Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Crocin Suppresses Colorectal Cancer Cell Proliferation by Regulating miR-143/145 and KRAS/RREB1 Pathways

Author(s): Seyed Samad Hosseini, Paria Nazifi, Mohammad Amini, Felor Zargari, Amir Hossein Yari, Behzad Baradaran, Soltanali Mahboob and Ahad Mokhtarzadeh*

Volume 23, Issue 17, 2023

Published on: 01 August, 2023

Page: [1916 - 1923] Pages: 8

DOI: 10.2174/1871520623666230718145100

Price: $65

Abstract

Background: As a chemoprevention agent, crocin effectively decreases the risk of human cancers, including colorectal cancer (CRC). However, the mechanism underlying the anti-cancer effects of crocin is not entirely explained. Considering that in this study, we investigated the crocin effect on miR-143/145 and related signaling pathways in CRC cells.

Methods: HCT-116 and HT-29 CRC cells were treated with different concentrations of crocin and then were subjected to MTT and qRT-PCR assays to investigate cell viability and miR-143/miR-145, KRAS, and RREB1 expression, respectively. Also, western blotting was performed to evaluate gene expression at protein levels.

Results: Our results showed that treating CRC cells with crocin decreases cell viability by upregulating miR-143/145 expression and reducing KRAS and RREB1 expression dose-dependently. These effects on gene expression in CRC cells were reversed by removing crocin from the media after 48 h. Furthermore, western blotting results exhibited that crocin significantly reduced the protein expression of KRAS and RREB1. Also, it was found that treatment of CRC cells by crocin led to the inactivation of AKT by decreasing its phosphorylation.

Conclusions: This study suggests that crocin may inhibit CRC cell proliferation by modulating KRAS, REEB1, and AKT signaling pathways mediated through miR-143/145 upregulation.

Graphical Abstract

[1]
Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers, 2021, 13(9), 2025.
[http://dx.doi.org/10.3390/cancers13092025] [PMID: 33922197]
[2]
Alzahrani, S.; Al Doghaither, H.; Al-Ghafari, A. General insight into cancer: An overview of colorectal cancer (Review). Mol. Clin. Oncol., 2021, 15(6), 271.
[http://dx.doi.org/10.3892/mco.2021.2433] [PMID: 34790355]
[3]
Jeught, K.V.; Xu, H.C.; Li, Y.J.; Lu, X.B.; Ji, G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol., 2018, 24(34), 3834-3848.
[http://dx.doi.org/10.3748/wjg.v24.i34.3834] [PMID: 30228778]
[4]
Katona, B.W.; Weiss, J.M. Chemoprevention of colorectal cancer. Gastroenterology, 2020, 158(2), 368-388.
[http://dx.doi.org/10.1053/j.gastro.2019.06.047] [PMID: 31563626]
[5]
Veisi, A.; Akbari, G.; Mard, S.A.; Badfar, G.; Zarezade, V.; Mirshekar, M.A. Role of crocin in several cancer cell lines: An updated re-view. Iran. J. Basic Med. Sci., 2020, 23(1), 3-12.
[PMID: 32405344]
[6]
Saravani, R.; Sargazi, S.; Saravani, R.; Rabbani, M.; Rahdar, A.; Taboada, P. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. J. Drug Deliv. Sci. Technol., 2020, 60, 101987.
[http://dx.doi.org/10.1016/j.jddst.2020.101987]
[7]
Bi, X.; Jiang, Z.; Luan, Z.; Qiu, D. Crocin exerts anti-proliferative and apoptotic effects on cutaneous squamous cell carcinoma via miR-320a/ATG2B. Bioengineered, 2021, 12(1), 4569-4580.
[http://dx.doi.org/10.1080/21655979.2021.1955175] [PMID: 34320900]
[8]
Hosseini, S.S.; Reihani, R.Z.; Doustvandi, M.A.; Amini, M.; Zargari, F.; Baradaran, B.; Yari, A.; Hashemi, M.; Tohidast, M.; Mokhtarzadeh, A. Synergistic anticancer effects of curcumin and crocin on human colorectal cancer cells. Mol. Biol. Rep., 2022, 49(9), 8741-8752.
[http://dx.doi.org/10.1007/s11033-022-07719-0] [PMID: 35988102]
[9]
Poli, V.; Seclì, L.; Avalle, L. The microRNA-143/145 cluster in tumors: a matter of where and when. Cancers (Basel), 2020, 12(3), 708.
[http://dx.doi.org/10.3390/cancers12030708] [PMID: 32192092]
[10]
Mustachio, L.M.; Chelariu-Raicu, A.; Szekvolgyi, L.; Roszik, J. Targeting KRAS in cancer: Promising therapeutic strategies. Cancers, 2021, 13(6), 1204.
[http://dx.doi.org/10.3390/cancers13061204] [PMID: 33801965]
[11]
Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell, 2017, 170(1), 17-33.
[http://dx.doi.org/10.1016/j.cell.2017.06.009] [PMID: 28666118]
[12]
Del Re, M.; Rofi, E.; Restante, G.; Crucitta, S.; Arrigoni, E.; Fogli, S.; Di Maio, M.; Petrini, I.; Danesi, R. Implications of KRAS mutations in acquired resistance to treatment in NSCLC. Oncotarget, 2018, 9(5), 6630-6643.
[http://dx.doi.org/10.18632/oncotarget.23553] [PMID: 29464099]
[13]
Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; Zhu, L.; Wang, J.; Yang, R.; Zhang, Y.; Ren, Z.; Zen, K.; Zhang, J.; Zhang, C-Y. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 2009, 28(10), 1385-1392.
[http://dx.doi.org/10.1038/onc.2008.474] [PMID: 19137007]
[14]
Kent, O.A.; Chivukula, R.R.; Mullendore, M.; Wentzel, E.A.; Feldmann, G.; Lee, K.H.; Liu, S.; Leach, S.D.; Maitra, A.; Mendell, J.T. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev., 2010, 24(24), 2754-2759.
[http://dx.doi.org/10.1101/gad.1950610] [PMID: 21159816]
[15]
Deng, Y.N.; Xia, Z.; Zhang, P.; Ejaz, S.; Liang, S. Transcription factor RREB1: from target genes towards biological functions. Int. J. Biol. Sci., 2020, 16(8), 1463-1473.
[http://dx.doi.org/10.7150/ijbs.40834] [PMID: 32210733]
[16]
Pham, H.; Ekaterina Rodriguez, C.; Donald, G.W.; Hertzer, K.M.; Jung, X.S.; Chang, H.H.; Moro, A.; Reber, H.A.; Hines, O.J.; Eibl, G. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2013, 439(1), 6-11.
[http://dx.doi.org/10.1016/j.bbrc.2013.08.042] [PMID: 23973710]
[17]
Sureban, S.M.; May, R.; Qu, D.; Weygant, N.; Chandrakesan, P.; Ali, N.; Lightfoot, S.A.; Pantazis, P.; Rao, C.V.; Postier, R.G.; Houchen, C.W. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS One, 2013, 8(9), e73940.
[http://dx.doi.org/10.1371/journal.pone.0073940] [PMID: 24040120]
[18]
Noguchi, S.; Yasui, Y.; Iwasaki, J.; Kumazaki, M.; Yamada, N.; Naito, S.; Akao, Y. Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett., 2013, 328(2), 353-361.
[http://dx.doi.org/10.1016/j.canlet.2012.10.017] [PMID: 23104321]
[19]
Zhao, W.G.; Yu, S.N.; Lu, Z.H.; Ma, Y.H.; Gu, Y.M.; Chen, J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis, 2010, 31(10), 1726-1733.
[http://dx.doi.org/10.1093/carcin/bgq160] [PMID: 20675343]
[20]
Zhang, Y.; Liu, J.L.; Wang, J. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 3085-3096.
[PMID: 32271426]
[21]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[22]
Karthika, C.; Hari, B.; Rahman, M.H.; Akter, R.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Akhtar, M.F.; Abdel-Daim, M.M. Multiple strat-egies with the synergistic approach for addressing colorectal cancer. Biomed. Pharmacother., 2021, 140111704.
[http://dx.doi.org/10.1016/j.biopha.2021.111704] [PMID: 34082400]
[23]
Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur. J. Cancer, 2021, 149, 165-183.
[http://dx.doi.org/10.1016/j.ejca.2021.03.009] [PMID: 33865202]
[24]
Hoshyar, R.; Mollaei, H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J. Pharm. Pharmacol., 2017, 69(11), 1419-1427.
[http://dx.doi.org/10.1111/jphp.12776] [PMID: 28675431]
[25]
Luo, Y.; Yu, P.; Zhao, J.; Guo, Q.; Fan, B.; Diao, Y.; Jin, Y.; Zhang, C. Pathogenesis and anti-proliferation mechanisms of Crocin in human gastric carcinoma cells. Int. J. Clin. Exp. Pathol., 2020, 13(5), 912-922.
[PMID: 32509062]
[26]
Zhou, Y.; Xu, Q.; Shang, J.; Lu, L.; Chen, G. Crocin inhibits the migration, invasion, and epithelial‐mesenchymal transition of gastric cancer cells via miR‐320/KLF5/HIF‐1α signaling. J. Cell. Physiol., 2019, 234(10), 17876-17885.
[http://dx.doi.org/10.1002/jcp.28418] [PMID: 30851060]
[27]
Forterre, A.; Komuro, H.; Aminova, S.; Harada, M. A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers, 2020, 12(7), 1852.
[http://dx.doi.org/10.3390/cancers12071852] [PMID: 32660045]
[28]
Kent, O.A.; Fox-Talbot, K.; Halushka, M.K. RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multi-ple targets. Oncogene, 2013, 32(20), 2576-2585.
[http://dx.doi.org/10.1038/onc.2012.266] [PMID: 22751122]
[29]
Shi, X.; Wang, J.; Lei, Y.; Cong, C.; Tan, D.; Zhou, X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer. (Review). Mol. Med. Rep., 2019, 19(6), 4529-4535.
[http://dx.doi.org/10.3892/mmr.2019.10121] [PMID: 30942405]
[30]
Kamran, S.; Seyedrezazadeh, E.; Shanehbandi, D.; Asadi, M.; Zafari, V.; Shekari, N. Combination therapy with KRAS and P38α siRNA suppresses colorectal cancer growth and development in SW480 cell line. J. Gastrointest. Cancer, 2021, 1-8.
[PMID: 34292499]
[31]
Ghodousi-Dehnavi, E.; Hosseini, R.H.; Arjmand, M.; Nasri, S.; Zamani, Z. A metabolomic investigation of eugenol on colorectal cancer cell line HT-29 by modifying the expression of APC, p53, and KRAS genes. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/1448206] [PMID: 34840582]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy