5): 501-7.
[PMID: 20882091]
[5]
Rajasekaran A, Julian BA, Rizk DV. IgA Nephropathy: An interesting autoimmune kidney disease. Am J Med Sci 2021; 361(2): 176-94.
[http://dx.doi.org/10.1016/j.amjms.2020.10.003] [PMID: 33309134]
[6]
Mora JR, Iwata M, Eksteen B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 2006; 314(5802): 1157-60.
[http://dx.doi.org/10.1126/science.1132742] [PMID: 17110582]
[7]
Reboldi A, Arnon TI, Rodda LB, Atakilit A, Sheppard D, Cyster JG. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 2016; 352(6287): aaf4822.
[http://dx.doi.org/10.1126/science.aaf4822] [PMID: 27174992]
[8]
Luciani C, Hager FT, Cerovic V, Lelouard H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol 2022; 15(1): 40-50.
[http://dx.doi.org/10.1038/s41385-021-00448-w] [PMID: 34465895]
[9]
Jung C, Hugot JP, Barreau F. Peyer’s patches: The Immune sensors of the intestine. Int J Inflamm 2010; 2010: 1-12.
[http://dx.doi.org/10.4061/2010/823710] [PMID: 21188221]
[10]
Bergqvist P, Stensson A, Lycke NY, Bemark M. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J Immunol 2010; 184(7): 3545-53.
[http://dx.doi.org/10.4049/jimmunol.0901895] [PMID: 20207993]
[11]
Reboldi A. In vivo imaging of immune cells in Peyer’s patches. Methods Mol Biol 2018; 1763: 109-18.
[http://dx.doi.org/10.1007/978-1-4939-7762-8_10] [PMID: 29476492]
[12]
Mestecky J, Elson CO. Peyer’s patches as the inductive site for IgA responses. J Immunol 2008; 180(3): 1293-4.
[http://dx.doi.org/10.4049/jimmunol.180.3.1293] [PMID: 18209022]
[13]
Ismail G. Obrişcă B, Jurubiţă R, et al. Budesonide versus systemic corticosteroids in IgA Nephropathy. Medicine (Baltimore) 2020; 99(26): e21000.
[http://dx.doi.org/10.1097/MD.0000000000021000] [PMID: 32590815]
[14]
Smerud HK, Bárány P, Lindström K, et al. New treatment for IgA nephropathy: Enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol Dial Transplant 2011; 26(10): 3237-42.
[http://dx.doi.org/10.1093/ndt/gfr052] [PMID: 21378156]
[15]
Coppo R. Biomarkers and targeted new therapies for IgA nephropathy. Pediatr Nephrol 2017; 32(5): 725-31.
[http://dx.doi.org/10.1007/s00467-016-3390-9] [PMID: 27324471]
[16]
Zhang W, Yuan Y, Li X, et al. Orange-derived and dexamethasone-encapsulated extracellular vesicles reduced proteinuria and alleviated pathological lesions in IgA nephropathy by targeting intestinal lymphocytes. Front Immunol 2022; 13: 900963.
[http://dx.doi.org/10.3389/fimmu.2022.900963] [PMID: 36119039]
[17]
Ding T, Su R, Wu R, et al. Frontiers of autoantibodies in autoimmune disorders: Crosstalk between Tfh/Tfr and regulatory B cells. Front Immunol 2021; 12: 641013.
[http://dx.doi.org/10.3389/fimmu.2021.641013] [PMID: 33841422]
[18]
Song W, Craft J. T follicular helper cell heterogeneity: Time, space, and function. Immunol Rev 2019; 288(1): 85-96.
[http://dx.doi.org/10.1111/imr.12740] [PMID: 30874350]
[19]
Ashida S, Ochi H, Hamatani M, et al. Immune skew of circulating follicular helper T cells associates with myasthenia gravis severity. Neurol Neuroimmunol Neuroinflamm 2021; 8(2): e945.
[http://dx.doi.org/10.1212/NXI.0000000000000945] [PMID: 33436376]
[20]
Meihua M, Xiaozhong L, Qin W, Yunfen Z, Yanyan C, Xunjun S. Association between Tfh and PGA in children with Henoch–Schönlein purpura. Open Med (Wars) 2021; 16(1): 986-91.
[http://dx.doi.org/10.1515/med-2021-0318] [PMID: 34250253]
[21]
Zhang Z, Zhao S, Zhang L, et al. A higher frequency of CD4 + CXCR5 + T follicular helper cells in patients with newly diagnosed Henoch–Schönlein purpura nephritis. Int Immunopharmacol 2016; 32: 8-15.
[http://dx.doi.org/10.1016/j.intimp.2015.12.037] [PMID: 26774213]
[22]
Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019; 99: 1-14.
[http://dx.doi.org/10.1016/j.jaut.2019.01.013] [PMID: 30773373]
[23]
Dullaers M, Li D, Xue Y, et al. A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. Immunity 2009; 30(1): 120-9.
[http://dx.doi.org/10.1016/j.immuni.2008.11.008] [PMID: 19144318]
[24]
Borsutzky S, Cazac BB, Roes J, Guzmán CA. TGF-beta receptor signaling is critical for mucosal IgA responses. J Immunol 2004; 173(5): 3305-9.
[http://dx.doi.org/10.4049/jimmunol.173.5.3305] [PMID: 15322193]
[25]
Nurieva RI, Chung Y, Martinez GJ, et al. Bcl6 mediates the development of T follicular helper cells. Science 2009; 325(5943): 1001-5.
[http://dx.doi.org/10.1126/science.1176676] [PMID: 19628815]
[26]
Maixnerova D, Ling C, Hall S, et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS One 2019; 14(2): e0212254.
[http://dx.doi.org/10.1371/journal.pone.0212254] [PMID: 30794576]
[27]
Zachova K, Jemelkova J, Kosztyu P, et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J Am Soc Nephrol 2022; 33(5): 908-17.
[http://dx.doi.org/10.1681/ASN.2021081086] [PMID: 35115327]
[28]
Jia L, Wang C, Kong H, et al. Effect of PA-MSHA vaccine on plasma phospholipids metabolic profiling and the ratio of Th2/Th1 cells within immune organ of mouse IgA nephropathy. J Pharm Biomed Anal 2007; 43(2): 646-54.
[http://dx.doi.org/10.1016/j.jpba.2006.07.040] [PMID: 16935452]
[29]
Kim SJ, Lee K, Diamond B. Follicular helper T cells in systemic lupus erythematosus. Front Immunol 2018; 9: 1793.
[http://dx.doi.org/10.3389/fimmu.2018.01793] [PMID: 30123218]
[30]
Quách TD, Manjarrez-Orduño N, Adlowitz DG, et al. Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. J Immunol 2011; 186(8): 4640-8.
[http://dx.doi.org/10.4049/jimmunol.1001946] [PMID: 21398610]
[31]
Yasutake J, Suzuki Y, Suzuki H, et al. Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transplant 2015; 30(8): 1315-21.
[http://dx.doi.org/10.1093/ndt/gfv221] [PMID: 26109484]
[32]
Emancipator SN, Gallo GR, Lamm ME. Experimental IgA nephropathy induced by oral immunization. J Exp Med 1983; 157(2): 572-82.
[http://dx.doi.org/10.1084/jem.157.2.572] [PMID: 6681626]
[33]
Young C, Brink R. The unique biology of germinal center B cells. Immunity 2021; 54(8): 1652-64.
[http://dx.doi.org/10.1016/j.immuni.2021.07.015] [PMID: 34380063]
[34]
Maul J, Alterauge D, Baumjohann D. Micro RNA-mediated regulation of T follicular helper and T follicular regulatory cell identity. Immunol Rev 2019; 288(1): 97-111.
[http://dx.doi.org/10.1111/imr.12735] [PMID: 30874343]
[35]
Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 2001; 413(6856): 639-43.
[http://dx.doi.org/10.1038/35098100] [PMID: 11675788]
[36]
Meyer-Bahlburg A. B-1 cells as a source of IgA. Ann N Y Acad Sci 2015; 1362(1): 122-31.
[http://dx.doi.org/10.1111/nyas.12801] [PMID: 26062045]
[37]
Jang Y-S, Seo G-Y, Lee J-M, et al. Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-β signaling. Mucosal Immunol 2015; 8(4): 906-17.
[http://dx.doi.org/10.1038/mi.2014.121] [PMID: 25492477]
[38]
Choi J, Crotty S. Bcl6-mediated transcriptional regulation of follicular helper T cells (TFH). Trends Immunol 2021; 42(4): 336-49.
[http://dx.doi.org/10.1016/j.it.2021.02.002] [PMID: 33663954]
[39]
Gonzalez DG, Cote CM, Patel JR, et al. Nonredundant roles of IL-21 and IL-4 in the phased initiation of germinal center b cells and subsequent self-renewal transitions. J Immunol 2018; 201(12): 3569-79.
[http://dx.doi.org/10.4049/jimmunol.1500497] [PMID: 30446568]
[40]
Ren HM, Lukacher AE, Rahman ZSM, Olsen NJ. New developments implicating IL-21 in autoimmune disease. J Autoimmun 2021; 122: 102689.
[http://dx.doi.org/10.1016/j.jaut.2021.102689] [PMID: 34224936]
[41]
Schmitt N, Liu Y, Bentebibel SE, et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol 2014; 15(9): 856-65.
[http://dx.doi.org/10.1038/ni.2947] [PMID: 25064073]
[42]
Hashiguchi M, Kashiwakura Y, Kanno Y, Kojima H, Kobata T. IL-21 and IL-5 coordinately induce surface IgA+ cells. Immunol Lett 2020; 224: 21-7.
[http://dx.doi.org/10.1016/j.imlet.2020.05.004] [PMID: 32492473]
[43]
Crotty S. Revealing T follicular helper cells with BCL6. Nat Rev Immunol 2021; 21(10): 616-7.
[http://dx.doi.org/10.1038/s41577-021-00591-2] [PMID: 34580446]
[44]
Xu Y, Huang X, Li F, et al. IL-21 enhances STAT3/Blimp-1 signaling pathway in B cells and contributes to plasma cell differentiation in newly diagnosed patients with myasthenia gravis. Immunol Res 2021; 69(1): 59-70.
[http://dx.doi.org/10.1007/s12026-020-09164-2] [PMID: 33145710]
[45]
Yan S, Deng X, Wang Q, Sun X, Wei W. Prednisone treatment inhibits the differentiation of B lymphocytes into plasma cells in MRL/MpSlac-lpr mice. Acta Pharmacol Sin 2015; 36(11): 1367-76.
[http://dx.doi.org/10.1038/aps.2015.76] [PMID: 26456588]
[46]
Ozaki K, Spolski R, Ettinger R, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 2004; 173(9): 5361-71.
[http://dx.doi.org/10.4049/jimmunol.173.9.5361] [PMID: 15494482]
[47]
Irabu H, Shimizu M, Kaneko S, et al. Clinical significance of serum galactose-deficient IgA1 level in children with IgA nephropathy. J Immunol Res 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/4284379] [PMID: 32537466]
[48]
Kim JS, Hwang HS, Lee SH, et al. Clinical relevance of serum galactose deficient IgA1 in patients with IgA nephropathy. J Clin Med 2020; 9(11): 3549.
[http://dx.doi.org/10.3390/jcm9113549] [PMID: 33158064]
[49]
Gesualdo L, Di Leo V, Coppo R. The mucosal immune system and IgA nephropathy. Semin Immunopathol 2021; 43(5): 657-68.
[http://dx.doi.org/10.1007/s00281-021-00871-y] [PMID: 34642783]
[50]
Bagchi S, Lingaiah R, Mani K, et al. Significance of serum galactose deficient IgA1 as a potential biomarker for IgA nephropathy: A case control study. PLoS One 2019; 14(3): e0214256.
[http://dx.doi.org/10.1371/journal.pone.0214256] [PMID: 30917188]
[51]
Mei HE, Yoshida T, Sime W, et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009; 113(11): 2461-9.
[http://dx.doi.org/10.1182/blood-2008-04-153544] [PMID: 18987362]
[52]
Teng F, Klinger CN, Felix KM, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 2016; 44(4): 875-88.
[http://dx.doi.org/10.1016/j.immuni.2016.03.013] [PMID: 27096318]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy