Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Systematic Review Article

Quercetin Modulates the Signalling Pathways and Therapeutic Targets in the Pathophysiology of Lung Cancer: A Systematic Review

Author(s): Seyed Vahid Jasemi, Hosna Khazaei, Sajad Fakhri, Zeinab Samimi, Ina Yosifova Aneva and Mohammad Hosein Farzaei*

Volume 21, Issue 14, 2024

Published on: 17 October, 2023

Page: [2903 - 2915] Pages: 13

DOI: 10.2174/1570180820666230719121525

Price: $65

Abstract

Introduction: Lung cancer is a progressive disease with the highest incidence and mortality rate of other cancer types. Besides, the low efficacy of current treatments used against lung cancer urges the need for novel alternative treatments.

Method: Accordingly, quercetin (a flavonoid) has shown a mechanistic-based potential in preventing the progression of lung cancer. So, this study was designed to systematically review quercetin's therapeutic effects on the improvement of lung cancer. For this purpose, PubMed, Scopus and Cochrane library databases were searched based on the keywords lung cancer, lung carcinoma, lung adenocarcinoma and quercetin from 1997 to November 2021. We removed Non-English, repetitive, review and irrelevant articles according to title and abstract in the first step. After that, full-text screening was used to include the final studies.

Results: From a total of 4341 results, finally 36 articles were included in the study, which the whole confirmed the therapeutic effects of quercetin on the improvement of lung malignancy. They also proved that quercetin has a synergic effect with chemical drugs used for lung cancer treatment. From the mechanical point of view, quercetin has employed several signaling mediators for lung therapeutic applications. This systematic review summarizes the modulatory effects of quercetin on several dysregulated pathways, including growth/proliferation, viability, migration/invasion, oxidative stress, inflammation and apoptosis.

Conclusion: Prevailing studies show that quercetin interferes with molecular targets and mechanisms underlying lung cancer to prevent the development of such diseases in clinical applications.

[1]
Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; Fulton, L.; Fulton, R.S.; Zhang, Q.; Wendl, M.C.; Lawrence, M.S.; Larson, D.E.; Chen, K.; Dooling, D.J.; Sabo, A.; Hawes, A.C.; Shen, H.; Jhangiani, S.N.; Lewis, L.R.; Hall, O.; Zhu, Y.; Mathew, T.; Ren, Y.; Yao, J.; Scherer, S.E.; Clerc, K.; Metcalf, G.A.; Ng, B.; Milosavljevic, A.; Gonzalez-Garay, M.L.; Osborne, J.R.; Meyer, R.; Shi, X.; Tang, Y.; Koboldt, D.C.; Lin, L.; Abbott, R.; Miner, T.L.; Pohl, C.; Fewell, G.; Haipek, C.; Schmidt, H.; Dunford-Shore, B.H.; Kraja, A.; Crosby, S.D.; Sawyer, C.S.; Vickery, T.; Sander, S.; Robinson, J.; Winckler, W.; Baldwin, J.; Chirieac, L.R.; Dutt, A.; Fennell, T.; Hanna, M.; Johnson, B.E.; Onofrio, R.C.; Thomas, R.K.; Tonon, G.; Weir, B.A.; Zhao, X.; Ziaugra, L.; Zody, M.C.; Giordano, T.; Orringer, M.B.; Roth, J.A.; Spitz, M.R.; Wistuba, I.I.; Ozenberger, B.; Good, P.J.; Chang, A.C.; Beer, D.G.; Watson, M.A.; Ladanyi, M.; Broderick, S.; Yoshizawa, A.; Travis, W.D.; Pao, W.; Province, M.A.; Weinstock, G.M.; Varmus, H.E.; Gabriel, S.B.; Lander, E.S.; Gibbs, R.A.; Meyerson, M.; Wilson, R.K. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216), 1069-1075.
[http://dx.doi.org/10.1038/nature07423] [PMID: 18948947]
[2]
Sanders, H.R.; Albitar, M. Somatic mutations of signaling genes in non-small-cell lung cancer. Cancer Genet. Cytogenet., 2010, 203(1), 7-15.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.07.134] [PMID: 20951313]
[3]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[4]
Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest, 2003, 123(S1), 21S-49S.
[http://dx.doi.org/10.1378/chest.123.1_suppl.21S] [PMID: 12527563]
[5]
Churg, A. Lung cancer cell type and occupational exposure. Lung biology in health and disease. Health & Environmental Research Online (HERO), 1994, 74, 413-436.
[6]
Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst., 1999, 91(14), 1194-1210.
[http://dx.doi.org/10.1093/jnci/91.14.1194] [PMID: 10413421]
[7]
Key, T.J.; Allen, N.E.; Spencer, E.A.; Travis, R.C. The effect of diet on risk of cancer. Lancet, 2002, 360(9336), 861-868.
[http://dx.doi.org/10.1016/S0140-6736(02)09958-0] [PMID: 12243933]
[8]
Torre, L.A.; Siegel, R.L.; Jemal, A. Lung cancer statistics. In: Lung Cancer and Personalized Medicine. Advances in Experimental Medicine and Biology; Ahmad, A.; Gadgeel, S., Eds.; Springer: Cham, 2016; p. 893.
[http://dx.doi.org/10.1007/978-3-319-24223-1_1]
[9]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[10]
Arnold, B.N.; Thomas, D.C.; Rosen, J.E.; Salazar, M.C.; Blasberg, J.D.; Boffa, D.J.; Detterbeck, F.C.; Kim, A.W. Lung cancer in the very young: Treatment and survival in the national cancer data base. J. Thorac. Oncol., 2016, 11(7), 1121-1131.
[http://dx.doi.org/10.1016/j.jtho.2016.03.023] [PMID: 27103511]
[11]
Okazaki, I.; Ishikawa, S.; Ando, W.; Sohara, Y. Lung adenocarcinoma in never smokers: Problems of primary prevention from aspects of susceptible genes and carcinogens. Anticancer Res., 2016, 36(12), 6207-6224.
[http://dx.doi.org/10.21873/anticanres.11215] [PMID: 27919939]
[12]
de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res., 2018, 7(3), 220-233.
[http://dx.doi.org/10.21037/tlcr.2018.05.06] [PMID: 30050761]
[13]
Matakidou, A.; Eisen, T.; Houlston, R.S. Systematic review of the relationship between family history and lung cancer risk. Br. J. Cancer, 2005, 93(7), 825-833.
[http://dx.doi.org/10.1038/sj.bjc.6602769] [PMID: 16160696]
[14]
Ben-Zaken Cohen, S.; Paré, P.D.; Man, S.F.P.; Sin, D.D. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: examining sex differences in cigarette smoke metabolism. Am. J. Respir. Crit. Care Med., 2007, 176(2), 113-120.
[http://dx.doi.org/10.1164/rccm.200611-1655PP] [PMID: 17413125]
[15]
Chaitanya Thandra, K.; Barsouk, A.; Saginala, K.; Sukumar Aluru, J.; Barsouk, A. Epidemiology of lung cancer. Contemp. Oncol., 2021, 25(1), 45-52.
[http://dx.doi.org/10.5114/wo.2021.103829] [PMID: 33911981]
[16]
Dela Cruz, C.S.; Tanoue, L.T.; Matthay, R.A. Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med., 2011, 32(4), 605-644.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[17]
Friberg, L.; Cederlöf, R. Late effects of air pollution with special reference to lung cancer. Environ. Health Perspect., 1978, 22, 45-66.
[http://dx.doi.org/10.1289/ehp.782245] [PMID: 348461]
[18]
Mauguen, A.; Pignon, J.P.; Burdett, S.; Domerg, C.; Fisher, D.; Paulus, R.; Mandrekar, S.J.; Belani, C.P.; Shepherd, F.A.; Eisen, T.; Pang, H.; Collette, L.; Sause, W.T.; Dahlberg, S.E.; Crawford, J.; O’Brien, M.; Schild, S.E.; Parmar, M.; Tierney, J.F.; Pechoux, C.L.; Michiels, S. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: A re-analysis of meta-analyses of individual patients’ data. Lancet Oncol., 2013, 14(7), 619-626.
[http://dx.doi.org/10.1016/S1470-2045(13)70158-X] [PMID: 23680111]
[19]
Flagg, E.W.; Coates, R.J.; Greenberg, R.S. Epidemiologic studies of antioxidants and cancer in humans. J. Am. Coll. Nutr., 1995, 14(5), 419-427.
[http://dx.doi.org/10.1080/07315724.1995.10718532] [PMID: 8522720]
[20]
Boone, C.W.; Kelloff, G.J.; Malone, W.E. Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials: A review. Cancer Res., 1990, 50(1), 2-9.
[PMID: 2403415]
[21]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[22]
Hertog, M.G.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr. Cancer, 1993, 20(1), 21-29.
[http://dx.doi.org/10.1080/01635589309514267]
[23]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[24]
Catanzaro, D. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun., 2015, 10(8), 1365-1368.
[http://dx.doi.org/10.1177/1934578X1501000813]
[25]
Cheong, E.; Ivory, K.; Doleman, J.; Parker, M.L.; Rhodes, M.; Johnson, I.T. Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human oesophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest. Carcinogenesis, 2004, 25(10), 1945-1952.
[http://dx.doi.org/10.1093/carcin/bgh184] [PMID: 15155531]
[26]
Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844.
[http://dx.doi.org/10.3892/ijo.19.4.837] [PMID: 11562764]
[27]
Chua, Y.J.; Steer, C.; Yip, D. Recent advances in management of small-cell lung cancer. Cancer Treat. Rev., 2004, 30(6), 521-543.
[http://dx.doi.org/10.1016/j.ctrv.2004.06.003] [PMID: 15325033]
[28]
Kuo, P.C.; Liu, H.F.; Chao, J.I. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J. Biol. Chem., 2004, 279(53), 55875-55885.
[http://dx.doi.org/10.1074/jbc.M407985200] [PMID: 15456784]
[29]
Nguyen, T.T.T.; Tran, E.; Nguyen, T.H.; Do, P.T.; Huynh, T.H.; Huynh, H. The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis, 2003, 25(5), 647-659.
[http://dx.doi.org/10.1093/carcin/bgh052] [PMID: 14688022]
[30]
Ong, C.; Tran, E.; Nguyen, T.; Ong, C.; Lee, S.; Lee, J.; Ng, C.; Leong, C.; Huynh, H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol. Rep., 2004, 11(3), 727-733.
[http://dx.doi.org/10.3892/or.11.3.727] [PMID: 14767529]
[31]
Sung, M.S.; Lee, E.G.; Jeon, H.S.; Chae, H.J.; Park, S.J.; Lee, Y.C.; Yoo, W.H. Quercetin inhibits IL-1β-induced proliferation and production of MMPs, COX-2, and PGE2 by rheumatoid synovial fibroblast. Inflammation, 2012, 35(4), 1585-1594.
[http://dx.doi.org/10.1007/s10753-012-9473-2] [PMID: 22592909]
[32]
Chen, X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn. Mag., 2010, 6(22), 135-141.
[http://dx.doi.org/10.4103/0973-1296.62900] [PMID: 20668581]
[33]
Yang, H.; Wang, B.; Wang, T.; Xu, L.; He, C.; Wen, H.; Yan, J.; Su, H.; Zhu, X. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One, 2014, 9(10), e109980.
[http://dx.doi.org/10.1371/journal.pone.0109980] [PMID: 25299052]
[34]
Morikawa, K.; Nonaka, M.; Narahara, M.; Torii, I.; Kawaguchi, K.; Yoshikawa, T.; Kumazawa, Y.; Morikawa, S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci., 2003, 74(6), 709-721.
[http://dx.doi.org/10.1016/j.lfs.2003.06.036] [PMID: 14654164]
[35]
Rogerio, A.P.; Dora, C.L.; Andrade, E.L.; Chaves, J.S.; Silva, L.F.C.; Lemos-Senna, E.; Calixto, J.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol. Res., 2010, 61(4), 288-297.
[http://dx.doi.org/10.1016/j.phrs.2009.10.005] [PMID: 19892018]
[36]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[37]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[38]
Khan, F.; Niaz, K.; Maqbool, F.; Ismail Hassan, F.; Abdollahi, M.; Nagulapalli Venkata, K.; Nabavi, S.; Bishayee, A. Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients, 2016, 8(9), 529.
[http://dx.doi.org/10.3390/nu8090529] [PMID: 27589790]
[39]
Murakami, A.; Ashida, H.; Terao, J. Multitargeted cancer prevention by quercetin. Cancer Lett., 2008, 269(2), 315-325.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[40]
Staedler, D.; Idrizi, E.; Kenzaoui, B.H.; Juillerat-Jeanneret, L. Drug combinations with quercetin: Doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother. Pharmacol., 2011, 68(5), 1161-1172.
[http://dx.doi.org/10.1007/s00280-011-1596-x] [PMID: 21400027]
[41]
Xavier, C.P.R.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother. Pharmacol., 2011, 68(6), 1449-1457.
[http://dx.doi.org/10.1007/s00280-011-1641-9] [PMID: 21479885]
[42]
Sonoki, H.; Sato, T.; Endo, S.; Matsunaga, T.; Yamaguchi, M.; Yamazaki, Y.; Sugatani, J.; Ikari, A. Quercetin decreases claudin-2 expression mediated by up-regulation of microRNA miR-16 in lung adenocarcinoma A549 cells. Nutrients, 2015, 7(6), 4578-4592.
[http://dx.doi.org/10.3390/nu7064578] [PMID: 26061016]
[43]
Banerjee, T.; Van der Vliet, A.; Ziboh, V.A. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 66(5-6), 485-492.
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[44]
Levy, G.N. Prostaglandin H synthases, nonsteroidal antiinflammatory drugs, and colon cancer. FASEB J., 1997, 11(4), 234-247.
[http://dx.doi.org/10.1096/fasebj.11.4.9068612] [PMID: 9068612]
[45]
Mutoh, M.; Takahashi, M.; Fukuda, K.; Komatsu, H.; Enya, T.; Matsushima-Hibiya, Y.; Mutoh, H.; Sugimura, T.; Wakabayashi, K. Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn. J. Cancer Res., 2000, 91(7), 686-691.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb01000.x] [PMID: 10920275]
[46]
Tsujii, M.; Kawano, S.; DuBois, R.N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 3336-3340.
[http://dx.doi.org/10.1073/pnas.94.7.3336] [PMID: 9096394]
[47]
Kim, H.K.; Cheon, B.S.; Kim, Y.H.; Kim, S.Y.; Kim, H.P. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem. Pharmacol., 1999, 58(5), 759-765.
[http://dx.doi.org/10.1016/S0006-2952(99)00160-4] [PMID: 10449184]
[48]
Caltagirone, S.; Ranelletti, F.O.; Rinelli, A.; Maggiano, N.; Colasante, A.; Musiani, P.; Aiello, F.B.; Piantelli, M. Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. Am. J. Respir. Cell Mol. Biol., 1997, 17(1), 51-59.
[http://dx.doi.org/10.1165/ajrcmb.17.1.2728] [PMID: 9224209]
[49]
Chan, S.T.; Yang, N.C.; Huang, C.S.; Liao, J.W.; Yeh, S.L. Quercetin enhances the antitumor activity of trichostatin A through upregulation of p53 protein expression in vitro and in vivo. PLoS One, 2013, 8(1), e54255.
[http://dx.doi.org/10.1371/journal.pone.0054255] [PMID: 23342112]
[50]
Lin, S.Y.; Tsai, S.J.; Wang, L.H.; Wu, M.F.; Lee, H. Protection by quercetin against cooking oil fumes-induced DNA damage in human lung adenocarcinoma CL-3 cells: Role of COX-2. Nutr. Cancer, 2002, 44(1), 95-101.
[http://dx.doi.org/10.1207/S15327914NC441_13] [PMID: 12672646]
[51]
Wang, Q.; Chen, Y.; Lu, H.; Wang, H.; Feng, H.; Xu, J.; Zhang, B. Quercetin radiosensitizes non‐small cell lung cancer cells through the regulation of miR‐16‐5p/WEE1 axis. IUBMB Life, 2020, 72(5), 1012-1022.
[http://dx.doi.org/10.1002/iub.2242] [PMID: 32027086]
[52]
Chen, X.; Zhang, N. Downregulation of lncRNA NEAT1_2 radiosensitizes hepatocellular carcinoma cells through regulation of miR-101-3p/WEE1 axis. Cell Biol. Int., 2019, 43(1), 44-55.
[http://dx.doi.org/10.1002/cbin.11077] [PMID: 30488993]
[53]
Yosri, H.; Elkashef, W.F.; Said, E.; Gameil, N.M. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int. Immunopharmacol., 2017, 50, 305-312.
[http://dx.doi.org/10.1016/j.intimp.2017.07.012] [PMID: 28738246]
[54]
Mei, Z.; Su, T.; Ye, J.; Yang, C.; Zhang, S.; Xie, C. The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat. Res., 2015, 183(2), 196-207.
[http://dx.doi.org/10.1667/RR13784.1] [PMID: 25594541]
[55]
Dong, Y.; Yang, J.; Yang, L.; Li, P. Quercetin inhibits the proliferation and metastasis of human non-small cell lung cancer cell line: The key role of src-mediated fibroblast growth factor-inducible 14 (Fn14)/nuclear factor kappa B (NF-κB) pathway. Med. Sci. Monit., 2020, 26, e920537-e1.
[http://dx.doi.org/10.12659/MSM.920537] [PMID: 32225128]
[56]
Ishizawar, R.; Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell, 2004, 6(3), 209-214.
[http://dx.doi.org/10.1016/j.ccr.2004.09.001] [PMID: 15380511]
[57]
Irby, R.B.; Yeatman, T.J. Role of Src expression and activation in human cancer. Oncogene, 2000, 19(49), 5636-5642.
[http://dx.doi.org/10.1038/sj.onc.1203912] [PMID: 11114744]
[58]
Yeh, S.L.; Yeh, C.L.; Chan, S.T.; Chuang, C.H. Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells. Planta Med., 2011, 77(10), 992-998.
[http://dx.doi.org/10.1055/s-0030-1250735] [PMID: 21267808]
[59]
Terzoudi, G.I.; Jung, T.; Hain, J.; Vrouvas, J.; Margaritis, K.; Donta-Bakoyianni, C.; Makropoulos, V.; Angelakis, P.; Pantelias, G.E. Increased G2 chromosomal radiosensitivity in cancer patients: the role of cdk1/cyclin-B activity level in the mechanisms involved. Int. J. Radiat. Biol., 2000, 76(5), 607-615.
[http://dx.doi.org/10.1080/095530000138268] [PMID: 10866282]
[60]
Yang, J.H.; Hsia, T.C.; Kuo, H.M.; Chao, P.D.L.; Chou, C.C.; Wei, Y.H.; Chung, J.G. Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab. Dispos., 2006, 34(2), 296-304.
[http://dx.doi.org/10.1124/dmd.105.005280] [PMID: 16280456]
[61]
González-Loyola, A.; Fernández-Miranda, G.; Trakala, M.; Partida, D.; Samejima, K.; Ogawa, H.; Cañamero, M.; de Martino, A.; Martínez-Ramírez, Á.; de Cárcer, G.; Pérez de Castro, I.; Earnshaw, W.C.; Malumbres, M. Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development. Mol. Cell. Biol., 2015, 35(20), 3566-3578.
[http://dx.doi.org/10.1128/MCB.01286-14] [PMID: 26240282]
[62]
Wajant, H.; Gerspach, J.; Pfizenmaier, K. Tumor therapeutics by design: Targeting and activation of death receptors. Cytokine Growth Factor Rev., 2005, 16(1), 55-76.
[http://dx.doi.org/10.1016/j.cytogfr.2004.12.001] [PMID: 15733832]
[63]
Chen, W.; Wang, X.; Zhuang, J.; Zhang, L.; Lin, Y. Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells. Carcinogenesis, 2007, 28(10), 2114-2121.
[http://dx.doi.org/10.1093/carcin/bgm133] [PMID: 17548900]
[64]
Cincin, Z.B.; Unlu, M.; Kiran, B.; Bireller, E.S.; Baran, Y.; Cakmakoglu, B. Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch. Med. Res., 2014, 45(6), 445-454.
[http://dx.doi.org/10.1016/j.arcmed.2014.08.002] [PMID: 25193878]
[65]
Chuang, C.H.; Chan, S.T.; Chen, C.H.; Yeh, S.L. Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells. Chem. Biol. Interact., 2019, 306, 54-61.
[http://dx.doi.org/10.1016/j.cbi.2019.04.006] [PMID: 30958996]
[66]
Czerwonka, A.; Maciołek, U.; Kałafut, J.; Mendyk, E.; Kuźniar, A.; Rzeski, W. Anticancer effects of sodium and potassium quercetin-5′-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the HT-29 human adenocarcinoma cell line. Bioorg. Chem., 2020, 94103426.
[http://dx.doi.org/10.1016/j.bioorg.2019.103426] [PMID: 31784064]
[67]
Hung, H. Dietary quercetin inhibits proliferation of lung carcinoma cells. In: Nutrigenomics-Opportunities in Asia; Karger Publishers, 2007; pp. 146-157.
[http://dx.doi.org/10.1159/000107165]
[68]
Kuhar, M.; Sen, S.; Singh, N. Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells. Anticancer Res., 2006, 26(2A), 1297-1303.
[PMID: 16619537]
[69]
Lee, S.H.; Lee, E.J.; Min, K.H.; Hur, G.Y.; Lee, S.H.; Lee, S.Y.; Kim, J.H.; Shin, C.; Shim, J.J.; In, K.H.; Kang, K.H.; Lee, S.Y. Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clin. Lung Cancer, 2015, 16(6), e235-e243.
[http://dx.doi.org/10.1016/j.cllc.2015.05.006] [PMID: 26050647]
[70]
Moon, J.H.; Eo, S.K.; Lee, J.H.; Park, S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep., 2015, 34(1), 375-381.
[http://dx.doi.org/10.3892/or.2015.3991] [PMID: 25997470]
[71]
Agarwal, E.; Brattain, M.G.; Chowdhury, S. Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell. Signal., 2013, 25(8), 1711-1719.
[http://dx.doi.org/10.1016/j.cellsig.2013.03.025] [PMID: 23603750]
[72]
Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene, 2003, 22(53), 8543-8567.
[http://dx.doi.org/10.1038/sj.onc.1207107] [PMID: 14634618]
[73]
Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, A.; Grzanka, D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem., 2017, 119(2), 99-112.
[http://dx.doi.org/10.1016/j.acthis.2016.11.003] [PMID: 27887793]
[74]
Bhat, F.A.; Sharmila, G.; Balakrishnan, S.; Arunkumar, R.; Elumalai, P.; Suganya, S.; Raja Singh, P.; Srinivasan, N.; Arunakaran, J. Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. J. Nutr. Biochem., 2014, 25(11), 1132-1139.
[http://dx.doi.org/10.1016/j.jnutbio.2014.06.008] [PMID: 25150162]
[75]
Liao, S.; Yu, C.; Liu, H.; Zhang, C.; Li, Y.; Zhong, X. Long non-coding RNA H19 promotes the proliferation and invasion of lung cancer cells and regulates the expression of E-cadherin, N-cadherin, and vimentin. OncoTargets Ther., 2019, 12, 4099-4107.
[http://dx.doi.org/10.2147/OTT.S185156] [PMID: 31190899]
[76]
Youn, H.; Jeong, J.C.; Jeong, Y.S.; Kim, E.J.; Um, S.J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol. Pharm. Bull., 2013, 36(6), 944-951.
[http://dx.doi.org/10.1248/bpb.b12-01004] [PMID: 23727915]
[77]
Zheng, S-Y.; Li, Y.; Jiang, D.; Zhao, J.; Ge, J.F. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep., 2012, 5(3), 822-826.
[PMID: 22200874]
[78]
Zhang, P.; Zhang, X. Stimulatory effects of curcumin and quercetin on posttranslational modifications of p53 during lung carcinogenesis. Hum. Exp. Toxicol., 2018, 37(6), 618-625.
[http://dx.doi.org/10.1177/0960327117714037] [PMID: 28681665]
[79]
Chang, J.H.; Lai, S.L.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Hsiao, M.; Lee, W.J.; Chien, M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(10), 1746-1758.
[http://dx.doi.org/10.1016/j.bbamcr.2017.06.017] [PMID: 28648644]
[80]
Lam, T.K.; Shao, S.; Zhao, Y.; Marincola, F.; Pesatori, A.; Bertazzi, P.A.; Caporaso, N.E.; Wang, E.; Landi, M.T. Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. Cancer Epidemiol. Biomarkers Prev., 2012, 21(12), 2176-2184.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-0745] [PMID: 23035181]
[81]
Chuang, C.H.; Yeh, C.L.; Yeh, S.L.; Lin, E.S.; Wang, L.Y.; Wang, Y.H. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J. Nutr. Biochem., 2016, 33, 45-53.
[http://dx.doi.org/10.1016/j.jnutbio.2016.03.011] [PMID: 27260467]
[82]
Chuang, C.H.; Wang, L.Y.; Wong, Y.; Lin, E.S. Anti-metastatic effects of isolinderalactone via the inhibition of MMP-2 and up regulation of NM23-H1 expression in human lung cancer A549 cells. Oncol. Lett., 2018, 15(4), 4690-4696.
[http://dx.doi.org/10.3892/ol.2018.7862] [PMID: 29541242]
[83]
John, A.; Tuszynski, G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res., 2001, 7(1), 14-23.
[http://dx.doi.org/10.1007/BF03032599] [PMID: 11349215]
[84]
Wu, T.C.; Chan, S.T.; Chang, C.N.; Yu, P.S.; Chuang, C.H.; Yeh, S.L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109.
[http://dx.doi.org/10.1016/j.cbi.2018.07.010] [PMID: 30016632]
[85]
Tewari, R.; Choudhury, S.R.; Ghosh, S.; Mehta, V.S.; Sen, E. Involvement of TNFα-induced TLR4–NF-κB and TLR4–HIF-1α feed-forward loops in the regulation of inflammatory responses in glioma. J. Mol. Med. (Berl.), 2012, 90(1), 67-80.
[http://dx.doi.org/10.1007/s00109-011-0807-6] [PMID: 21887505]
[86]
Wu, K.; Zhang, H.; Fu, Y.; Zhu, Y.; Kong, L.; Chen, L.; Zhao, F.; Yu, L.; Chen, X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol. Med. Rep., 2018, 18(3), 3411-3420.
[http://dx.doi.org/10.3892/mmr.2018.9326] [PMID: 30066873]
[87]
Kamaraj, S.; Vinodhkumar, R.; Anandakumar, P.; Jagan, S.; Ramakrishnan, G.; Devaki, T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol. Pharm. Bull., 2007, 30(12), 2268-2273.
[http://dx.doi.org/10.1248/bpb.30.2268] [PMID: 18057710]
[88]
Le Marchand, L.; Murphy, S.P.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst., 2000, 92(2), 154-160.
[http://dx.doi.org/10.1093/jnci/92.2.154] [PMID: 10639518]
[89]
Liu, Y.; Wu, Y.M.; Zhang, P.Y. Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(9), 1736-1743.
[PMID: 26004618]
[90]
Su, J-M.; Lin, P.; Wang, C.K.; Chang, H. Overexpression of cytochrome P450 1B1 in advanced non-small cell lung cancer: a potential therapeutic target. Anticancer Res., 2009, 29(2), 509-515.
[PMID: 19331196]
[91]
Albrecht, C.; Cittadini, M.C.; Soria, E.A. Pharmacological activity of quercetin and 5 caffeoylquinic acid oral intake in male Balb/c mice with lung adenocarcinoma. Arch. Med. Res., 2020, 51(1), 8-12.
[http://dx.doi.org/10.1016/j.arcmed.2019.11.006] [PMID: 32086110]
[92]
Yang, J.; Wang, L.; Chen, Z.; Shen, Z.Q.; Jin, M.; Wang, X.W.; Zheng, Y.; Qiu, Z.G.; Wang, J.; Li, J.W. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin. BMC Cancer, 2008, 8(1), 383.
[http://dx.doi.org/10.1186/1471-2407-8-383] [PMID: 19099597]
[93]
Tan, W.; Lin, L.; Li, M.; Zhang, Y.X.; Tong, Y.; Xiao, D.; Ding, J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur. J. Pharmacol., 2003, 459(2-3), 255-262.
[http://dx.doi.org/10.1016/S0014-2999(02)02848-0] [PMID: 12524154]
[94]
Mukherjee, A.; Khuda-Bukhsh, A.R. Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall-cell lung-cancer cell line, A549. J. Pharmacopuncture, 2015, 18(1), 19-26.
[http://dx.doi.org/10.3831/KPI.2015.18.002] [PMID: 25830055]
[95]
Wang, L.; Cao, L.; Wang, H.; Liu, B.; Zhang, Q.; Meng, Z.; Wu, X.; Zhou, Q.; Xu, K. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget, 2017, 8(44), 76116-76128.
[http://dx.doi.org/10.18632/oncotarget.18814] [PMID: 29100297]
[96]
Fagard, R.; Metelev, V.; Souissi, I.; Baran-Marszak, F. STAT3 inhibitors for cancer therapy. JAK-STAT, 2013, 2(1), e22882.
[http://dx.doi.org/10.4161/jkst.22882] [PMID: 24058788]
[97]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[98]
An, J.; Li, Z.; Dong, Y.; Ren, J.; Guo, K. Methicillin-Resistant Staphylococcus Aureus infection exacerbates NSCLC cell metastasis by up-regulating TLR4/MyD88 pathway. Cell. Mol. Biol., 2016, 62(8), 1-7.
[PMID: 27545207]
[99]
Chen, W.; Padilla, M.T.; Xu, X.; Desai, D.; Krzeminski, J.; Amin, S.; Lin, Y. Quercetin inhibits multiple pathways involved in interleukin 6 secretion from human lung fibroblasts and activity in bronchial epithelial cell transformation induced by benzo[a]pyrene diol epoxide. Mol. Carcinog., 2016, 55(11), 1858-1866.
[http://dx.doi.org/10.1002/mc.22434] [PMID: 26609631]
[100]
Lam, T.K.; Rotunno, M.; Lubin, J.H.; Wacholder, S.; Consonni, D.; Pesatori, A.C.; Bertazzi, P.A.; Chanock, S.J.; Burdette, L.; Goldstein, A.M.; Tucker, M.A.; Caporaso, N.E.; Subar, A.F.; Landi, M.T. Dietary quercetin, quercetin-gene interaction, metabolic gene expression in lung tissue and lung cancer risk. Carcinogenesis, 2010, 31(4), 634-642.
[http://dx.doi.org/10.1093/carcin/bgp334] [PMID: 20044584]
[101]
Wang, X.; Wang, L.; Zhang, H.; Li, K.; You, J. Ultrastructural changes during lung carcinogenesis-modulation by curcumin and quercetin. Oncol. Lett., 2016, 12(6), 4357-4360.
[http://dx.doi.org/10.3892/ol.2016.5259] [PMID: 28101199]
[102]
Xingyu, Z.; Peijie, M.; Dan, P.; Youg, W.; Daojun, W.; Xinzheng, C.; Xijun, Z.; Yangrong, S. Quercetin suppresses lung cancer growth by targeting Aurora B kinase. Cancer Med., 2016, 5(11), 3156-3165.
[http://dx.doi.org/10.1002/cam4.891] [PMID: 27704720]

© 2025 Bentham Science Publishers | Privacy Policy