Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Preventive Effect of Alpha-pinene on Cisplatin-induced Kidney Injury by Oxidative Stress, Inflammation and Apoptosis via NF-κB Signaling Pathway

Author(s): Junhua Tan*

Volume 21, Issue 12, 2024

Published on: 21 September, 2023

Page: [2416 - 2422] Pages: 7

DOI: 10.2174/1570180820666230719121723

Price: $65

Abstract

Introduction: The chemotherapy medication cisplatin is highly effective and is used in treating a wide variety of cancers. Tumor resistance and dose-related severe side effects, including kidney and hearing damage and suppressed bone marrow function, limit its clinical utility. This study aimed to investigate the nephroprotective effect of alpha-pinene against cisplatin-induced nephrotoxicity in male albino Wistar rats.

Methods: A total of 24 rats were divided into four groups containing six animals. Alpha-pinene (50 mg/kg) was administered orally for 14 days, and cisplatin (50 mg/kg) was given intraperitoneally for the last two consecutive days (13th and 14th day). Kidney function markers, lipid peroxidative markers, antioxidant status, inflammatory markers, and apoptotic gene expressions were analyzed. The cisplatininduced rats significantly elevated kidney function markers, inflammatory markers, and pro-apoptotic genes in kidney tissues. Further, the antioxidant level/activities and antiapoptotic gene expression were significantly diminished in cisplatin-induced rats.

Results: Pretreatment with alpha-pinene significantly decreased kidney function markers, inflammatory markers, and pro-apoptotic genes and increased antioxidant status and antiapoptotic genes.

Conclusion: These findings provide the protective effect of alpha-pinene against CP-induced nephrotoxicity, as measured by potent antioxidant and antiapoptotic properties.

[1]
Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int., 2008, 73(9), 994-1007.
[http://dx.doi.org/10.1038/sj.ki.5002786] [PMID: 18272962]
[2]
Pierson-Marchandise, M.; Gras, V.; Moragny, J.; Micallef, J.; Gaboriau, L.; Picard, S.; Choukroun, G.; Masmoudi, K.; Liabeuf, S. The drugs that mostly frequently induce acute kidney injury: A case - noncase study of a pharmacovigilance database. Br. J. Clin. Pharmacol., 2017, 83(6), 1341-1349.
[http://dx.doi.org/10.1111/bcp.13216] [PMID: 28002877]
[3]
Fang, C.; Lou, D.; Zhou, L.; Wang, J.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol. Sin., 2021, 42(12), 1951-1969.
[http://dx.doi.org/10.1038/s41401-021-00620-9] [PMID: 33750909]
[4]
Pan, H.; Chen, J.; Shen, K.; Wang, X.; Wang, P.; Fu, G.; Meng, H.; Wang, Y.; Jin, B. Mitochondrial modulation by Epigallocatechin 3-Gallate ameliorates cisplatin induced renal injury through decreasing oxidative/nitrative stress, inflammation and NF-kB in mice. PLoS One, 2015, 10(4), e0124775.
[http://dx.doi.org/10.1371/journal.pone.0124775] [PMID: 25875356]
[5]
dos Santos, N.A.G.; Carvalho Rodrigues, M.A.; Martins, N.M.; dos Santos, A.C. Cisplatin-induced nephrotoxicity and targets of nephroprotection: An update. Arch. Toxicol., 2012, 86(8), 1233-1250.
[http://dx.doi.org/10.1007/s00204-012-0821-7] [PMID: 22382776]
[6]
Carvalho Rodrigues, M.A.; Rodrigues, J.L.; Martins, N.M.; Barbosa, F.; Curti, C.; Santos, N.A.G.; Santos, A.C. Carvedilol protects against the renal mitochondrial toxicity induced by cisplatin in rats. Mitochondrion, 2010, 10(1), 46-53.
[http://dx.doi.org/10.1016/j.mito.2009.09.001] [PMID: 19772951]
[7]
Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 2010, 15(12), 9252-9287.
[http://dx.doi.org/10.3390/molecules15129252] [PMID: 21160452]
[8]
Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; Kim, S.J.; Park, S.H.; Choi, B.M.; Park, S.J.; Um, J.Y.; Hong, S.H. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages. Am. J. Chin. Med., 2015, 43(4), 731-742.
[http://dx.doi.org/10.1142/S0192415X15500457] [PMID: 26119957]
[9]
Bae, G.S.; Park, K.C.; Choi, S.B.; Jo, I.J.; Choi, M.O.; Hong, S.H.; Song, K.; Song, H.J.; Park, S.J. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci., 2012, 91(17-18), 866-871.
[http://dx.doi.org/10.1016/j.lfs.2012.08.035] [PMID: 22982349]
[10]
Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci., 2015, 127(3), 332-338.
[http://dx.doi.org/10.1016/j.jphs.2015.01.008] [PMID: 25837931]
[11]
Zhang, B.; Wang, H.; Yang, Z.; Cao, M.; Wang, K.; Wang, G.; Zhao, Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum. Exp. Toxicol., 2020, 39(12), 1596-1606.
[http://dx.doi.org/10.1177/0960327120934537] [PMID: 32602371]
[12]
Alhoshani, A.R.; Hafez, M.M.; Husain, S.; Al-sheikh, A.M.; Alotaibi, M.R.; Al Rejaie, S.S.; Alshammari, M.A.; Almutairi, M.M.; Al-Shabanah, O.A. Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats. BMC Nephrol., 2017, 18(1), 194.
[http://dx.doi.org/10.1186/s12882-017-0601-y] [PMID: 28619064]
[13]
Sahu, B.D.; Kuncha, M.; Sindhura, G.J.; Sistla, R. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine, 2013, 20(5), 453-460.
[http://dx.doi.org/10.1016/j.phymed.2012.12.001] [PMID: 23353054]
[14]
Kang, K.P.; Park, S.K.; Kim, D.H.; Sung, M.J.; Jung, Y.J.; Lee, A.S.; Lee, J.E.; Ramkumar, K.M.; Lee, S.; Park, M.H.; Roh, S.G.; Kim, W. Luteolin ameliorates cisplatin-induced acute kidney injury in mice by regulation of p53-dependent renal tubular apoptosis. Nephrol. Dial. Transplant., 2011, 26(3), 814-822.
[http://dx.doi.org/10.1093/ndt/gfq528] [PMID: 20817674]
[15]
Kourkinejad Gharaei, F.; Safari, T.; Niazi, A.A.; Zeynali Bujani, M. Losartan and magnesium sulfate administration reduce gentamicin-induced nephrotoxicity in rat model. J. Nephropathol., 2018, 8(2), 16.
[http://dx.doi.org/10.15171/jnp.2019.16]
[16]
Safari, T.; Miri, S.; Ghofran, O.; Fereidooni, F.; Niazi, A.A.; Bagheri, H.; Nematbakhsh, M. Gender differences in response to vitamin E and C in gentamicin induced nephrotoxicity in Wistar rats. J. Nephropathol., 2017, 6(4), 338-345.
[http://dx.doi.org/10.15171/jnp.2017.54]
[17]
Özcan, O.; Erdal, H. Çakırca, G.; Yönden, Z. Oxidative stress and its impacts on intracellular lipids, proteins and DNA. Journal of Clinical and Experimental Investigations, 2015, 6(3), 331-336.
[http://dx.doi.org/10.5799/ahinjs.01.2015.03.0545]
[18]
Cakir, T.; Goktas, B.; Mutlu, M.F.; Mutlu, I.; Bilgihan, A.; Erdem, M.; Erdem, A. Advanced oxidation protein products and malondialdehyde — the new biological markers of oxidative stress — are elevated in postmenopausal women. Ginekol. Pol., 2016, 87(5), 321-325.
[http://dx.doi.org/10.5603/GP.2016.0001] [PMID: 27304645]
[19]
Giweli, A. Džamić, A.M.; Soković, M.; Ristić, M.S.; Marin, P.D. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules, 2012, 17(5), 4836-4850.
[http://dx.doi.org/10.3390/molecules17054836] [PMID: 22538487]
[20]
Hajian, S.; Rafieian-Kopaei, M.; Nasri, H. Renoprotective effects of antioxidants against cisplatin nephrotoxicity. J. Nephropharmacol., 2014, 3(2), 39-42.
[PMID: 28197460]
[21]
Sadhukhan, P.; Saha, S.; Dutta, S.; Sil, P.C. Mangiferin Ameliorates Cisplatin Induced Acute Kidney Injury by Upregulating Nrf-2 via the Activation of PI3K and Exhibits Synergistic Anticancer Activity With Cisplatin. Front. Pharmacol., 2018, 9, 638.
[http://dx.doi.org/10.3389/fphar.2018.00638] [PMID: 29967581]
[22]
Bahrami, S.; Shahriari, A.; Tavalla, M.; Azadmanesh, S.; Hamidinejat, H. Blood Levels of Oxidant/Antioxidant Parameters in Rats Infected with Toxoplasma gondii. Oxid. Med. Cell. Longev., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/8045969] [PMID: 27746857]
[23]
Han, B.S.; Park, C.B.; Takasuka, N.; Naito, A.; Sekine, K.; Nomura, E.; Taniguchi, H.; Tsuno, T.; Tsuda, H. A ferulic acid derivative, ethyl 3-(4′-geranyloxy-3-methoxyphenyl)-2-propenoate, as a new candidate chemopreventive agent for colon carcinogenesis in the rat. Jpn. J. Cancer Res., 2001, 92(4), 404-409.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01109.x] [PMID: 11346462]
[24]
Sahu, B.D.; Rentam, K.K.R.; Putcha, U.K.; Kuncha, M.; Vegi, G.M.N.; Sistla, R. Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Food Chem. Toxicol., 2011, 49(12), 3090-3097.
[http://dx.doi.org/10.1016/j.fct.2011.08.018] [PMID: 21930180]
[25]
Ueki, M.; Ueno, M.; Morishita, J.; Maekawa, N. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J. Biosci. Bioeng., 2013, 115(5), 547-551.
[http://dx.doi.org/10.1016/j.jbiosc.2012.11.007] [PMID: 23245727]
[26]
Mi, X.; Hou, J.; Wang, Z.; Han, Y.; Ren, S.; Hu, J.; Chen, C.; Li, W. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci. Rep., 2018, 8(1), 15922.
[http://dx.doi.org/10.1038/s41598-018-34156-6] [PMID: 30374107]
[27]
Wang, X.; Parrish, A.R. Loss of α(E)-catenin promotes Fas mediated apoptosis in tubular epithelial cells. Apoptosis, 2015, 20(7), 921-929.
[http://dx.doi.org/10.1007/s10495-015-1129-x] [PMID: 25894537]
[28]
Malik, S.; Suchal, K.; Gamad, N.; Dinda, A.K.; Arya, D.S.; Bhatia, J. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur. J. Pharmacol., 2015, 748, 54-60.
[http://dx.doi.org/10.1016/j.ejphar.2014.12.008] [PMID: 25510231]
[29]
Liu, H.; Gu, L.; Tu, Y.; Hu, H.; Huang, Y.; Sun, W. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol. Sin., 2016, 37(2), 235-245.
[http://dx.doi.org/10.1038/aps.2015.114] [PMID: 26775661]

© 2025 Bentham Science Publishers | Privacy Policy