Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Targets and Mechanisms of Resveratrol against Endothelial-Mesenchymal Transition in Atherosclerosis: A Network Pharmacology Analysis Combined with In vivo Experiments

Author(s): Xin Gao, Xiao-Juan Man, Bo He, Juan Xiang and Jin-Song Chen*

Volume 21, Issue 13, 2024

Published on: 21 September, 2023

Page: [2760 - 2770] Pages: 11

DOI: 10.2174/1570180820666230719121428

Price: $65

Abstract

Background: Atherosclerosis (AS) is a chronic inflammatory disease characterized by plaque formation and endothelial dysfunction. Under pro-inflammatory conditions, the endothelial-mesenchymal transition (EndMT) plays an important role in the pathogenesis of AS. Resveratrol (RES) is a natural polyphenol in traditional Chinese medicines, which has been proven to possess anti-AS effects. However, the mechanism of RES treating AS through EndMT is not clear at present.

Methods: RES targets were screened using databases such as SwissTargetPrediction and TargetNet, and AS and EndMT targets were searched using databases such as OMIM and DisGeNET. With the help of Venny 2.1, the key targets were selected by intersection. Next, the protein-protein interaction (PPI) network was constructed through the STRING 11.0 platform and Cytoscape software; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations were performed using DAVID. Further, Cytoscape was used to construct a drug-component-gene target-pathway network diagram to identify the core components and genes. Subsequently, an AS rat model was established. The blood lipid level of rats was detected by an automatic biochemical analyzer, and the expression level of the target protein was measured by western blotting.

Results: Through network pharmacology analysis, 37 potential targets for RES treating AS and EndMT were identified, and the core targets for RES treating AS consisted of AKT1, TNF, MIMP9, and PPARG. GO enrichment analysis indicated that the treatment of AS with RES mainly involved the migration and proliferation of epithelial and endothelial cells. The KEGG pathway enrichment analysis revealed that the enrichment of TNF and Rap1 signaling pathways was most significant. Besides, RES effectively reduced the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) in the serum of AS rats, increased the level of high-density lipoprotein cholesterol (HDL-C), and significantly cut down the atherosclerosis index (AI). Twist1, calponin, α-SMA and VE-cadherin were considered as EndMT indexes. The results of the western blot demonstrated that the protein levels of Twist1, calponin and α-SMA were significantly decreased, while the protein expression level of VE-cadherin was notably increased in rats treated with RES. Moreover, RES could also reduce the expression levels of Rap1 and Epac1 proteins.

Conclusion: RES is an effective anti-AS drug. Briefly, RES can effectively improve the blood lipid level of AS patients, regulate the expression of EndMT-related proteins, and alleviate the dysfunction of endothelial cells. Notably, the functions of RES are closely associated with the EPAC1-Rap1 pathway.

[1]
Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533.
[http://dx.doi.org/10.1038/s41586-021-03392-8] [PMID: 33883728]
[2]
Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch. Med. Res., 2015, 46(5), 328-338.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[3]
Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther., 2022, 7(1), 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[4]
Xu, L. Mechanism of resveratrol against atherosclerosis. J. Apoplexy Nerv. Dis, 2018, 35, 566-568.
[5]
Helmke, A.; Casper, J.; Nordlohne, J.; David, S.; Haller, H.; Zeisberg, E.M.; Vietinghoff, S. Endothelial‐to‐mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. FASEB J., 2019, 33(2), 2278-2289.
[http://dx.doi.org/10.1096/fj.201801238R] [PMID: 30260706]
[6]
Piera-Velazquez, S.; Jimenez, S.A. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol. Rev., 2019, 99(2), 1281-1324.
[http://dx.doi.org/10.1152/physrev.00021.2018] [PMID: 30864875]
[7]
Souilhol, C.; Harmsen, M.C.; Evans, P.C.; Krenning, G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc. Res., 2018, 114(4), 565-577.
[http://dx.doi.org/10.1093/cvr/cvx253] [PMID: 29309526]
[8]
Chen, P.Y.; Qin, L.; Baeyens, N.; Li, G.; Afolabi, T.; Budatha, M.; Tellides, G.; Schwartz, M.A.; Simons, M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest., 2015, 125(12), 4514-4528.
[http://dx.doi.org/10.1172/JCI82719] [PMID: 26517696]
[9]
Evrard, S.M.; Lecce, L.; Michelis, K.C.; Nomura-Kitabayashi, A.; Pandey, G.; Purushothaman, K.R.; d’Escamard, V.; Li, J.R.; Hadri, L.; Fujitani, K.; Moreno, P.R.; Benard, L.; Rimmele, P.; Cohain, A.; Mecham, B.; Randolph, G.J.; Nabel, E.G.; Hajjar, R.; Fuster, V.; Boehm, M.; Kovacic, J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun., 2016, 7, 11853.
[http://dx.doi.org/10.1038/ncomms11853]
[10]
Anbara, T.; Sharifi, M.; Aboutaleb, N. Endothelial to mesenchymal transition in the cardiogenesis and cardiovascular diseases. Curr. Cardiol. Rev., 2020, 16(4), 306-314.
[http://dx.doi.org/10.2174/18756557MTAwsMjA3w] [PMID: 31393254]
[11]
Qin, W.; Zhang, L.; Li, Z.; Xiao, D.; Zhang, Y.; Zhang, H.; Mokembo, J.N.; Monayo, S.M.; Jha, N.K.; Kopylov, P.; Shchekochikhin, D.; Zhang, Y. Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis. Theranostics, 2020, 10(12), 5276-5289.
[http://dx.doi.org/10.7150/thno.42470] [PMID: 32373212]
[12]
Adhyaru, B.B.; Jacobson, T.A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol., 2018, 15(12), 757-769.
[http://dx.doi.org/10.1038/s41569-018-0098-5] [PMID: 30375494]
[13]
Barker, A.L.; Morello, R.; Thao, L.T.P.; Seeman, E.; Ward, S.A.; Sanders, K.M.; Cumming, R.G.; Pasco, J.A.; Ebeling, P.R.; Woods, R.L.; Wolfe, R.; Khosla, S.; Hussain, S.M.; Ronaldson, K.; Newman, A.B.; Williamson, J.D.; McNeil, J.J. Daily low-dose aspirin and risk of serious falls and fractures in healthy older people. JAMA Intern. Med., 2022, 182(12), 1289-1297.
[http://dx.doi.org/10.1001/jamainternmed.2022.5028] [PMID: 36342703]
[14]
Inchingolo, A.D.; Malcangi, G.; Inchingolo, A.M.; Piras, F.; Settanni, V.; Garofoli, G.; Palmieri, G.; Ceci, S.; Patano, A.; De Leonardis, N.; Di Pede, C.; Montenegro, V.; Azzollini, D.; Garibaldi, M.G.; Kruti, Z.; Tarullo, A.; Coloccia, G.; Mancini, A.; Rapone, B.; Semjonova, A.; Hazballa, D.; D’Oria, M.T.; Jones, M.; Macchia, L.; Bordea, I.R.; Scarano, A.; Lorusso, F.; Tartaglia, G.M.; Maspero, C.; Del Fabbro, M.; Nucci, L.; Ferati, K.; Ferati, A.B.; Brienza, N.; Corriero, A.; Inchingolo, F.; Dipalma, G. Benefits and implications of resveratrol supplementation on microbiota modulations: A systematic review of the literature. Int. J. Mol. Sci., 2022, 23(7), 4027.
[http://dx.doi.org/10.3390/ijms23074027] [PMID: 35409389]
[15]
Gowd, V. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J. Nutr. Biochem., 2022, 109, 109101.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109101]
[16]
Farkhondeh, T.; Folgado, S.L.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Samarghandian, S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother., 2020, 127, 110234.
[http://dx.doi.org/10.1016/j.biopha.2020.110234]
[17]
Bi, Y.G. Research progress of resveratrol in the treatment of cardiovascular disease. J. Med. Res., 2016, 45, 45-10.
[18]
Kang, B.T.; Guo, M.; Sun, X.Y.; Tian, S.W.; Li, Y.H.; Jin, J.; Jia, L.Y.; Cao, H.L. Research progress of resveratrol relieving atherosclerosis. Shaanxi Medical J., 2020, 49, 1527-1530.
[19]
Guo, S.; Zhou, Y.; Xie, X. Resveratrol inhibiting TGF/ERK signaling pathway can improve atherosclerosis: backgrounds, mechanisms and effects. Biomed. Pharmacother., 2022, 155, 113775.
[http://dx.doi.org/10.1016/j.biopha.2022.113775]
[20]
Voloshyna, I.; Hussaini, S.M.; Reiss, A.B. Resveratrol in cholesterol metabolism and atherosclerosis. J. Med. Food, 2012, 15(9), 763-773.
[http://dx.doi.org/10.1089/jmf.2012.0025] [PMID: 22856383]
[21]
Prasad, K. Resveratrol, wine, and atherosclerosis. Int. J. Angiol., 2012, 21(1), 7-18.
[http://dx.doi.org/10.1007/s00547-004-1060-4] [PMID: 23450206]
[22]
Jiashuo, W.U.; Fangqing, Z.; Zhuangzhuang, L.I.; Weiyi, J.; Yue, S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med., 2022, 42(3), 479-486.
[http://dx.doi.org/10.19852/j.cnki.jtcm.20220408.003] [PMID: 35610020]
[23]
Hong, M.; Wu, Y.; Zhang, H.; Gu, J.; Chen, J.; Guan, Y.; Qin, X.; Li, Y.; Cao, J. Network pharmacology and experimental analysis to reveal the mechanism of Dan-Shen-Yin against endothelial to mesenchymal transition in atherosclerosis. Front. Pharmacol., 2022, 13, 946193.
[http://dx.doi.org/10.3389/fphar.2022.946193]
[24]
Wu, H.; Zhang, Z.; Wang, Y.; Zhang, T.; Qi, S.; Tang, Y.; Gao, X. Investigation into the properties of l-5-methyltetrahydrofolate and seal oil as a potential atherosclerosis intervention in rats. J. Nutr. Sci. Vitaminol., 2022, 68(2), 87-96.
[http://dx.doi.org/10.3177/jnsv.68.87] [PMID: 35491209]
[25]
Zhou, L.; Long, J.; Sun, Y.; Chen, W.; Qiu, R.; Yuan, D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE(-/-) mice and inhibits the activation of CD4(+) T cells. Nutr. Metab., 2020, 17, 41.
[http://dx.doi.org/10.1186/s12986-020-00461-z]
[26]
Xu, S.F.; Du, G.H.; Abulikim, K.; Cao, P.; Tan, H.B. Verification and defined dosage of sodium pentobarbital for a urodynamic study in the possibility of survival experiments in female rat. BioMed Res. Int., 2020, 2020, 6109497.
[http://dx.doi.org/10.1155/2020/6109497]
[27]
Liu, L.; Shi, Z.; Ji, X.; Zhang, W.; Luan, J.; Zahr, T.; Qiang, L. Adipokines, adiposity, and atherosclerosis. Cell. Mol. Life Sci., 2022, 79(5), 272.
[http://dx.doi.org/10.1007/s00018-022-04286-2] [PMID: 35503385]
[28]
Mahmoud, M.M.; Serbanovic-Canic, J.; Feng, S.; Souilhol, C.; Xing, R.; Hsiao, S.; Mammoto, A.; Chen, J.; Ariaans, M.; Francis, S.E.; Van der Heiden, K.; Ridger, V.; Evans, P.C. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci. Rep., 2017, 7(1), 3375.
[http://dx.doi.org/10.1038/s41598-017-03532-z] [PMID: 28611395]
[29]
Mammoto, T.; Muyleart, M.; Konduri, G.G.; Mammoto, A. Twist1 in Hypoxia-induced Pulmonary Hypertension through Transforming Growth Factor-β–Smad Signaling. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 194-207.
[http://dx.doi.org/10.1165/rcmb.2016-0323OC] [PMID: 28915063]
[30]
Rotllan, N.; Wanschel, A.C.; Fernández-Hernando, A.; Salerno, A.G.; Offermanns, S.; Sessa, W.C.; Fernández-Hernando, C. Genetic evidence supports a major role for Akt1 in VSMCs during atherogenesis. Circ. Res., 2015, 116(11), 1744-1752.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305895] [PMID: 25868464]
[31]
Wei, Y.; Nazari-Jahantigh, M.; Chan, L.; Zhu, M.; Heyll, K.; Corbalán-Campos, J.; Hartmann, P.; Thiemann, A.; Weber, C.; Schober, A. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation, 2013, 127(15), 1609-1619.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000736] [PMID: 23513069]
[32]
Momi, S.; Falcinelli, E.; Petito, E.; Ciarrocca Taranta, G.; Ossoli, A.; Gresele, P. Matrix metalloproteinase-2 on activated platelets triggers endothelial PAR-1 initiating atherosclerosis. Eur. Heart J., 2022, 43(6), 504-514.
[http://dx.doi.org/10.1093/eurheartj/ehab631] [PMID: 34529782]
[33]
Tao, Y.; Zhang, L.; Yang, R.; Yang, Y.; Jin, H.; Zhang, X.; Hu, Q.; He, B.; Shen, Z.; Chen, P. Corilagin ameliorates atherosclerosis by regulating MMP-1, -2, and -9 expression in vitro and in vivo. Eur. J. Pharmacol., 2021, 906, 174200.
[http://dx.doi.org/10.1016/j.ejphar.2021.174200]
[34]
Croft, M.; Duan, W.; Choi, H.; Eun, S.Y.; Madireddi, S.; Mehta, A. TNF superfamily in inflammatory disease: Translating basic insights. Trends Immunol., 2012, 33(3), 144-152.
[http://dx.doi.org/10.1016/j.it.2011.10.004] [PMID: 22169337]
[35]
Sonar, S.; Lal, G. Factor superfamily in neuroinflammation and autoimmunity. Front. Immunol., 2015, 6, 364.
[http://dx.doi.org/10.3389/fimmu.2015.00364]
[36]
Jin, Z.; Li, J.; Pi, J.; Chu, Q.; Wei, W.; Du, Z.; Qing, L.; Zhao, X.; Wu, W. Geniposide alleviates atherosclerosis by regulating macrophage polarization via the FOS/MAPK signaling pathway. Biomed. Pharmacother., 2020, 125, 110015.
[http://dx.doi.org/10.1016/j.biopha.2020.110015]
[37]
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med., 2020, 19(3), 1997-2007.
[http://dx.doi.org/10.3892/etm.2020.8454] [PMID: 32104259]
[38]
Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[39]
Lamalice, L.; Le Boeuf, F.; Huot, J. Endothelial cell migration during angiogenesis. Circ. Res., 2007, 100(6), 782-794.
[http://dx.doi.org/10.1161/01.RES.0000259593.07661.1e] [PMID: 17395884]
[40]
Mineo, C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc. Res., 2020, 116(7), 1254-1274.
[http://dx.doi.org/10.1093/cvr/cvz338] [PMID: 31834409]
[41]
Fan, D.; Liu, C.; Zhang, Z.; Huang, K.; Wang, T.; Chen, S.; Li, Z. Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease. Molecules, 2022, 27(21), 7524.
[http://dx.doi.org/10.3390/molecules27217524] [PMID: 36364370]
[42]
Wang, J.C.; Geng, Y.; Han, Y.; Luo, H.N.; Zhang, Y.S. Dynamic expression of Epac and Rap1 in mouse oocytes and preimplantation embryos. Exp. Ther. Med., 2018, 16(2), 523-528.
[http://dx.doi.org/10.3892/etm.2018.6253] [PMID: 30116310]
[43]
Liu, C.; Takahashi, M.; Li, Y.; Dillon, T.J.; Kaech, S.; Stork, P.J.S. The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol. Cell. Biol., 2010, 30(16), 3956-3969.
[http://dx.doi.org/10.1128/MCB.00242-10] [PMID: 20547757]
[44]
Pan, Y.; Liu, J.; Ren, J.; Luo, Y.; Sun, X. pac: A promising therapeutic target for vascular diseases: A review. Front. Pharmacol., 2022, 13, 929152.
[http://dx.doi.org/10.3389/fphar.2022.929152]
[45]
Singh, B.; Kosuru, R.; Lakshmikanthan, S.; Sorci-Thomas, M.G.; Zhang, D.X.; Sparapani, R.; Vasquez-Vivar, J.; Chrzanowska, M. Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2021, 41(2), 638-650.
[http://dx.doi.org/10.1161/ATVBAHA.120.315401] [PMID: 33267664]
[46]
Perdomo, L.; Vidal-Gómez, X.; Soleti, R.; Vergori, L.; Duluc, L.; Chwastyniak, M.; Bisserier, M.; Le Lay, S.; Villard, A.; Simard, G.; Meilhac, O.; Lezoualc’h, F.; Khantalin, I.; Veerapen, R.; Dubois, S.; Boursier, J.; Henni, S.; Gagnadoux, F.; Pinet, F.; Andriantsitohaina, R.; Martínez, M.C. Large extracellular vesicle-associated rap1 accumulates in atherosclerotic plaques, correlates with vascular risks and is involved in atherosclerosis. Circ. Res., 2020, 127(6), 747-760.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317086] [PMID: 32539601]
[47]
Cai, Y.; Sukhova, G.K.; Wong, H.K.; Xu, A.; Tergaonkar, V.; Vanhoutte, P.M.; Tang, E.H.C. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle, 2015, 14(22), 3580-3592.
[http://dx.doi.org/10.1080/15384101.2015.1100771] [PMID: 26505215]

© 2024 Bentham Science Publishers | Privacy Policy